首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

An experiment was conducted in a semi‐arid region located in the State of Zulia, western part of Venezuela (10°32'N and 71°42'W, 600 mm average annual rainfall), to evaluate microelement concentrations of Andropogon gayanus Kunth as affected by two frequencies of defoliation (every 42 and 63 days) and fertilization with three levels of nitrogen (N) (0, 100, and 200 kg N ha1#lbyear‐1) and two levels of phosphorus (P) (0 and 75 kg P2O5 ha‐1#lbyear‐1) in a factorial array using a split‐split plot experimental design with frequencies in the main plots, N in the subplots and P in the sub‐subplots, and two replications. Soil was a sandy‐loam Aridisol with pH 5.5. Average soil calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), and P contents were 0.6, 0.3, 0.1, and 0.17 meq‐100 g‐1 soil, and 6 ppm, respectively. Data from six, four, and three cuttings for the frequencies of 42, 63, and 84 days were analyzed over the total duration of the study (252 days) as well as separately for periods with “high”; (168 days, 384 mm) and “low”; rainfall (84 days, 69 mm). Mean forage selenium (Se) concentration was reduced (P≤0.05) from 0.13 to 0.9 and 0.10 ppm as applied N level increased, with 93% of the values below the critical concentration (CC) for deficiency. Forage cobalt (Co) declined (P≤0.05) from 0.13 to 0.10 ppm with P fertilization, and 61% deficient values were found. No other main effects or interactions were detected (P>0.05). Average contents (ppm) of other elements and percentage of values below CC (in parenthesis) were: iron (Fe), 57.1(52); zinc (Zn), 24.1(81); copper (Cu), 2.74(99), and manganese (Mn), 133(0). Mean forage molybdenum (Mo) was 0.19 ppm. Deficiencies of most trace elements could be a constraint to production of ruminants consuming A. gayanus under these conditions, unless adequate supplements are supplied.  相似文献   

2.
Abstract

An experiment was conducted in a semi‐arid region located in the State of Zulia, western part of Venezuela (10°32'N and 71°42'W, and 600 mm average annual rainfall), to evaluate ash and macroelement concentrations of Andropogon gayanus Kunth as affected by two frequencies of defoliation (every 42 and 63 days) and fertilization with three levels of nitrogen (N) (0, 100, and 200 kg N ha‐1‐year‐1) and two levels of phosphorus (P) (0 and 75 kg P2O5 ha‐1#lbyear‐1) in a factorial array using a split‐split‐plot experimental design with frequencies in the main plots, N in the sub‐plots, P in the sub‐sub‐plots, and two replications. Soil was a sandy‐loam Andisol with pH 5.5. Average soil calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), and P contents were 0.6, 0.3, 0.1, and 0.17 meq#lb100 g‐1 soil and 6 ppm, respectively. Data from six and four cuttings for the frequencies of 42 and 63 days were analyzed over the total duration of the study (252 days) as well as separately for periods with “high”; (168 days, 384 mm) and “low”; rainfall (84 days, 69 mm). In the overall analysis, forage ash content was increased (P≤0.05) by increasing the cutting interval, whereas macroelement concentrations were not affected (P>0.05). Mean Ca, P, Mg, and Na were: 0.20, 0.11, 0.10, and 0.029 with over 90% of the samples inadequate for grazing ruminants. Only mean K content (1.2%) was considered adequate. Nitrogen fertilization did not influence (P>0.05) macromineral composition. Applied P fertilizer increased (P<0.05) forage P concentration from 0.09 to 0.12% and reduced (P≤0.05) the Ca:P ratio, but within the normal range. Most macroelement concentrations in A. gayamts are extremely low, indicating the need for mineral supplementation to prevent deficiencies in ruminants consuming this species.  相似文献   

3.
Abstract

A study was conducted in northwestern Zaire during the beginning of the dry season (December 1994) at a specific ranch to determine the crude protein (CP), in vitro organic matter digestibility (IVOMD), and mineral content of the principal pasture forages. This region is located in Zaire at 4°36'N latitude and 20°28'E longitude. Average rainfall is 1695 mm a year and mean monthly temperature is 25.5°C. Soils are red lateritic clays. Thirty forage samples were collected at 2‐, 3‐, and 4‐week regrowths of Imperata cylindrica and Savanna Stylosanthes (excluding 2‐week age) from low and high elevation grazing areas. Eighteen soil samples and a mineral supplement fed to cattle (primarily N'dama breeding) were collected for analysis. There were decreases (PO.05) in IVOMD as plants matured and deficiencies of protein, sodium (Na), phosphorus (P), magnesium (Mg), and copper (Cu) at 4 weeks of regrowth. The mineral mixture fed to cattle provided less than 1% of the requirements for the deficient minerals. This study suggests the need for provision of a suitable free‐choice mineral supplement.  相似文献   

