首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Abstract

An agronomic evaluation of phosphate rock and slag on the acid soils of Upata, Bolivar State was conducted to measure their effect on the chemical properties of the soil and growth of Brachiaria decumbens. A field experiment was established using a split plot design with three replications. The treatments were, i) three sources of phosphate rock (Riecito and Lizardo of Falcon State and Monte Fresco of Tachira State) at four rates of P2O5/ha (0, 50, 100, and 200), ii) one source of high‐solubility P [triple superphosphate (TSP) at the same rates], and iii) three levels of calcium applied as basic slag from the Orinoco Steel Company (0, 300, and 600 kg Ca/ha). A basic fertilization was applied to all plots (217 kg/ha Urea, 50 kg/ha KCl, and 78 kg/ha magnesium sulphate). The pasture species used was Brachiaria decumbens. Pasture and soil samples were taken at 2, 3, 5, 7, 12, 14, 16, 17, 24, 27, and 31 months after planting. The pasture samples were analyzed for dry matter production (DM), and percentage content of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg). Soil samples were analyzed for pH, cation exchange capacity (CEC), and available calcium (Ca) and phosphorus (P). The relative agronomic effectiveness (RAE), calculated using the formula: RAE (%) = DM of the rock ‐ DM of the check plot/DM of TSP ‐ DM of check plot × 100 was applied for each harvest time. The best RAE values at each sampling time were obtained with the Monte Fresco phosphate rock at the rate of 200 kg P2O5/ha and 600 kg Ca/ha as slag. There was a tendency for the RAE value to improve with each sampling apparently due to the slow release of phosphorus from the phosphate rock and its residual effect. There are also values of RAE that show better dry matter production than the high soluble source of TSP.

Soil available P and Ca increased with phosphate rock and slag application from 5 and 200 mg/kg to 25 and 400 mg/kg, respectively, after 2.5 years of the experiment. Phosphorus uptake changed from 0.1% in the check plot, which is insufficent to supply the P requirement of grazing cattle in the tropics to a value higher than 0.2%, depending on the sampling time. Soil pH increased slightly from 5.2 to 5.6 with phosphate rock, and to 6.2 when basic slags were applied.  相似文献   

2.
《Soil biology & biochemistry》2001,33(12-13):1741-1747
Two Venezuelan phosphate rocks (PRs), apatite deposits from Monte-Fresco and Navay areas, and two minerals, Florida apatite and Utah variscite were used to investigate phosphate solubilization by the wild type strain IR-94MF1 of Penicillium rugulosum initially selected for its high mineral phosphate activity (Mps+) and two of its mutants Mps++ and Mps. In liquid cultures, the three fungal strains showed better growth on the Navay PR than on Monte Fresco PR. The Utah variscite was the best phosphorus (P) source for the growth of the wild type and the Mps++ mutant. Solubilization of the various P sources by the wild-type IR-94MF1 and the Mps++ mutant resulted mostly from the action of organic acids. Citric acid seemed to be more active agent for the solubilization of the Utah variscite while gluconic acid appeared to be responsible for the solubilization of the Florida apatite and the Monte Fresco PR. Both organic acids are likely involved in the solubilization of the Navay PR. The Mps- mutant did not produce any organic acid when grown on all the P sources used.  相似文献   

