首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long-term irrigation with municipal wastewater may lead, even in spite of intense farming, to an accumulation of organic matter, nutrient elements, and trace metals in soils. Excessive increases of heavy metals may pose a potential risk to the food chain and provoke restrictions for the further cultivation of sensitive crops. Copper (Cu), zinc (Zn), and lead (Pb) forms in soils under long-term irrigation (for 100–120 years) with treated wastewater of Wroclaw were investigated by using selective seven-step sequential extraction (procedure of Zeien-Bruemmer) for partitioning the metals into operationally defined fractions, likely to be released in solution under various environmental conditions. The largest fraction of Cu, Pb, and particularly Zn in nonirrigated (control) soils was strongly bound in a residual form, while the percentage of exchangeable and the most labile fractions were negligible. Total concentration of metals in irrigated soils was elevated, and significant redistribution of metals among phases was observed. Percentages of residual fraction of Cu and Pb were no more than 25% (Zn < 40%), while significantly increased contribution of fractions occluded on iron (Fe) oxides and organically bound Cu. Exchangeable and readily mobile forms of Zn are predominant zinc fractions in soils irrigated with wastewater.  相似文献   

2.
水稻子实对不同形态重金属的累积差异及其影响因素分析   总被引:3,自引:0,他引:3  
在分析成都平原核心区土壤重金属(Cd、Cr、Pb、Cu、Zn)全量、各形态含量及相应点位种植的水稻子实重金属含量的基础上,通过统计分析、空间插值及线性回归方程的模拟,研究了土壤Cd、Cr、Pb、Cu、Zn全量的空间分布状况、各形态重金属含量统计特征,以及水稻子实对重金属各形态的累积差异及其影响因素。结果表明,成都平原水稻土重金属污染较轻,除Cd外,均低于国家土壤环境质量二级标准。土壤中重金属的可交换态含量均较低,Cd主要以铁锰氧化态存在,Cr、Cu、Zn、Pb主要以残渣态存在。水稻子实对5种重金属的累积效应顺序为:Cd>Zn>Cu>Pb>Cr。与水稻重金属累积关系密切的重金属活性形态(可交换态、碳酸盐结合态、铁锰氧化物结合态和有机物结合态)主要有:Cd的碳酸盐结合态、Cr的可交换态、Pb的有机物结合态和Cu的碳酸盐结合态含量;Zn各活性形态对水稻子实含量的影响不明显。土壤理化性质对不同活性形态重金属元素的影响效应各不相同。活性态Cd主要受有机质、pH和容重的影响;活性态Cr与pH、有机质、CEC和容重密切相关;活性态Pb与有机质、容重、中细粉粒、砂粒等均有密切的关系;Cu的活性主要受粘粒、有机质含量的影响;Zn的有效性主要受pH、有机质、砂粒、容重的影响。总的看来,对土壤Cd、Cr、Pb、Cu、Zn各活性形态含量影响效应较强的是有机质、pH、容重,而与土壤吸附性能密切相关的颗粒组成、CEC的影响不甚明显。  相似文献   

3.
长三角和珠三角农业土壤中铅、铜、镉的化学形态与转化   总被引:9,自引:1,他引:9  
研究了重金属Pb、Cu、Cd在长江三角洲和珠江三角洲土壤中的转化及不同Pb、Cu、Cd负荷水平对土壤重金属形态的影响。结果表明:未明显污染土壤中重金属主要以残余态为主,可提取态组分的比例Cd>Cu>Pb,但不同土壤之间有较大变化;随着土壤重金属负荷的提高,土壤中交换态重金属的比例增大,残余态比例下降,有效性提高,对环境威胁增大;当重金属加入量较低时,重金属优先向氧化物结合态、有机质结合态转化,而当加入量较高时,向交换态和碳酸盐结合态转化的比例明显增加;pH和土壤组分对重金属在土壤中的转化有显著影响,土壤pH下降可使交换态Cd、Cu、Pb的比例递增。  相似文献   

