首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The uptake and distribution of manganese (Mn) in field‐grown maize (Zea mays L.) was studied in a long‐term sewage sludge field trial on an acid sandy soil at Bordeaux. Since 1974, sewage sludge had been applied at levels of 101 dry matter (DM) ha‐1 year‐1 (SS 10) and 1001 DM ha‐1 per 2 years (SS 100) on annually cropped maize plots. Treatment with farmyard manure (FYM) at a rate of 10 t DM ha‐1 year‐1 served as unpolluted control. Five replicate plants per treatment were examined at six different growth stages. At each stage, the whole plant was separated into its different organs and the Mn distribution was determined in at least 12 different plant parts. Manganese concentrations were always higher in SS 100 plants compared to FYM and SS 10 treated plants. Significant treatment‐dependent differences occurred almost all in the roots and in the different leaf levels while we found similar Mn concentrations in the stalk and in the reproductive organs. In the different stalk levels and in the ear composites we determined low Mn concentrations with critical deficiency values in FYM and SS 10 plants while Mn concentrations in SS 100 plants were in the normal range. Soil treatment also significantly influenced the initial absorption by the roots. Despite low absolute Mn concentrations in the roots of FYM plants, the Mn transfer coefficient (plant Mn concentration/soil Mn concentration) was highest in FYM plants and lowest in SS 100 plants indicating a relatively low Mn plant availability in the sludge‐treated plots.  相似文献   

2.
Abstract

The objective of this study was to determine the effects of pH and ionic strength on the distribution and speciation of zinc (Zn), copper (Cu), and cadmium (Cd) in surface soil samples from two Brazilian Oxisols amended with biosolids. Soils and biosolids were equilibrated in an experimental dual‐chamber diffusion apparatus that permits the soils and biosolids to react through a solution phase via diffusion across a membrane. After equilibrium was reached, soil and biosolids samples were sequentially fractionated to identify various solid forms of Zn, Cu, and Cd. Metal concentrations in the solution phase were determined and mass balance calculated. Equilibrating pH had no major effect on Cu solubility from biosolids and, at pH range from 4 to 7, most Cu remained in the biosolids. Soluble Zn and Cd concentration increased with decreasing pH because of the increased solubility of the biosolids. Copper and Zn were primarily associated with the residual fraction and Fe oxides in one soil, but were primarily associated with chemically unstable fractions, or adsorbed to the surface of oxides, in the other soil. In both soils, Cd was primarily associated with readily bioavailable fractions. The effect of pH on the metal distribution was more evident than the ionic strength effect. Free ions were the predominant metal species in solution, especially at lower pH values.  相似文献   

3.
The suitability of loss‐on‐ignition (LOI) as an alternative to direct measurement of organic carbon (OC) has been debated for decades without resolution. The literature contains an abundance of different linear regression models to describe the LOI–OC relationship, most based on untransformed values of LOI and OC. Such regression is suspect because the variables are unable to occupy Euclidean space. Logratio transformation—based on relative rather than absolute differences—eliminates this constraint. Re‐analysis of the relationship on new and 10 previously published datasets using logratio techniques reveals that the relationship is nonlinear and that the profusion of regression models is in part a function of the range of LOI. Although LOI may offer a crude estimate of OC at high LOI levels, OC/LOI ratios when LOI is less than about 25% are too variable for reliable OC estimation, and interstudy comparisons remain dubious. Direct measurement of OC is recommended.  相似文献   

4.
The effects of several rates of KCl (0–1500 kg/ha) were compared with K2SO4 at the equivalent K rate as 1500 kg/ha KCl on five commercial orchards of kiwifruit (Actinidia deliciosa [A. Chev] C.F. Liang et A.R. Ferguson var. deliciosa cv. Hayward). Leaf breakdown (marginal leaf scorch followed by necrosis and leaf drop) was induced by KCl application at four of the five sites. The symptoms developed at leaf Cl concentrations of 1.5% dry weight and the severity of symptoms increased with leaf Cl concentrations. At another site, a zero K treatment was compared to several rates of KCl (300–1500 kg/ha) and K2SO4 applied at equivalent rates of K in factorial combination with two N fertilizer rates. This site had received KCl and developed severe leaf breakdown in the previous season. Leaf Cl concentrations on the zero K and K2SO4 treatments were higher in this experiment (1.7–2.1% dry weight) than at the other five experimental sites (0.6–1.3%), and at this site mild leaf breakdown symptoms developed on these treatments. Leaf N concentrations were greater, while leaf Cl concentrations and the severity of symptoms were less at the higher N rate. At all of the experimental sites that developed leaf breakdown symptoms, the severity of symptoms increased with the rate of KCl application and were significantly correlated to leaf Cl concentrations but not other leaf nutrient concentrations.  相似文献   