3.
Abstract

Greenhouse experiments were conducted to evaluate the agronomic effectiveness of Panda Hills phosphate rock (PPR) from southwest Tanzania, its mixture with triple superphosphate (TSP), and a compacted mixture of Panda PR and TSP (PPR+TSP) for wheat, rape, maize, and soybean on two United States soils (Hiwassee and Windthorst). The mixture of Panda PR and TSP was prepared by mixing ground TSP with Panda PR in proportions such that 50% of the total phosphorus (P) in the final mixture was from TSP. The compacted product (PPR+TSP) was prepared by compacting some of the blended mixture of Panda PR and TSP into pellets using a laboratory scale Carver press followed by crushing and screening. The P rates applied to Hiwassee soil were 0, 25, 50, and 100 mg P kg‐1 for each P source and test crop while on Windthorst soil only one rate of application (50 mg P kg‐1) was applied to one test crop (rape). A lime treatment was also included on the Windthorst soil to enable evaluation of rape response to the different P sources under calcareous conditions. Wheat and rape were allowed to grow to maturity while maize and soybean were grown for six weeks only. The performance of the P sources as reflected by yield, P uptake and relative agronomic effectiveness (RAE) followed the order TSP>>(PPR+TSP)>(PPR)+(TSP)>>PPR for wheat, rape, maize, and soybean on Hiwassee soil. Panda PR was very ineffective in increasing grain or dry‐matter yields of the test crops on this soil. The mixture of Panda PR and TSP as well as the compacted product increased wheat, maize, and soybean yields and P uptake significantly. The increases in yields were, however, largely attributed to the TSP component of the (PPR)+(TSP) mixture or its compacted product with little or no contribution from PPR. On the alkaline Windthorst soil, the performance of the P sources as reflected by rapeseed yield and RAE followed the order TSP= (PPR+TSP)>(PPR)+(TSP)>PPR. Remarkably compacted PPR and TSP was at par with TSP while PPR alone was 50% as effective as TSP in increasing rapeseed yield. Addition of lime drastically reduced the effective‐ness of Panda PR, but it had little or no effect on the agronomic effectiveness of the (PPR)+(TSP) mixture or its compacted product.  相似文献   

4.
Field trials were conducted at the Institute of Agricultural Research and Training Ibadan in 2000 and 2001 cropping seasons to evaluate the efficiency of some phosphorus (P) sources, rates, and frequency of application on grain yields of maize and cowpea grown sequentially. The experiment was laid out in a split–split plot arrangement using randomized complete block design, with three replications. The main plot was frequency of fertilizer application (seasonal and annual). Source of P [single superphosphate (SSP: 18% P2O5)]; Ogun rock phosphate (OPR: 20.21% P2O5), and crystallizer super (CS: 31.4% P2O5) constituted the subplots. The P rates (0, 20, 40, and 60 kg P ha?1) were the sub-subplots. An early maize cropping followed by a late-season cowpea was the sequential cropping, while an early maize followed by a late-season maize was the continuous cropping. The croppings were repeated the second year. Frequency of P application and source of P were significantly different while rates of application were not. Maize and cowpea grain yields from the control treatment were significantly less than yields from P-treated plots. Maize grain yields were slightly greater in plots alternated with cowpea, compared to continuous maize. Relative agronomic efficiency (RAE) values of OPR and CS were 67% and 75%, respectively, in annual application and 140% and 134% in seasonal applications, respectively, in 2000. In 2001, the trend was almost similar to 2000 except that there was a decline in RAE values of cowpea. Each Naira invested in the annual application returned about ?3.12 while about ?2.13 was returned with the seasonal application (?125.00 is the equivalent of USD$1.00). The OPR and CS can serve as alternatives to water-soluble sources such as SSP.  相似文献   

5.
Abstract

Sokoto rock phosphate (SRP) obtained from Sokoto in the Northern Nigeria was evaluated with some other phosphorus (P) sources viz: Partially acidulated rock phosphate (PARP) and single superphosphate (SSP) in the greenhouse and field studies. These fertilizers were also compared with nitrogen‐phosphorus‐potassium (NPK) 11–12–11–9.7S‐1.4Zn and NPK 10–20–5–6.5S which have 80% of their P as rock phosphate and were formulated through compaction. The fertilizers were applied in the greenhouse at 0–400 mg kg‐1soil on the Oyo Arenic Haplustalf and Alagba Kandiudult soil. Field trials were carried out at four locations—at Ikenne in the humid, Samara in the subhumid, Gumi and Gusau in the semi‐arid zones of Nigeria. The fertilizers were applied at 0–150 kg P2O5 ha‐1 in the humid zone and 0–100 kg P2O5 ha‐1in the subhumid and semi‐arid zones. Maize was used as test crop in most sites except at Samaru where sorghum was planted. The results of the greenhouse study showed that on the Haplustalf, PARP, and NPK 10–20–5–6.5S gave almost a similar relative agronomic effectiveness (RAE about 70%) as SSP, which was followed by SRP and NPK 11–12–11–9.7S‐1.4Zn (RAE between 50 and 60%). On the Kandiudult, the RAE of the fertilizers increased significantly. The PARP and NPK 10–20–5–6.55S gave high effectiveness (RAE about 90%) relative to SSP. The field trials results indicated that ground SRP was suitable for direct application on slightly acid soil in the humid zone (annual rainfall > 1,200 mm). Its efficiency was fairly moderate in the subhumid and quite low in the semi‐arid zones (annual rainfall <900 mm). The PARP gave higher RAE than SRP and had almost similar efficiency as for NPK 10–20–5–6.5S. The PARP was well comparable to SSP in the humid and subhumid zones and was fairly comparable to the later in the semi‐arid. This suggests that PARP may be suitable for humid and subhumid zones and the physical quality was also superior to SRP and SSP. Application of SRP on soils in the semi‐arid zones of low rainfall gave relatively low yields which could be due to inadequate moisture availability required to enhance P solubilization.  相似文献   