4.
Abstract

The accumulation of heavy metals in plants is related to concentrations andchemical fractions of the metals in soils. Understanding chemical fractions and availabilities of the metals in soils is necessary for management of the soils. In this study, the concentrations of copper (Cu), cadmium (Cd), lead (Pb), and zinc (Zn) in tea leaves were compared with the total and extractable contents of these heavy metals in 32 surface soil samples collected from different tea plantations in Zhejiang province, China. The five chemical fractions (exchangeable, carbonate‐bound, organic matter‐bound, oxides‐bound, and residual forms) of the metals in the soils were characterized. Five different extraction methods were also used to extract soil labile metals. Total heavy metal contents of the soils ranged from 17.0 to 84.0 mgCukg?1, 0.03 to 1.09 mg Cd kg?1, 3.43 to 31.2 mg Pb kg?1, and 31.0 to 132.0 mg Zn kg?1. The concentrations of exchangeable and carbonate‐bound fractions of the metals depended mainly on the pH, and those of organic matter‐bound, oxides‐bound, and residual forms of the metals were clearly controlled by their total concentrations in the soils. Extractable fractions may be preferable to total metal content as a predictor of bioconcentrations of the metals in both old and mature tea leaves. The metals in the tea leaves appeared to be mostly from the exchangeable fractions. The amount of available metals extracted by 0.01 mol L?1 CaCl2, NH4OAc, and DTPA‐TEA is appropriate extractants for the prediction of metals uptake into tea plants. The results indicate that long‐term plantation of tea can cause sol acidification and elevated concentrations of bioavailable heavy metals in the soil and, hence, aggravate the risk of heavy metals to tea plants.  相似文献   

5.
污染水稻土中重金属的形态分布及其影响因素   总被引:8,自引:2,他引:6  
陈守莉  孙波  王平祖  宗良纲 《土壤》2007,39(3):375-380
通过BCR3步提取法研究了江西省贵溪铜冶炼厂污染区水稻土中重金属的形态分布。研究表明,废渣场渗滤液污染区域(渣场区)的污染较污水灌溉污染区(污灌区)严重,渣场区土壤中Cu、Pb、Cd的含量高于污灌区,而污灌区土壤Ni含量较高。在表层(0~20cm)水稻土中,Cu以可氧化态为主,Pb以可还原态和可氧化态为主,Cd以酸溶态为主,Ni以残渣态为主,不同重金属元素的有效态所占总量百分比大小顺序是Cd>Cu>Pb>Ni。土壤重金属不同形态之间也呈现一定的相关性,说明Cu与Pb、Cd、Ni之间具有同源性。土壤pH主要影响了污灌区中Cu的形态分布,以及渣场区土壤酸溶态Ni的分布。土壤有机质含量对各重金属形态分布的影响不明显。  相似文献   

6.
Abstract

The accumulation of heavy metals in tea leaves is of concern because of its impact on tea quality. This study characterized long‐term changes of soil properties and heavy‐metal fractions in tea gardens and their effect on the uptake of metals from soils by the plants. Soil and tea leaf samples were collected from five plantations with a history of 2–70 years in Jinghua, Zhejiang Province, southeast China. The six chemical fractions (water‐soluble, exchangeable, carbonate‐bound, organic‐matterbound, oxide‐bound, and residual forms) of cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), nickel (Ni), manganese (Mn), lead (Pb), and zinc (Zn) in the soils were characterized. Dissolved organic‐matter accumulation in the soils and effects of low‐molecular‐weight organic acids on solubility of soil heavy metals were also tested. Long‐term tea plantation use resulted in accumulation of dissolved organic matter, decrease of soil pH, and elevation of water‐soluble and exchangeable metal fractions, thereby increasing metal contents in leaves. The influence was more significant when soil pH was less than 4.4. The results indicated that both acidification and accumulation of dissolved organic matter induced by tea plantations were also important causes of increased accumulation of the metals in the tea leaves. This was particularly true for the soils polluted with low concentration of heavy metals, because availability of the metals in these soils was mainly controlled by pH and dissolved organic matter.  相似文献   