4.
Pot and field experiments were performed to assess N2 fixation in Nicaraguan (R79 and R84) and Ecuadorian (Imba) common bean (Phaseolus vulgaris L.) cultivars, with the aim of improving their productivity by inoculating them with commercially produced Rhizobium phaseoli. With maize (Zea mays L.) as the non‐N2‐fixing control, the percentage of N2 fixed predicted by the 15N‐dilution method was significantly (P ≤ 0.05) higher than that predicted by the N‐difference method. However, the N2 amounts predicted by the two methods were not significantly different. The correlation between the two methods was significant and positive (P ≤ 0.0001, n = 36). Compared with the native rhizobial strain, symbiotic associations of the bean cultivars with UMR1073, UMR1077 and UMR1899 rhizobial inoculants did not significantly (P ≤ 0.05) influence plant dry matter (DM) and N yields, the extent of N2 fixation and uptake of soil and fertilizer N. Nevertheless, the UMR1077 and UMR1899 strains markedly increased the uptake of soil N by R84 plants, while decreasing N2 fixation. In contrast, the Imba‐UMR1899 association enhanced positive effects on all variables. About 60–70% of the total N taken up by the Imba plants was fixed N2. The R79 and R84 plants fixed about 50% of their total N uptake. N2 fixation rates were positively correlated with DM and total N yields, while being negatively correlated with soil N uptake (P ≤ 0.001, n = 36). Future research in Nicaragua should focus on selecting rhizobial strains suitable for indigenous common bean cultivars.  相似文献   

5.
Abstract

An experiment was conducted on a commercial farm located in the western part of Venezuela (10.5°N and 72°W; mean annual rainfall of 1000 mm; mean annual temperature of 28°C; sandy‐loam Alfisol with pH of 5.5). The purpose of the experiment was to evaluate the in vitro organic matter digestibility (IVOMD), crude protein (CP) content and mineral composition of four Leucaena leucocephala (Lam.) De Wit accessions under rotational grazing by heifers over a 6‐month period covering dry and rainy seasons, using a split‐plot experimental design with two replications. Neither accessions nor the accession x season interaction affected (P>0.05) any of the variables. The mean IVOMD was 68.6%, whereas CP content during the rainy season (26.5%) was higher (P<0.05) than in the dry season (24.3%). Average mineral content of the accessions were adequate in relation to grazing ruminant requirements with the exception of phosphorus [(P) 0.13%], sodium [(Na) 0.038%], copper [(Cu) 6.9 ppm], and zinc [(Zn) 19.7 ppm]. Forage P concentration may have been influenced by the low soil P content of the experimental site. The mean forage Ca:P ratio (11.3:1) was considerably wider than desirable. During the dry season, ash content increased (P<0.05), Na, iron (Fe), and cobalt (Co) decreased (P<0.05), but Fe and Co still remained above the critical levels. Mean concentrations of other elements were not affected (P>0.05) by season. Forage molybdenum (Mo) concentrations were low and, therefore, would not result in conditioned Cu deficiency. The four L. leucocephala accessions had similar feeding value for grazing ruminants and their quality was not markedly reduced in the dry season. Mineral supplementation of ruminants grazing this legume may be needed to correct specific deficiencies and imbalances.  相似文献   

6.
Abstract

Dry matter (DM) yield, in vitro organic matter digestibility (IVOMD), crude protein (CP) and mineral composition of eight Digitaria accessions were compared between long‐ and short‐day seasons in the semiarid southern region of Puerto Rico and evaluated in relation to grazing ruminant requirements. Digitaria milanjiana 6416 was consistently among the highest DM yielding accessions in both seasons. The mean IVOMD was similar in both seasons for most accessions. Concentrations of CP, magnesium (Mg), copper (Cu), zinc (Zn), cobalt (Co), and selenium (Se) were below the recommended levels for grazing ruminants in both seasons. This study suggests the need for livestock mineral supplementation, even under conditions of high pasture fertilization (NPK) and forage‐growing conditions in the semiarid southern region of Puerto Rico.  相似文献   