6.
Abstract

The effect of liming on the agronomic effectiveness of three phosphate rocks (PRs) Pesca and Huila from Colombia and Sechura from Peru as compared with TSP was evaluated in a greenhouse experiment for an Al‐tolerant soybean cultivar grown on an acid Ultisol. On both unlimed (pH 4.4) and limed (pH 5.0) soils, the agronomic effectiveness of P sources in terms of increasing seed yield followed the order of TSP > Sechura PR > Huila PR > Pesca PR > check, an order similar to that of solubility of P sources. Liming slightly decreased the effectiveness of Pesca PR, whereas liming had no effect on Huila PR. A significant increase in agronomic effectiveness was observed upon liming for Sechura PR and TSP. Soil‐available P as extracted by the Pi method was closely related to the amount of N fixed by soybean crop that, in turn, was related to the soybean seed yield. Values of relative agronomic effectiveness (RAE) of PRs with respect to TSP were calculated by assuming the check = 0% and TSP = 100%. On unlimed soil, the RAE values of PRs were: Pesca PR = 31%, Huila PR = 42%, Sechura PR = 84%. On the limed soil, the RAE values were: Pesca PR = 8%, Huila PR = 24%, Sechura PR = 66%. It can be concluded that the use of PR with respect to that of TSP for soybean crop is more favorable in the unlimed soil than in the limed soil, provided that the soybean plant is relatively Al‐tolerant.  相似文献   

7.
To compare the growth performance of Brassica in a phosphorus (P) stress environment and response to added P, six Brassica cultivars were grown in pots for 49 days after sowing, using a soil low in P [sodium bicarbonate (NaHCO3)–extractable P = 3.97 mg kg?1, Mehlich III–extractable P = 6.13 mg kg?1] with (+P = 60 mg P kg?1 soil) or without P addition (0P). Phosphorus‐stress markedly reduced biomass accumulation and P uptake by roots and shoots. However, root–shoot ratio remained unaffected, implying that relative partitioning of biomass into roots and shoots had little role to play in shoot dry matter (SDM) production by cultivars. Biomass correlated significantly (P < 0.01) with total P uptake. Under P stress, the cultivars that produced greater root biomass were able to accumulate more total P content (r = 0.95**), which in turn was related positively to SDM and total biomass (r > 0.89**) and negatively to P‐stress factor (r = ?0.91**). There was no correlation between P efficiency (PE) (relative shoot growth) and plant P, but PE showed a very significant correlation with shoot P content and SDM. Wide differences in growth and better performance of cultivars such as ‘Brown Raya’ and ‘Con‐1’ under P stress encouraged screening of more germplasm, especially in the field, to identify P‐tolerant cultivars.

In another study, potential relative agronomic effectiveness (RAE) of sparingly soluble P sources was investigated by growing two contrasting cultivars. The P sources incorporated into soil at 0, 10, 25, 50, and 100 mg P Kg?1 were (i) powdered Jordan rock P (RP), (ii) triple superphosphate (TSP), (iii) powdered low‐grade TSP [TSP(PLG)], (iv) a mixture of RP + TSP compacted into pellets at 50:50 P ratio [RP + TSP(PelC)], and (v) a mixture of powdered RP + TSP at 50:50 P ratio [RP + TSP(PM)]. The RP was low in RAE and only 5 and 29% as effective as TSP in producing dry matter (DM) of P‐sensitive ‘B.S.A.’ and P‐tolerant ‘Brown Raya’ cultivars, respectively. There were no significant differences between TSP and RP + TSP(PelC) in DM yield of ‘Brown Raya,’ whereas, in the case of ‘B.S.A.’ RP + TSP(PM) was significantly less effective than RP + TSP(PelC) compared with TSP. Combined utilization of superior genome and P sources [such as TSP(PLG) and RP + TSP(PelC)] produced from low‐grade RP (that cannot be used either for direct application or acidulated P fertilizers) can be used as an alternative strategy for sustainable crop production, especially in resource‐poor environments. Further field trials at the level of cropping systems are needed.  相似文献   