5.
Abstract

Time dependent zinc (Zn) desorption in eight benchmark soils of India was studied in relation to various pH values and ionic strengths. Soil samples were equilibrated in solutions containing 10 μg Zn g‐1 soil at pH 5.5,6.5, and 7.5 for 48 h at 25±2°C, and adsorbed Zn extracted with calcium chloride (CaCl2) for various periods of time. Desorption of Zn decreased with increasing pH, and the desorption rate decreased abruptly at pH 7.5. In contrast, an increase in the equilibration period and ionic strength of the background electrolyte increased Zn desorption. Four rival kinetic models were fitted and evaluated for their suitability for describing the Zn desorption process. Reaction rate constant (ß) calculated from the Elovich model for the different soils ranged from 9.99 to 25 (mg Zn kg‐1)‐1. The different kinetic models tested indicated that Zn desorption in soils was a diffusion controlled process. The desorption was rapid in the first 4 h, followed by slower phase in the rest of the time at all the pH values indicating a biphasic desorption, characteristic of a diffusion controlled process. The ß value for the Elovich equation showed a strong association with soil clay content and cation exchange capacity (CEC). Further, the best prediction of Zn desorption reaction rate constant could be made using multiple‐regression equation with soil clay content and CEC as variables.  相似文献   

6.
Two Ca‐efficient and 3 Ca‐inefficient tomato lines selected on the basis of dry matter production, Ca concentrations in tissues, and severity of Ca deficiency symptoms were grown in nutrient solutions containing 6 levels of total Ca ranging from 15 to 365 mg in 70 mg increments. All lines responded to increased Ca supply by increasing in dry weight and by accumulating Ca. The critical Ca concentrations in the shoots were 0.25% and 0.40% on a dry weight basis for the efficient and inefficient lines, respectively. Concentrations of Ca, K, Mg, P, and NO3 were lower in shoots and except for Mg were lower in roots of efficient plants than in the inefficient plants. For all lines as more Ca was available in the media and as Ca increased in the shoots and roots, the concentrations of the nutrients other than Ca declined. The declines in concentrations of K and Mg were not due to dilution by higher dry matter production in the efficient lines relative to the inefficient ones, although the total accumulation of Ca, P, and NO3 did not vary with Ca supplied. Antagonism among cations may account for differences in efficiency among lines of tomato.  相似文献   

7.
Abstract

Soil from the Ap‐horizon of four acid sandy soils differing mainly in Corg content was adjusted to pH values between 3 and 7.5 with NaOH and HCl respectively and incubated for two weeks. Afterwards, displaced soil solution was obtained and analyzed.

The concentrations of Fe, Al, and P showed a broad minimum in the pH range from 4 to 6. The concentration of these elements strongly increased with the increase of pH to 7.5. Acidification below pH values of 4 led to a slight increase.

Separation of dissolved organic carbon by ultrafiltration before the photometric orthophosphate determination decreased measured concentrations in comparison to direct determination in two of the four soils. This decrease was more pronounced for soil solutions with higher concentrations of organic carbon. The effect of acid hydrolysis of organic phosphorus during orthophosphate determination can be explained by existence of humic‐Fe‐(Al phosphate complexes in the soil solution. These complexes can account for more than 50% of the total organic P in solution.  相似文献   