7.
Abstract

Industrial and municipal waste water is directly discharged to rivers in Hanoi, Vietnam. Sediments were collected from different sites of three rivers in the industrialized and densely‐populated area of Hanoi City and examined for total heavy metals and metal fractions using sequential extraction. Concentration of the total heavy metals ranged from the background levels to over the maximum permissible levels to crop growth. Concentrations of cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) ranged from 0.27 to 4.50,78 to 517, 37 to 309, 37 to 174, 43 to 361, and 93 to 4,950 mg kg‐1, respectively. Total concentration of heavy metals varied from site to site and tended to be higher in the site where manufacturing companies are located. Heavy metals were accumulated in the site and were not moved away to be redistributed in the whole area. Distribution of heavy metals in different chemical forms in the air‐dry state depended on their total concentration. In the low concentration range, Cr, Cu, Ni, and Zn were for the most part concentrated in the residual fraction. When concentration is equal to or above the maximum permissible level to crop growth, Cr, Ni, and Zn were mostly concentrated in the iron‐manganese (Fe‐Mn) oxides fraction and Cu was in the organic fraction. Irrespective of the total concentration, Cd was highly associated with the exchangeable and carbonate fractions, while the sum of the Fe‐Mn oxides and residual fractions accounted for 80 to 96% of total Pb.  相似文献   

8.
Adamo  Paola  Dudka  S.  Wilson  M. J.  McHardy  W. J. 《Water, air, and soil pollution》2002,137(1-4):95-116
The sequential extraction procedure proposed by the European Commission Measurement and Testing Programme, combined with Scanning Electron Microscopy and Energy Dispersive X-ray Analysis(SEM/EDS), was applied to identify and quantify the chemical andmineralogical forms of Cu, Ni, Fe, Mn, Zn, Pb, Cr and Cd presentin the topsoil from a mining and smelting area near Sudbury (Ontario, Canada). The possible mobility of the chemical forms was also assessed. The metal fractions: (1) soluble and exchangeable, (2) occluded in manganese oxides and in easily reducible iron oxides, (3) organically bound and in form of sulphides, (4) residual mainly present in the mineral lattice structures were separated. Cu and Ni were the major metallic contaminants, occurring in soils in broad ranges of concentrations: Cu 11–1890 and Ni 23–2150 mg kg-1. Cu was uniformly distributed among allthe extracted fractions. Ni was found associated mainly withthe residual forms, accounting for 17–92%, with an averageof 64%, of the total Ni present in the soils. Fe, Mn, Zn,Pb, Cr and Cd, while occurring in most analysed samples innormal soil concentrations, were primarily held in theresidual mineral fraction (on average >50%). The solubleand exchangeable forms made a small contribution (≤8.1%)to the total content of metals extracted. At least 14% ofthe total Cd, Mn and Pb was mobilised from the reducibleforms. The oxidizable fraction assumed mean values higher than10% only for Pb and Zn. Statistical treatment of the experimental data showed significant correlations between totalmetal content of the soils, some soil properties such as pH value, clay and organic matter content, and metal concentrationsin the various fractions. SEM/EDS analysis showed Fe in form ofoxides and sulphides in soils and Cu, Ni, Mn, Zn and Cr in association with iron oxides. Numerous black carbonaceous particles and precipitates of aluminium fluoride salts, observedin the solid residue left after `total’ digestion, were found tocontain Fe, Ni and Cr.  相似文献   