8.
The influence of the VAM fungi Glomus macrocarpum and G. manihotis on shoot dry weight and P contents in the shoots of various graminaceous species was studied in pot culture experiments. The treatments included fertilization with different rock phosphates, four soil pH levels (pH 4.5, 5.5, 6.5, 7.5) and four soil temperatures (20, 25, 30, 35°C). The rock phosphate treatments were compared with soluble phosphate (mono calcium phosphate, MCP) and with a check (no P fertilizer, OP). Increases of shoot dry weight up to 143% could be found with mycorrhizal Triticum aestivum using Kodjari rock phosphate as P source. In the presence of VAM, Sorghum bicolor and T. aestivum fertilized with any of the rock phosphates, except Kola, produced yields comparable with those of plants fertilized with MCP, at soil pH 5.5 to 7.5 and at 25°C soil temperature. As the soil pH increased from 5.5 to 7.5 dry weight declined. Likewise, yields decreased with increasing soil temperature and at 35°C VAM showed no effect in all treatments.  相似文献   

9.
The Relative Agronomic Effectiveness (RAE) of rock phosphates as compared to water soluble Triple Super Phosphate was measured on direct, residual, and cumulative application of the P fertilizers in a field experiment with rice on an Oxic‐Rhodustalf in the eastern plateau region of India. The fertilizers were Morocco Rock Phosphate (MORP), Mussoorie Rock Phosphate (MRP), Partially Acidulated Rock Phosphate (PARP), and Triple Super Phosphate (TSP). The RAE of the rock phosphates were lower for direct application (54–80 %) and cumulative application (70–93 %) of P but roughly equal or larger for the residual effect (92–142 %) as compared to TSP. The P adsorption characteristic of the experimental soil conformed to the linear relationship of both Freundlich and Langmuir isotherm equation. The adsorption data when plotted according to Langmuir equation deviated from a single linear relationship at higher concentration (10 μg ml–1), thereby giving two adsorption maximum values ( 68.49 μg g–1 and 256.41 μg g–1) and binding energies ( 2.86 ml μg–1 and 0.089 ml μg–1) for the soil. Two populations of P adsorption site with widely different affinity for P probably existed in the soil.  相似文献   

10.
Abstract

The agronomic effectiveness of Mussoorie phosphate rock (MPR) from India and a 2:1 mixture of MPR and single superphosphate (SSP) was compared against SSP as phosphate fertilizers for crops. The experiment was conducted for three seasons and was designed to study the response of crops to current application as well as residual effects of the various P fertilizers. Three crops were grown in sequence: finger millet (Eleusine coracana), maize (Zea mays L.), and blackgram (Phaseolus mungo) on a calcareous soil under irrigated conditions. The phosphate fertilizers were applied to finger millet and/or maize but not to the blackgram. Soil samples were collected at intervals and analysed for Olsen bicarbonate‐extractable P. The agronomic effectiveness of fertilizers relative to SSP (RAE) were calculated from the fertilizer substitution ratios. When used on finger millet, the RAE of MPR, calculated at a yield which corresponded to 90% of calculated maximum yield on applying SSP, was 42%. For the mixture of MPR and SSP the RAE was 68%. On maize, yield in MPR treatment plateaued at too low a level (about 80% of calculated maximum yield for SSP) to calculate RAE but for MPR/SSP the RAE was 80%. The residual effectiveness of fertilizers on the second crop, compared against freshly applied SSP was 41% for SSP, 49% for MPR, and 73% for MPR/SSP. Olsen bicarbonate‐extractable P values determined one month after fertilizer application increased over control by about 55% in MPR and 86% in MPR/SSP treatments relative to SSP. Economic calculations indicated that, application of MPR is of equal value to SSP for the cropping sequence whereas MPR/SSP for the cropping sequence as well as for individual crops.  相似文献   