7.
Plants of Melilotus officinalis L. were subjected to two different treatments: a) no selenium (Se), and b) addition of 3 mg Se L?1 irrigation water for 45 days and samples of leaves, stems and roots were analyzed for Se, potassium (K), sodium (Na), magnesium (Mg), iron (Fe), copper (Cu), calcium (Ca), manganese (Mn) and zinc (Zn). Crude protein (CP) content, neutral detergent fiber (NDF), acid detergent fiber (ADF) and in vitro organic matter digestibility (IVOMD) were also estimated for the aerial plant tissues. In Se-treated plants Se mainly accumulated in leaf tissues, various changes in macronutrient concentrations were detected, while the micronutrient content decreased significantly. In addition, leaf CP, NDF and ADF content decreased, while IVOMD increased, possibly indicating ameliorated nutritive value. According to our findings, M. officinalis could be used either as a dietary supplement, in mixture with non-accumulator species, for livestock feed deficient in Se or for restoration of grasslands in seleniferous soils.  相似文献   

8.
Abstract

The loss of phosphorus (P), suspended sediment (SS), ammonia (NH4 +‐N), nitrate (NO3 ?‐N), and Escherichia coli in overland flow (OF) from dairy cattle dung can impair surface water quality. However, the risk of P and N loss from grazed pastures varies with time. Current practice in southern New Zealand is to select a field, cultivate, sow in Brassica spp., and graze in winter to save remaining pasture from damage. This deposits dung when soil is wet and OF likely. Hence, we determined P, NH4 +‐N, NO3 ?‐N, and E. coli loss from dung in OF via simulated rainfall from intact grazed pasture and cropland treatments of a soil. Analysis of OF, 0, 1, 4, 11, 24, and 43 days after dung deposition at the upslope end of soil boxes indicated that total P (TP), NH4 +‐N, and SS concentrations decreased sharply from day zero and leveled out after 11 days. More particulate P and SS were lost from the cultivated than pasture treatment, whereas the reverse occurred for dissolved organic P because of greater sorption of phytase active materials. Escherichia coli losses were high (1×105 100 mL?1) in both treatments throughout. Using the equations of fit in an example field site indicated that management of dung deposition could affect up to 25–33% of TP lost in OF.  相似文献   

9.
Abstract

A two‐year study was conducted to determine the macromineral status of cattle grazed forages, mostly bahiagrass, and soils in central Florida. Soil and forage samples were collected every month for two years. Month differences (P < 0.01) were observed in all forage macrominerals and in crude protein (CP) for both years. No month effect (P > 0.05) was observed in IVOMD level during year 1. Year effects (P < 0.05) were observed in calcium (Ca), sodium (Na) and CP. Concentrations below the critical level were observed in all macrominerals studied. Higher forage macro‐mineral concentrations were found during spring‐summer months. In general, higher (P < 0.05) soil aluminum (Al), Ca, magnesium (Mg), phosphorus (P), and organic matter (OM) were observed during fall‐winter months, while Na was higher in winter. Soil Ca and Mg were adequate and potassium (K), Na and P were deficient. Year 2 showed higher (P < 0.05) soil macromineral concentrations. Correlation coefficients (r >|0.5|, P < 0.05) were present between forage K and forage CP (r = 0.557) and between forage P and forage CP (r = 0.554). Low correlations were found between soil and forage macrominerals. Percentages of total forage samples with macromineral and CP concentrations below critical levels (in parentheses) and suggestive of deficiency were as follow: in forage, Ca (0.30 ppm), 21%; Mg (0.18 ppm), 34%; K (0.60 ppm), 47%; Na (0.06 ppm), 89%; P (0.25 ppm), 85%; and CP (7%), 18%.  相似文献   