9.
施污土壤与污泥中Cu、Pb、Cd、Zn的形态分布   总被引:2,自引:0,他引:2  
污泥中的重金属元素是限制其大规模农田利用的重要因素。施污土壤和污泥中重金属的形态研究可以用来评价土壤中重金属的生物有效性以及它们在土壤中的移动性。用修正BCR三步连续提取法进行分步提取研究了污水污泥和施污后的西红柿地土壤中Cu、Pb、Cd、Zn的形态分布状况。施用污泥堆肥10t hm-2后的土壤中Cu、Pb、Cd、Zn的全量与各种形态含量无明显增加,Cu、Pb、Zn含量远低于国家土壤环境质量标准。土壤中Cu的各种形态分布关系是:残渣态>可还原态=可氧化态>可交换态和弱酸溶解态,Cu在土壤中的存在是以最稳定的残渣态为主。堆肥污泥与干化污泥相比,残渣态Cu的比例明显增加。土壤中Pb的各种形态分布关系是以残渣态和可还原态为主,但可氧化态的分布比例最小。土壤中Cd的可交换态、可还原态和残渣态各占据相等的含量,但可氧化态Cd的含量几乎为零。Zn在土壤中的各种形态分布关系是:可交换态和弱酸溶解态>可氧化态>可还原态>残渣态,Zn在土壤中的存在是以最易迁移的可交换态和弱酸溶解态为主。这些金属元素在土壤中的相对稳定性顺序为:Cu>Pb>Cd>Zn。Zn在土壤中的移动性要远高于Cu。  相似文献   

10.
Abstract: The fraction distributions of heavy metals have attracted more attention because of the relationship between the toxicity and their speciation. Heavy‐metal fraction distributions in soil contaminated with mine tailings (soil A) and in soil irrigated with mine wastewater (soil B), before and after treatment with disodium ethylenediaminetetraacetic acid (EDTA), were analyzed with Tessier's sequential extraction procedures. The total contents of lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn) exceeded the maximum permissible levels by 5.1, 33.3, 3.1, and 8.0 times in soil A and by 2.6, 12.0, 0.2, and 1.9 times in soil B, respectively. The results showed that both soils had high levels of heavy‐metal pollution. Although the fractions were found in different distribution before extraction, the residual fraction was found to be the predominant fraction of the four heavy metals. There was a small amount of exchangeable fraction of heavy metals in both contaminated soils. Furthermore, in this study, the extraction efficiencies of Pb, Cd, and Cu were higher than those of Zn. After extraction, the concentrations of exchangeable Pb, Cd, Cu, and Zn increased 84.7 mg·kg?1, 0.3 mg·kg?1, 4.1 mg·kg?1, and 39.9 mg·kg?1 in soil A and 48.7 mg·kg?1, 0.6 mg·kg?1, 2.7 mg·kg?1, and 44.1 mg·kg?1 in soil B, respectively. The concentrations of carbonate, iron and manganese oxides, organic matter, and residue of heavy metals decreased. This implies that EDTA increased metal mobility and bioavailability and may lead to groundwater contamination.  相似文献   

11.
Effective remediation and sanitation technologies for soils contaminated with heavy metals are limited. We investigated the feasibility of a counter-current metal extraction procedure for the removal of selected heavy metals (Cd, Cu, Ph, and Zn) from two contaminated soils. The process involved a decarbonation (removal of carbonates), acid solubilisation, washing, and liming step. Results from batch equilibration experiments simulating the counter-current process showed more than 85% of the Cd present to be removed. Removal efficiencies for Cu and Pb were limited to approximately 15%, this mainly due to resorption of these elements during the decarbonation step. As most Zn was found to be present in a more difficult acid-extractable solid phase, its extractability accounted for only 25%. While reaction (pH) conditions of both decarbonation and solubilisation determined removal efficiencies, washing the extracted soil with deionized water only slightly increased the amount of metals removed. Metal distribution among solid phases — exchangeable, carbonate, reducible, organically bound, and residual — was affected by the different treatments. The amount of metals contained in the exchangeable and residual fractions determined their extractability. Except for Cu, the reducible and organically bound fractions were less important. After solubilisation 13 to 70% of the metals were present in an exchangeable solid phase. This implicates that washing the solubilized soil with a salt may increase the extractability of metals, especially for Zn and Pb. Based on our results the process is critically evaluated and possibilities for optimization formulated.  相似文献   