8.
Abstract

Studies were conducted to investigate phosphorus (P)‐sorption characteristics of some intensely weathered soils in south‐central Kentucky. Phosphorus adsorption characteristics reflected the chemical and mineralogical properties of the soils studied. All adsorption data were adequately described by first order kinetic reactions which implied that the soils have uniform surfaces for P sorption. In spite of the limitations of the Langmuir equation, its usefulness in summarizing data into one adsorption maximum value was demonstrated by nearly identical adsorption maxima estimated by three linear transformations of the equation and small deviations from the observed maxima. Variations in adsorption maxima between surface and subsoils and among soils were best correlated with extractable aluminum (Al) (r = 0.93, p<0.01) and crystalline iron (Fe) oxy‐hydroxides (r = 0.97, p<0.01). Clay content was also highly correlated with P sorption (r = 0.97, p <0.01) as well as with extractable Al (r = 0.83, p<0.05) and crystalline Fe oxides (r = 0.92, p<0.01) suggesting that its contribution may have been through its association with these soil components. In contrast, organic matter had a negative association with P sorption (r = ‐0.83, p<0.05). The results indicate higher P sorption in subsoil than in surface horizons, controlled mainly by extractable Al and crystalline Fe oxyhydroxides.  相似文献   

9.
Abstract

Individual soil tests are used to assess plant nutrient element needs. Separate soil tests, however, are time consuming and costly. Our objective was to develop a 0.5M sodium bicarbonate (NaHCO3) soil phosphorus (P) test in combination with 0.005M diethylenetriaminepentaacetic acid (DTPA) so macronutrient dements: ammonium‐nitrogen (NH4‐N), nitrate‐nitrogen (NO3‐N), P, potassium (K), calcium (Ca), and magnesium (Mg); and micronutrients: iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) could be quantified in one extraction. The NaHCO3‐DTPA extracting solution is a combination of 0.5M NaHCO3 and 0.005M DTPA and has a pH of 7.60±0.05. Sodium in the solution enhances the NH4, K, Ca, and Mg extraction; bicarbonate (HCO3) is for P extraction; DTPA chelates Ca, Mg, and micronutrients; and the water is for NO3 extraction. Soil samples (0–15 cm depth) came from two sources. The first set was from 12 N x P dryland proso millet (Panicum miliaceum L.) experiments, conducted from 1985 through 1987 in eastern Colorado. These soils were extracted with potassium chloride (KCl), NaHCO3, ammonium acetate (CH3‐COONH4), DTPA, ammonium bicarbonate DTPA (AB‐DTPA), and with the NaHCO3‐DTPA solutions. The second set included 25 soils from Alabama, Georgia, North Carolina, and South Carolina and were analyzed only for available P with the NaHCO3 and NaHCO3‐DTPA methods. Simple linear correlations for macronutrient elements and micronutrients were highly significant. Critical levels for the macronutrient elements: NO3‐N, P, and K were 27, 11, and 144 mg kg‐1, respectively; and the critical levels for the micronutrients: Fe, Mn, Zn, and Cu were 3.9, 0.35, 0.97, and 0.24 mg kg‐1, respectively.  相似文献   

10.
Abstract

The determination of soil organic matter by wet digestion techniques is a slow and laborious analysis. Loss‐on‐ignition (LOI) provides a simple alternative technique for the estimation of soil organic carbon in non‐calcareous A horizon soils of the Natal midlands and Zululand forestry regions. Using multiple regressional techniques, the relationships between loss‐on‐ignition, Walkley organic carbon and soil texture for 55 soils were determined over a range of ignition temperatures. The relationships hold best for soil samples with relatively low organic carbon contents (< 5%). The optimum temperature for ignition was found to occur at 450°C and resulted in the relationship: Soil organic carbon = 0.284*LOI percent. No advantage is gained through ignition at higher temperatures due to the loss of clay mineral structural water, even if the soil texture is accurately known.  相似文献   