10.
Desert rangelands are characterised by low and highly variable rainfall regime, low forage production and high heterogeneity in the distribution of natural resources. This study was carried out in the desert rangelands of Tunisia to evaluate the response of different rangelands to annual rainfall in terms of aboveground net primary production (ANPP) and rain use efficiency over a 10‐year period (2003–2012). In general, ANPP values were relatively low (123 kg DM ha−1 y−1) but would tend to increase with increasing annual rainfall for all rangeland types. The highest value of ANPP was observed from Stipagrostis pungens and Hammada shmittiana communities (sandy‐soil) during the wet year 2011. In contrast, rain use efficiency tends to decline with the highest annual rainfall and varies among rangeland types and with an average of 1·9 kg DM ha−1 mm−1 y−1. Rain use efficiency tended to be higher during dry years and lower during wet years and tended to be higher on S. pungens and H. shmittiana (sandy‐soils) and lower on Helianthemum kahiricum (loamy soils). Therefore, understanding how rainfall affects productivity in rangelands is critical for predicting the impact of land degradation on the functioning of these ecosystems. It can be used to explain production decline associated with desertification as well as to assess rangeland conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The substitution of the widely practiced crop‐residue burning by residue incorporation in the subtropical zone requires a better understanding of factors determining nutrient mineralization. We examined the effect of three temperature (15°C, 30°C, and 45°C) and two moisture regimes (60% and 90% water‐filled pore space (WFPS)) on the mineralization‐immobilization of N, P, and S from groundnut (Arachis hypogae) and rapeseed (Brassica napus) residues (4 t ha–1) in two soils with contrasting P fertility. Crop‐residue mineralization was differentially affected by incubation temperature, soil aeration status, and residue quality. Only the application of groundnut residues (low C : nutrient ratios) resulted in a positive net N and P mineralization within 30 days of incubation, while net N and P immobilization was observed with rapeseed residues. Highest N and P mineralization and lowest N and P immobilization occurred at 45°C under nearly saturated soil conditions. Especially net P mineralization was significantly higher in nearly saturated than in aerobic soils. In contrast, S mineralization was more from rapeseed than from groundnut residues and higher in aerobic than in nearly saturated soil. The initial soil P content influenced the mineralization of N and P, which was significantly higher in the soil with a high initial P fertility (18 mg P (kg soil)–1) than in the soil with low P status (8 mg P (kg soil)–1). Residue‐S mineralization was not affected by soil P fertility. The findings suggest that climatic conditions (temperature and rainfall‐induced changes in soil aeration status) and residue quality determine N‐ and S‐mineralization rates, while the initial soil P content affects the mineralization of added residue N and P. While the application of high‐quality groundnut residues is likely to improve the N supply to a subsequent summer crop (high temperature) under aerobic and the P supply under anaerobic soil condition, low‐quality residues (rapeseed) may show short‐term benefits only for the S nutrition of a following crop grown in aerobic soil.  相似文献   

12.
Abstract

A two‐year experiment was conducted at a north Florida farm to evaluate the mineral status of bahiagrass forages and soils. Forage samples were collected every 28 d throughout the grazing season, and soils evaluated twice yearly. The minerals calcium (Ca), sodium (Na), copper (Cu), cobalt (Co), selenium (Se), and zinc (Zn) were uniformly below the dietary requirements for growing beef cattle in both years. Forage magnesium (Mg), phosphorus (P), potassium (K), crude protein (CP), and manganese (Mn) were generally adequate throughout the grazing season, with the exception of low P concentration at the end of the growing season for both years. Extractable soil concentrations of Ca, P, K, Mg and Zn were adequate but low in Cu. Although CP was adequate (>7.0%) throughout the grazing season, IVOMD values were relatively low. There was a general trend for forage P, K, and IVOMD to decrease (P<0.05) with time.  相似文献   

13.
Glycosidases are a group of soil enzymes that play a major role in degradation of carbohydrates. This study was conducted to assess the impact of crop rotation and N fertilization on the activities of α‐ and β‐glucosidases and α‐ and β‐galactosidases in plots of two long‐term field experiments at the Clarion‐Webster Research Center (CWRC) and Northeast Research Center (NERC) in Iowa. Surface‐soil (0–15 cm) samples were taken in 1996 and 1997 in corn (Zea mays L.), soybean (Glycine max (L.) Merr.), oats (Avena sativa L.), or meadow (alfalfa) (Medicago sativa L.) plots that received 0 or 180 kg N ha–1, applied as urea before corn, and an annual application of 20 kg P ha–1 and 56 kg K ha–1. Activities of the four glycosidases were significantly affected by crop rotations in both years at the two sites but not by nitrogen application. In general, higher activities were observed in plots under meadow or oat and the lowest in continuous corn (CWRC) and soybean (NERC). Four‐year rotation showed the highest activity, followed by 2‐year rotation and monocropping systems. Linear‐regression analyses indicated that, in general, the activities of the glycosidases were significantly correlated with microbial‐biomass C (r > 0.302, p ≤ 0.05) and microbial‐biomass N (r > 0.321, p ≤ 0.05), organic‐C (r > 0.332, p ≤ 0.05) and organic‐N (r > 0.399, p ≤ 0.01) contents of the soils. Results of this work suggest that multicropping stimulated the activities of the glycosidases. The specific activities of the glycosidases in soils of the two sites studied, expressed as g p‐nitrophenol released per kg of organic C, differed among the four enzymes. The lowest values were obtained for β‐galactosidase and α‐glucosidase, followed by α‐galactosidase and β‐glucosidase.  相似文献   