12.
Radish was grown in 46 garden plots in England and Wales. Some of the gardens had been contaminated by heavy metals from lead mining. The soils were analysed for pH, organic content and cation exchange capacity; also for Cd, Cu, Pb, and Zn (total, organic bound, exchangeable and specifically sorbed). Acetic acid-soluble P and exchangeable K, Mg and Zn were also determined. Radish bulbs and leaves were analysed for heavy metals. The results were interpreted using linear and multiple linear correlation and regression analysis. Acetic acid satisfactorily predicted Cd uptake and Pb uptake was best predicted by total soil Pb. These regressions were not improved by including other soil properties. Zinc uptake was best modeled using exchangeable Zn and the predictive power of the regression was improved by including pH. However, the pH term was positive suggesting that raising soil pH would increase uptake. A poor relationship between total and exchangeable Zn was changed to a highly significant relationship by including cation exchange capacity and pH. The latter term was strongly negative. Uptake of Cu was not satisfactorily predicted.  相似文献   

13.
The influences of lignin application on soil properties of three different soils, Jiangxi soil (Ultisol, Hapludult), Heilongjiang soil (Alfisol, Entioboralf) and Beijing soil (Alfisol, Haplustalf), and metal accumulation in wheat (Triticum aestivum L.) were studied in a pot experiment. By lignin amendment, soil pH, organic matter (OM) and cation exchange capacity (CEC) increased, except for CEC in the Beijing soil. Analysis showed that available P and K in lignin-amended soils were also elevated, except for P in the Jiangxi soil. A three-step sequential extraction procedure proposed by the Standards, Measurements and Testing Programme (formerly BCR) of the European Commission was used to investigate the fraction redistribution of heavy metals in soils with lignin application. The fractions were specified as B1: water soluble, exchangeable and carbonate bound, and weakly adsorbed; B2: Fe-Mn oxide bound; and B3: organic matter and sulfide bound. Generally, the heavy metal content of the B2 fraction decreased whereas that of the B3 fraction increased. Lignin application to arable soils can not only improve plant growth in vitro, but also reduce the accumulation of the heavy metals Cu, Zn, Cd, Pb, Cr and Ni in wheat plants.  相似文献   

14.
A sequential extraction procedure was used to fractionate Cu, Cd, Pb and Zn in 4 soil profiles into the designated forms of water soluble + exchangeable, organically bound, carbonate and Mn oxides bound. Soil profiles were obtained from the Rural Development District 063, State of Hidalgo, which have been irrigated with wastewater coming out of the basin of Mexico. The total heavy metal contents range as follows: Cu, 8.9 to 86.5 mg kg-1 Cd, 0.86 to 5.07 mg kg-1 Pb, 18.1 to 131.7 mg kg-1 and Zn, 101 to 235.5 mg kg-1. The highest concentrations of total heavy metals were found in the surface layers at all soil profiles. Sequential chemical fractionation indicated that the four metals were predominantly associated with the organic fraction at most soil samples. The contents in all fractions of the four metals showed a decrease with depth which has been explained by the variations in the organic matter and CaCO3 contents in the different layers of soils. These soil properties were also the most important variables in the biological availability of the metals in these soils.  相似文献   