11.
Although a positive response to iron (Fe) is, usually, expected in calcareous soils; this has not been always the case; and in some instances a depressing effect has been observed. An induced micronutrient imbalance is suspected. This experiment was designed to study the effect of Fe fertilizer on the plant micronutrients. Twenty three highly calcareous soils (18–46% calcium carbonate equivalent; pH 7.7–8.4; and a wide range of extractable Fe) from southern Iran were used in an eight‐week greenhouse experiment to study the effect of Fe fertilizers on soybean [Glycine max (L.) Merr.] growth and chemical composition. The statistical design was a 23 × 3 factorial arranged in a completely randomized block with three replications. Treatments consisted of 23 soils and three levels of applied Fe (0, 10, and 20 mg Fe/kg as FeEDDHA). Uniform doses of nitrogen (N), phosphorus (P), copper (Cu), manganese (Mn), and zinc (Zn) were applied to all pots. Dry matter (DM) and micronutrients concentrations and uptakes of plant tops were determined and used as the plant responses. Application of Fe either had no significant effect on DM or even decreased it. The plant concentration and uptake of Fe increased significantly in all soils. The concentrations and uptakes of Cu and Zn did not change but those of Mn decreased significantly. The negative effect of Fe application was, therefore, attributed to the interference of Fe with Mn nutrition. The mechanism involved appears to be the restriction in Mn translocation from soil to root and/or from root to the plant tops.  相似文献   

12.
Abstract

Iron from a mixture of Fe oxide and metallic Fe was more available to corn (Zea mays L.) than it was to soybeans when the plants wore grown in calcareous soil or in nutrient solution. All this Fe, however, was DTPA (diethylene triamine pentaacetic acid) extractable. In solution culture the Fe was available to the soybean (Glycine max L.) plants unless CaCO3 was included in the nutrient solution.  相似文献   

13.
Abstract

In an effort to expand the data base concerning heavy metal concentrations in Maryland tobacco and to acquire information on the nutritional status for Cu, 402 samples of cured tobacco collected on farms over the period 1980 to 1983 were analyzed for their Zn, Mn, Pb, Ni, and Cd contents, and the Cu contents were examined in 198 samples from 1982 and 1983. Mean concentrations for individual metals in mg/kg were: Zn (43.6), Cu (7.6), Mn (192), Pb (1.92), Ni (1.20), and Cd (2.26). Approximately 5% of the samples contained Zn, Cu, Ni, Pb, or Cd concentrations higher than expected for these elements in Maryland tobacco. Some 25% of the samples contained Mn levels within the range 332–2400 mg/kg which were likely caused by low soil pH conditions. A total of 5% of the cured samples were borderline deficient in Zn (≤18 mg/kg), and 27% were considered deficient in Cu (≤5.2 mg/kg). Problems associated with inadequate liming programs and the use of croplands for municipal waste disposal were discussed.  相似文献   

14.
The interaction effect of applied zinc (Zn) and boron (B) on early vegetative growth and uptake of Zn and B by two oilseed rape (canola) (Brassica napus L.) genotypes was investigated in a sand culture experiment under controlled environmental conditions. Two genotypes (Yickadee and Dunkeld) were grown at three Zn levels (0.05, 0.25, and 2.0 mg kg‐1 soil) and two B levels (0.05 mg kg‐1 soil and 0.5 mg kg‐1 soil). Dunkeld produced significantly higher shoot and root dry matter than Yickadee at low Zn and low B supply indicating the superiority of Dunkeld over Yickadee for tolerance to both low Zn and low B supply. Chlorophyll content of fresh leaf tissue was increased significantly by an increase in Zn and B supply. Zinc deficiency enhanced B concentration in younger and older leaves. Boron concentration was higher in older leaves than in the younger leaves irrespective of B deficiency and sufficiency indicating immobility of B in two oilseed rape genotypes tested. Zinc concentration was higher in younger leaves than in the older leaves indicating mobility of Zn. An increased supply of Zn enhanced B uptake under high boron supply only. Zinc uptake in Dunkeld was enhanced significantly with an increased rate of B supply under high Zn supply, while the effect was not significant in Yickadee. Dunkeld proved to be more efficient in Zn and B uptake than Yickadee.  相似文献   

15.
Abstract

Soil color is a soil property that may be used as an interpreting index in estimating processes and properties. Quantifying color allows one to obtain information for rapidly estimating the related processes in soils. CIELAB color parameters L*, a*, and b* of ground (air‐dried and sieved) soil samples and aggregate surfaces of four soil profiles formed in calcareous colluviums in northern Turkey were analyzed. Values of color parameters measured in ground and intact soils were compared and related to soil properties by the regression technique. Results revealed that the L* value obtained with a ground soil sample was a significant predictor of organic matter in A horizons (p < 0.001). Although calcic horizons yielded the highest L* values, no significant relationship was obtained between calcium carbonate contents and lightness of soils in any of horizons studied. The parameters of b* could adequately be used to quantify dithionite‐extractable iron oxide contents in soils studied. The results further showed that the CIELAB color parameters obtained with ground samples were more informative than that of aggrevated samples in relating color parameters to soil properties.  相似文献   