14.
Abstract

A three-year experiment was carried out at three different sites in northern Germany to investigate the effects of combined sulphur (S, up to 50 kg S ha?1 year?1) and nitrogen (N, up to 300 kg N ha?1 year?1) fertilization on dry matter (DM) yield and forage quality. There was an interaction effect of site, year, S and N fertilization. The greatest DM yield increment relative to yield at the start of the experiment (1997) with no S and N applied was 10.2 t DM ha?1 at Ostenfeld (arable grassland). Cattle slurry when applied to provide 50 kg N ha?1 and 10 kg S ha?1 did not noticeably increase yield. The S content in forage decreased significantly over the years without S fertilization. At 300 kg N ha?1 and 0 kg S ha?1, crude protein (CP) contents achieved 173 g kg?1 DM and were diluted due to higher DM yields with S fertilization. The true protein content (TP% of CP) differed significantly at 300 kg N ha?1. TP achieved 93% with 50 and 87% with 0 kg S ha?1 year?1, respectively. In conclusion, with N fertilizer intensities in the range of 300 kg N ha?1, it is necessary to apply 25 kg S ha?1 to improve forage yield and quality. On the other hand, with N fertilization levels below 300 kg N ha?1, S fertilization could be omitted.  相似文献   

15.
Abstract

The rationale for this experiment was to determine forage nutrient concentrations as affected by biosolids fertilization. We studied the effects of single applications of two exceptional quality biosolids to bahiagrass (Paspalum notatum) pasture with regard to satisfying beef cattle nutrient requirements. Twenty‐five 0.8‐ha pastures were divided into five blocks. Two biosolids were applied as normal and double agronomic rates. The control plot received NH4NO3. Forages were analyzed for calcium (Ca), phosphorus (P), magnesium (Mg), potassium (K), sodium (Na), crude protein (CP), and in vitro organic matter digestibility (IVOMD), and soils were analyzed for Mehlich I extractable Ca, P, Mg, and K. Single (agronomic or twice this) applications of biosolids to pastures had little effect on Ca, P, Na, and K forage concentrations, but forage Mg was elevated in several treatments late in the season. Crude protein concentrations were elevated above the control for all biosolids treatments late in the season, whereas only small differences were observed at early sampling times. Trends were similar for IVOMD. In general, all treatments were associated with soils with adequate Ca, P, and Mg concentrations, while soil K was uniformly low. In relation to grazing beef cattle requirements, all treatments resulted in generally adequate forage levels of Ca, P, Mg, K, CP, and IVOMD, however, Na (<0.06%) was deficient.  相似文献   

16.
In this experiment, vermicomposts, prepared from five different waste materials, were applied to acid lateritic soil under field conditions and soil samples were collected after 90 days to study the effect of vermicomposts on different chemical and biochemical. Results suggest that vermicompost prepared from paddy straw is most effective to improve nutrient content, enzymatic activities and microbial properties of lateritic soil. Vermicompost application significantly (P ≤ 0.05) increased the concentration of organic C, mineralizable N, available P and exchangeable K in soil. Amylase, protease, urease and acid phosphatase activities were also significantly (P ≤ 0.05) higher in vermicompost treated soils compared with the control. Both basal and substrate‐induced microbial respiration, microbial biomass C and N and fungal population in lateritic soil were increased due to vermicompost application. Ergosterol and chitin content were significantly (P ≤ 0.05) higher in vermicompost treated soils over the control. Application of vermicompost increased the proportion of fungal biomass in total soil microorganisms.  相似文献   