11.
Abstract

The amount of phosphorus (P) dissolved in a closed‐incubation system, in soils receiving Christmas Island grade‐A phosphate rock (CIPR), Gafsa phosphate rock (GPR), and triple superphosphate (TSP), as measured by extraction with 0.5M NaHCO3 (APb) or 0.5M NaOH (AP) and expressed as ?Pb/?P*100 (PDP) was compared to P uptake (?Ps) by Setaria in a glasshouse experiment. There was no direct relationship between APs and PDP for CIPR, GPR, and TSP added at 50 and 150 mgP/kg soil to three Malaysian soils (Bungor, Kundor, and Segamat) during a 10‐month period. Averaged across soils, rate of addition, and P sources, ?Ps was 17% higher than PDP. Overestimation of PDP by ?Ps could be due to the ability of the roots of Setaria to use more of the P which is dissolved from the three P sources and then chemisorbed, than can be extracted by the NaHCO3 reagent. The chemisorbed P pool is extractable using 0.5M NaOH. There was a close relationship between ?Ps and ?P, with a correlation coefficient of 0.85**. Residual P, determined by Pb method after each harvest, successfully predicted Ps by Setaria in the subsequent harvest with correlation coefficients varying between 0.74* and 0.99** for CIPR, GPR, and TSP in five soils (Bungor, Durian, Kundor, Segamat, and Tok Yong). The critical Pb values ranged from 5 for Durian to 10 mgP/kg soil for Kundor.  相似文献   

12.
The geochemical reactivity of single superphosphate (SSP), triple superphosphate (TSP), phosphate rock (PR), partially acidulated phosphate rock (PAPR) and potassium dihydrogen phosphate (KH2PO4) was evaluated in an incubation trial. The soil was Anthrosols, Ap horizon (Sandy loam). Solubility equilibrium of phosphates was calculated by phosphate (PPot = logH2PO4 – pH) and calcium (CaPot = logCa + 2pH) potentials. Next, activity ratio (AR°) and Woodruff potential (ΔF) were considered for estimating phosphate dynamics in the soil. Data showed that phosphate potentials stressed on significant solubility process and varied accordingly to the rates of the fertilizers: ?5.50, ?4.81, ?4.47 and ?4.09 for 0, 50, 100 and 150 kg P ha?1. The values of the Woodruff potential (ΔF) varied widely from ?1929 to 8573 cal mol?1, i.e., from marginal supplying power in the case of the control treatment to very high supplying power for the TSP (Triple superphosphate). These findings are of practical value for the following reasons: TSP and KH2PO4 are recommended for quick and high P supply to plants; SSP and PAPR for moderate supply and finally PR for slow and low supply. Phosphorus efficiency should be treated with priority particularly for areas with intensive cropping and susceptibility to runoffs.  相似文献   

13.
Phosphate rock (PR) is an alternative fertilizer to increase the P content of P-deficient weathered soils. We evaluated the effects of fertilizer form on indicators of biological cycling of P using an on-farm trial on a Rhodic Kandiudox in western Kenya. Treatment plots were sampled after 13 cropping seasons of P applications as Minjingu phosphate rock (PR) or as triple super phosphate (?TSP) (50 kg P ha?1 season?1), as well as a P-unfertilized control (0 kg P ha?1 season?1). Soils (0–15 and 15–30 cm) were analyzed for microbial biomass P (Pmic), activities of acid phosphomonoesterase, alkaline phosphomonoesterase, and phosphodiesterase, and sequentially extractable P fractions. P additions as Minjingu PR yielded 299% greater Pmic than TSP at 0–15-cm depth despite similar labile P concentrations in the two P fertilization treatments and stimulated activities of acid phosphomonoesterase (+39%). When added in the soluble form of TSP, a greater percentage of total soil P was present in mineral-bound forms (+33% Fe- and Al-associated P). Higher soil pH under Minjingu PR (pH 5.35) versus TSP (pH 5.02) and the P-unfertilized treatment (pH 4.69) at 0–15-cm depth reflected a liming effect of Minjingu PR. The form of P fertilizer can influence biological P cycling in weathered soils, potentially improving P availability under Minjingu PR relative to TSP via enhanced microbial biomass P and enzymatic drivers of P cycling.  相似文献   