15.
Solid-phase transformation of added Cd, Cu, Cr, Ni, Pb and Zn, in two arid-zone soils incubated in the field capacity moisture regime for one year, were studied. The heavy metals were fractionated into six empirically defined fractions using a selective sequential dissolution (SSD) protocol optimized for arid-zone soils. Each of these fractions was named based on the major soil component targeted for dissolution during the specific SSD step, but it is not assumed that they are mineralogically and chemically totally specific. The transformations of the metals in the two soils incubated at the field capacity regime were compared with those at the moisture saturation regime (Han and Banin, 1997). An initial fast stage of transformation of the soluble metals from the exchangeable (EXC) fraction to the less labile fractions (the carbonate (CARB) fraction for Cd, Pb, Zn, Ni and Cu, and the organic matter (OM) fraction for Cr, and to some extent Cu and Ni) occurred during the fractionation and within one hour after addition. This was followed by a second stage, involving long-term transformation processes of all metals: added Cd was transferred from the EXC into the CARB fraction; added Cr was transferred from the CARB to the OM fraction and Pb was transferred very slowly to the easily reducible oxide (ERO) fraction. Added Cu, Ni and Zn were transferred from the EXC and CARB fractions into the ERO fraction and to some extent OM and RO fractions. In Part I of this series, we reported that during incubation in the saturated moisture regime, Zn and Ni were transferred mainly into the RO and OM fractions. Cadmium, Cr and Pb underwent the same transformation pathways during the slow long-term process, with slightly different rates, in both water regimes. At low levels of addition, the incubated soils moved over one year towards a distribution similar to that of the native soil. At higher levels, the soils still remained removed from the quasi-equilibrium which characterized the native soil, even at the end of one year of incubation.  相似文献   

16.
Twenty five soil samples located nearby highways and streets of Caracas, Venezuela were collected and chemical, physical and mineralogical analysis were done to characterize them. The soils have light textures, neutral or slightly alkaline pH, medium to high organic matter content, and all of them have carbonate. Kaolinite and mica were the dominant clay minerals in all soil samples. Lead and Zn were extracted with 1N-3 to investigate the levels of these polluting heavy metals in these roadside soils. A very high level of Pb was found in the soils (average enrichment factor of 151.4), while Zn levels were much lower (average enrichment factor of 5.25), but still higher than normal soils' levels. These results are indication of strong metal pollution (especially by Pb) of Caracas' roadside soils, due to heavy transit of motor vehicles as well as to the exclusive use of highly leaded gasoline in Venezuela. Nevertheless both metals accumulate only on the surface layers of those soils located within 5 m from the roadside. These facts were taken as evidence of the low vertical and horizontal mobility of the metals, which was mainly attributed to the high pH of the studied soils (between 7.5 and 7.8). Three surface soil samples having high Pb and Zn levels were selected for chemical fractionation by McLaren and Crawford's (1973) methodology. It was found that less than 1% Pb and below 5.5% Zn were in exchangeable form in these soils. Therefore, Pb and Zn are predominantly present in non-exchangeable forms in the studied soils. These non-exchangeable metals tend to become associated with different soils materials. Lead is mainly associated with the organic fraction, as well as to the inorganic and residual fractions, and Zn is mainly associated to the inorganic and residual fractions, and also the iron oxides, being practically absent in the organic fraction.  相似文献   

17.
采用BCR(community bureau of reference)连续提取法对大宝山矿山槽对坑尾矿库尾砂和周边农田土壤重金属Cd、Pb、Cu和Zn的形态分布及其生物有效性进行了分析。结果表明,尾砂中Cd、Pb、Cu和Zn残渣态占绝对优势,占其总量的百分数均在85%以上。农田土壤中Cd、Cu和Zn都以残渣态为主,分别占其总量的60%、60%和90%以上,Pb以残渣态和可还原态为主,占其总量的93.44%。农田土壤重金属有效性较尾砂大,尾砂和农田土壤重金属生物有效性均以Pb为最高。  相似文献   