17.
The high cost of chemical fertilizers has forced farmers to switch to intensive use of locally available manures. Two laboratory incubation experiments were carried out in Sudan to study the effects of manure (chicken, farmyard, pigeon, and goat), chemical fertilizer, and four soil types (Ustert, Fluvent, Orthid, and Psamment) on nitrogen (N) mineralization. Net N mineralization in light soils (248, 529 mg N kg?1) was significantly (P ≤ 0.02) greater than in heavy soils (44, 212 mg N kg?1). Manure pH (R 2 = 0.9, P ≤ 0.01), lignin content (R 2 = 0.74, P ≤ 0.05), lignin / total nitrogen (TN; R 2 = 0.72, P ≤ 0.05), polyphenols/TN (R 2 = 0.75, P ≤ 0.05), and TN (R 2 = 0.76, P ≤ 0.05) were found to be the best parameters to determine N mineralization from manures. These findings support earlier studies that N release from organic N of different sources depends on soil type and chemical composition of the manure.  相似文献   

18.
Abstract

The in vitro organic matter digestibility (IVOMD), crude protein (CP) content, and mineral composition of 11 grasses were compared between seasons in Puerto Rico and evaluated in relation to grazing ruminant requirements. Digitaria eriantha was the highest in IVOMD for both seasons, being higher (P<0.05) than 6 of 10 forages in the long‐day season and 4 of 10 in the shortday season. No differences (P>0.05) in CP content were observed among accessions at both seasons. Mean macroelement content of the accessions was generally adequate in relation to grazing ruminant requirements with the exception of sodium (Na) and magnesium (Mg). Forage microelement concentrations of cobalt (Co), copper (Cu), and zinc (Zn) were generally under the grazing ruminant requirements for the accessions evaluated during both seasons. Iron (Fe) and manganese (Mn) content were high in relation to requirements, especially during the short‐day season. Molybdenum (Mo) was not in excess for the accessions evaluated. The Zn concentrations were similar to the results reported from other experiments with higher fertilization levels. The selenium (Se) concentrations presented an apparent seasonal variation higher in the short‐day season, which is similar to other experiments with high fertilization levels.  相似文献   

19.
ABSTRACT

The study was aimed to determine the appropriate nitrogen (N) rate to combine with liming for enhanced maize yield and nitrogen use efficiency (NUE). Two maize varieties [Ikom White (IKW) and Obatanpa-98 (Oba-98)], two lime rates (0 kg ha?1 and 500 kg ha?1) and three N rates (0, 90 and 180 kg ha?1) were used. The treatments were laid as a split-split plot in a randomized complete block design with three replications. The growth attributes, photosynthetically active radiation (PAR), harvest index, dry matter, and grain yield increased (P ≤ 0.05) with increases in N rates, especially in plots amended with lime. Oba-98 was better yielding (2.12 versus (vs) 1.88 t ha?1) and absorbed more (P ≤ 0.05) radiation (442.06 vs 409.54 μmol m?2s?1) than IKW. The efficiency indices and partial factor productivity were best optimized at the 90 kg ha?1 N rate with Oba-98 having higher values than IKW. Therefore, liming (500 kg ha?1) plus N at 180 kg ha?1produced the best yield of the hybrid maize, Oba-98.  相似文献   

20.
Abstract

Crude protein (CP), calcium (Ca), and phosphorus (P) concentrations and in vitro dry matter digestibility (IVDMD) of leaves, stems, and whole plants of sprinkler‐irrigated dwarf elephantgrass (Pennisetum purpureum) cv. Mott as affected by the factorial combinations of nitrogen (N) (0, 150, 300, and 450 kg N ha‐1 year‐1) and P (0, 50, and 100 kg P2O5 ha‐1 year‐1) fertilization rates were evaluated in a tropical dry forest in the State of Zulia, western region of Venezuela. A randomized complete block design with three replications was used. Soil was a low‐fertility sandy‐loam Alfísol (Udic Paleustalf) with pH of 6.1. Data from eight cuttings carried out at 45‐day intervals were used. Only Ca and P concentrations in stems were affected by N fertilization. Phosphorus fertilization influenced (P>0.05) PC and P contents in leaves, IVDMD in stems, and Ca and P concentrations in both stems and whole plants. Overall mean IVDMD and CP, Ca, and P contents were: leaves, 62.9, 8.75, 0.39, and 0.30%; stems, 64.1, 7.38, 0.20, and 0.38%; and whole plants, 61.3, 8.13, 0.26, and 0.33%, respectively. Even though CP values were not very high, moderate production levels can be expected from ruminants fed this species since other components of its nutritive value can be regarded as adequate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号