14.
In order to study the effect of plant growth promoting rhizobacteria (PGPR), vermicompost and phosphate sources on the growth and nutrients uptake by lettuce, a greenhouse experiments was conducted. Treatments consisted of PGPR (Pseudomonas fluorescens) (with and without inoculation), vermicompost (0 and 1% w/w) and phosphate sources (control, rock phosphate (RP), tricalcium phosphate and triple super phosphate (TSP) at 25 mg P kg?1 level). Biological fertilizers, RP and TSP significantly increased shoot dry matter (SDM) and some measured nutrients uptake. Co-application of PGPR and RP, in non-vermicompost treatments significantly increased SDM, shoot nitrogen, phosphorus (P), potassium, zinc and manganese uptake rates. Shoot P uptake had no significant difference between TSP and RP treatments. Co-application of PGPR, vermicompost and TSP significantly decreased SDM, which may be due to the P toxic levels in the plant aerial parts and/or the inhibition of the bacterial activities in the rhizosphere soil.  相似文献   

15.
《Journal of plant nutrition》2013,36(12):2149-2158
Abstract

The effects of different commercial phosphate fertilizers [Triple superphosphate (TSP), Tricalcium phosphate (TCP), and ARAD rock phosphate) and soil aluminum (Al) saturation (86, 29, and 0%) on the mineral composition and dry mass production of corn (Zea mays) plants were studied. As soil Al saturation values decreased, pH, calcium (Ca), and magnesium (Mg) levels in the soil increased. High Ca values in the shoot resulted in the reduction in potassium (K) concentrations. The high values of P availability in the soil for the ARAD source of P did not correspond to the high values of dry mass production of corn plants. The high values of corn mass production were noticed for the TSP phosphate source, and the mass productions values were reduced as the soil Al saturation values increased.  相似文献   

16.
P. A. NDAKIDEMI 《土壤圈》2007,17(6):732-738
On-farm experiments were conducted in farmers' fields at 6 different sites in Western Usambara Mountains (WUM) in northern Tanzania during the 2000-2001 cropping season. The objectives were to study the effects of Tughutu ( Vernonia subligera O. Hoffn) pruning in combination with Minjingu phosphate rock (MPR) or triple super phosphate (TSP) supply on the concentration of P in the tissues and seed yields of common bean, and to assess the economic returns of these different technologies to farmers. The experimental design was a randomized complete block with each of the 6 farmers' fields used as a replicate. The treatments included: control, MPR or TSP each at 26 kg P ha^-1, Tughutu at 2.5 t ha^-1, and Tughutu at 2.5 t ha^-1 combined with MPR or TSP at 26 kg P ha^-1. Addition of MPR or TSP alone significantly raised P concentration in bean shoots from 1.27 mg g^-1 to 1.70 and 1.95 mg g^-1 respectively. Combining MPR or TSP with Tughutu increased P concentration above the proposed deficiency level of 2 mg g^-1. The relative agronomic effectiveness (RAE) of MPR ranged from 12.5% to 45.0%. Seed yields of common bean was markedly increased by 28%-104% from MPR or TSP supply alone, and 148%-219% from Tughutu application combined with 26 kg P ha^-1 of MPR or TSP relative to the control. With Tughutu alone, seed yield increased by 53%. From economic analysis, the increase in seed yield with the supply of MPR or TSP combined with Tughutu translated into a significantly (P ≤ 0.001) higher marginal rate of return and dollar profit for common bean farmers in WUM in northern Tanzania. It is concluded that Tughutu and its combined application with MPR or TSP is an appropriate integrated nutrient management strategy that may increase bean yields and dollar profit to the rural poor communities in Tanzania.  相似文献   

17.
Nitrogen (N) and phosphorus (P) deficiency is one of the important causes of degradation of cultivated pasture under tropical conditions. The aim of this study was to evaluate phosphate rates and sources, and N rates on the concentration and uptake of N and P, and shoot dry mass (SDM) yield of Megathyrsus maximum grass cv Mombasa in an Ultisol. The trial was carried out in a greenhouse in pots with 4.0 dm?3 of soil. The experiment was arranged in a completely randomized design with four replicates. The 3 × 3 × 3 factorial treatments consisted of phosphorus sources [reactive rock phosphate from Morocco (RPM), reactive rock phosphate from Algeria (RPA) and triple superphosphate (TSP)], three phosphorus rates (0, 150, and 300 mg kg?1), and three N rates (0, 250, and 500 mg kg?1). The SDM and tillering of Mombasa grass were significantly influenced with the TSP, RPM, and RPA application associated with N fertilization. The RPM, RPA, and TSP met the nutritional demands of Mombasa grass. The three P sources showed the same effect on the total N uptake by Mombasa grass. The P use efficiency (PUE) when fertilizer-P sources were added alone by Mombasa grass was <12% of the added P, and PUE decreased as follows: TSP > RPA > RPM. When P and N-fertilizer were added together, the fertilizer-N use efficiency (NUE) was 62%. The reactive phosphate (RPM and RPA) is an efficient P sources for Mombasa grass, but requiring higher rate of application compared to TSP source.  相似文献   