18.
Levels and chemical forms of heavy metals in forest, paddy, and upland field soils from the Red River Delta, Vietnam were examined. Forest soils contained high Cr and Cu levels that were higher in subsurface than in surface layers. Levels of Cu, Pb, and Zn that exceeded the limits allowed for Vietnamese agricultural soils were found in the surface layer of a paddy field near the wastewater channel of a copper casting village. High amounts of Zn accumulated in the surface soil of paddy fields close to a fertilizer factory and an industrial zone. In these cases, larger proportions of Cu, Pb, and Zn were found in the exchangeable and acid-soluble fractions compared to the low-metal soils. We conclude that no serious, large-scale heavy metal pollution exists in the Red River Delta. However, there are point pollutions caused by industrial activities and natural sources.  相似文献   

19.
泉州走马埭典型土壤重金属的赋存形态分析   总被引:5,自引:3,他引:2  
何园  王宪  陈丽丹  郑盛华  蔡真珍 《土壤》2007,39(2):257-262
采用改进的Tessier连续萃取方法研究了泉州走马埭国家农田示范保护区典型土壤中重金属(Cr、Ni、Cu、Zn、Cd、Pb)的化学形态分布,通过土壤重金属的赋存形态分析比较了6种重金属的生物可利用性。研究结果表明,土壤中不同重金属元素化学形态分布具有不同的特点:Cr和Ni主要以残渣态存在,其余形态所占的比例很小;Cu以残渣态含量最高,碳酸盐结合态含量最低;Zn以残渣态为主,可交换态含量最低;Cd以可交换态和碳酸盐结合态为主,水溶态含量最低;Pb以残渣态和铁锰氧化物结合态为主,水溶态含量最低。土壤中除Cd外,Zn、Cu、Cr、Pb、Ni在正常自然条件下相对比较稳定。  相似文献   

20.
smelters in Northern France were studied by analysing the chemical forms of these metals and evaluating their phytoavailability. These metals were determined using flame or electrothermal absorption atomic spectrometry (FAAS or ETAAS), depending on their concentration levels. After optimisation of the ETAAS method, characteristic mass of In in water and aqua regia were 9.9 and 18 pg, respectively, showing the high sensitivity of the analytical Soil contamination by metals from anthropogenic activities (e.g., mining and smelting) is a major concern for the environment and human health. Environmental availability of cadmium (Cd), lead (Pb), zinc (Zn), copper (Cu), and indium (In) in 27 urban soils located around two former Pb and Zn smelters in Northern France were studied by analysing the chemical forms of these metals and evaluating their phytoavailability. These metals were determined using flame or electrothermal absorption atomic spectrometry (FAAS or ETAAS), depending on their concentration levels. After optimisation of the ETAAS method, characteristic mass of In in water and aqua regia were 9.9 and 18 pg, respectively, showing the high sensitivity of the analytical procedure. Metal partitioning was conducted using a four-step sequential extraction procedure. The results showed that Cd and Zn were mainly in the acid-extractable and reducible forms in the urban soils studied. In contrast, Pb and In were largely in the reducible fraction. However, in some samples, the amount of In extracted in the residual or exchangeable fraction was higher than that in the reducible fraction. Copper was mainly found in the reducible and residual fractions. A pot experiment was conducted in a glasshouse with seven soils (six contaminated and one uncontaminated) and two plant species, ryegrass and lettuce. The results showed transfer of metals from the contaminated soils to the shoots of ryegrass and the edible part of lettuce. The metal bioconcentration factor was in the order of Cd Cu > In > Zn Pb for lettuce leaves, whereas for ryegrass shoots, three orders were found, Cd > Zn > Cu In > Pb, Cd ≥ In > Zn > Cu Pb, and Zn > Cd > Cu > In > Pb, depending on the physico-chemical properties of the soils, such as pH, cation exchange capacity, carbonates, and organic matter. It was established that the metal toxicity was related to the contamination levels and the physico-chemical properties, including pH, organic matter, and in a lesser extent, Ca, Mg, and phosphorus contents, of the soils. However, it was shown that lettuce could grow on soils having high Cd and CaCO3 contents. Cadmium was one of the most available metals while Pb was always the least available in the soils studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号