18.
Abstract

The relative effectiveness of two African rock phosphate (Morocco rock, MR and Togo rock, TR) was compared with the more reactive North Carolina rock phosphate (NCR) and with Triple superphosphate (TSP) in greenhouse using two strongly acidic Ultisols from southern Nigeria with and without application of lime.

Without liming, the relative effectiveness of the four P sources is in the order of NCR>TSP>MR>TR; while with liming, the sequence becomes: TSP≥NCR>MR>TR.

Liming soils to pH near 5.5 depressed P uptake by plant from the rock P sources but increased P uptake from TSP.

Morocco and Togo rocks are poor sources of P for direct application under both limed and unlimed conditions.  相似文献   

19.
To investigate the effects of arbuscular mycorrhiza (AM) and phosphorus (P) source on the uptake of major nutrients by Acacia mangium seedlings, three P sources were used: (1) Gafsa phosphate rock (GPR), (2) China phosphate rock (CPR), and (3) triple superphosphate (TSP). The plant samples were analyzed at 60, 75, 90, 105, 120, and 135 days after planting (DAP) for their N, P, K, Ca, and Mg contents. The uptake of these nutrients was significantly influenced by AM inoculation. Nutrient use efficiency in the AM-inoculated seedlings was also significantly higher than that in uninoculated seedlings. The effect of P sources on the uptake of these nutrients decreased in the order of TSP>GPR>CPR>control. There was a significant (P<0.05) interaction effect of AM and P source on P and K uptake by A. mangium. The uptake of P and K by mycorrhizal seedlings supplemented with TSP was significantly higher than that provided with other sources of P treatments. As a natural and cheaper P source, GPR might be used in combination with AM for growing A. mangium seedlings on degraded tin tailings.  相似文献   

20.
磷是作物和畜禽生长必需的营养元素,同时也是不可再生资源。为了提高农牧业生产力,80%左右的磷矿石用于生产磷肥与磷饲料添加剂,因此提高磷肥和磷饲料添加剂生产效率至关重要。然而关于磷肥和磷饲料添加剂"采矿—选矿—磷酸—磷肥/磷饲料添加剂"整个链条的磷流动特征和各个环节效率的定量研究却很少。本研究通过企业实地调研,建立企业流动数据库,利用物质流分析的方法扩展了NUFER(NUtrient flows in Food chains,Environment and Resources use)模型的磷肥和饲料磷添加剂生产模块。以我国某大型磷化工企业为例,定量揭示磷化工企业"采矿—选矿—磷酸—磷肥/磷饲料添加剂"整个链条磷流动特征、损失和利用效率;分析各种磷肥和饲料添加剂产品生产磷流动、利用效率和磷足迹;并利用情景分析提出提高磷利用效率的策略和优化潜力。结果表明:2015年该企业利用含3.902?106 t P2O5的自然矿石,生产了2.426?106 t(折纯P2O5,下同)磷复肥和磷饲料添加剂,其中磷酸二铵和磷酸一铵是最主要的产品,分别为156万t和54万t。磷酸二铵、磷酸一铵、重过磷酸钙、磷酸一二钙、普通过磷酸钙、复合肥、硫肥和磷酸二氢钾产品的生产效率分别为98%、98%、93%、95%、91%、99%、98%和91%,整个生产链条的生产效率为80%。大多数的磷资源在矿石加工部门损失掉,占磷损失量的51%;其次是矿石开采部门(25%)和磷酸生产部门(14%)。通过提高生产效率和废弃物利用率,磷资源损失预计可以减少42%。研究企业的磷利用效率在国内已达先进水平,但仍有提升潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号