16.
Abstract

The extractant Mehlich‐1 is routinely used in Brazil for determination of soil nutrients, whereas Mehlich‐3 has been suggested as a promising extractor for soil fertility evaluation. Both were used for extraction of molybdenum (Mo) in Brazilian soils with Mo dosage by the KI+H2O2 method. The Langmuir and Freundlich isotherms were used to study soil Mo adsorption. Mehlich‐1 extracted more Mo than Mehlich‐3 in soils with high contents of organic matter, clay, and iron (Fe) oxides. Mehlich‐3 and Mehlich‐1 extractions correlated positively and significantly with amorphous Fe oxides, crystalline Fe oxides, and organic matter. Molybdenum recovering rates correlated to crystalline Fe oxides and clay contents but not to organic matter, pH, and Mo adsorption capacity. Amorphous and crystalline Fe oxides, clay, and organic matter were responsible for most of the Mo adsorption. The Langmuir isotherm described better the Mo adsorption to soil amorphous Fe oxides and organic matter than the Freundlich isotherm.  相似文献   

17.
Abstract

Phosphorus (P) fertilizer recommendations for no‐till small grain production are poorly defined. These studies were conducted to determine small grain‐P response relative to the Olsen‐P soil test and compare P‐fertilizer placements with the seed and banded below and to the side of the seed under no‐till field conditions. Phosphorus rates of 0 to 26 kg P/ha were evaluated on seven spring barley (Hordeum vulgare L.), 11 spring wheat, and six winter wheat (Triticum aestivum L.) locations in central and northcentral Montana between 1986 and 1990. Grain yield, grain protein, test weight, above‐ground crop yield, plant P concentration at maturity, and P uptake were measured. One winter wheat location had a significant yield response to P; all other locations had non‐significant yield responses. Grain protein, test weight, P concentration, and P uptake were all unaffected by P rate or P placement. Both the ANOVA and paired t‐test were used to analyze the P‐placement data and were all nonsignificant. Slopes of grain yield response (grain yield for each P rate minus the grain yield without P), P concentration, and P uptake versus P rate were analyzed with the t‐test; none of the P‐response slopes were greater than zero. The P responses by individual crop were regressed against P rate, Olsen‐P soil test, available soil water at planting, and pH. Phosphorus rate was not a significant factor in any of the equations. Significant and useful predictive equations for grain yield response could not be generated; however, equations predicting P concentration and P uptake were developed. The Cate‐Nelson graphical analysis was unsuccessful in estimating an Olsen‐P soil test critical level. All attempts failed to relate grain yield or grain yield response to the Olsen‐P soil test and/or P rate. When P soil tests are higher than 12 mg/kg, no‐till grain growers should consider applying a maintenance level of P fertilizer, about 5 to 10 kg P/ha either banded below or with the seed, to maintain soil P levels.  相似文献   

18.
Abstract

In semiarid and arid regions, plant growth is limited by high pH, salinity, and poor physical properties of salt‐affected soils. A field experiment was conducted in the semiarid region of Kangping in northeast China (42°70′ N, 123°50′ E) to evaluate a soil‐management system that utilized a by‐product of flue‐gas desulfurization (FGD). Soil was treated with 23,100 kg ha?1 of the by‐product. Results of corn growth were grouped into three grades (GD) according to stages of corn growth: GD1, seeds did not germinate; GD2, seeds germinated but corn was not harvested; and GD3, plants grew well and corn was harvested. The pH, electrical conductivity (EC), bicarbonate (HCO3 ?), carbonate (CO3 2?), exchangeable and soluble calcium (Ca2+), chloride (Cl), and sulfate (SO4 2?) in surface soils of the three grades (>20 cm) was measured to assess the correlation between corn growth and soil properties. Vertical differences in subsoil properties (0‐100 cm) between GD1 and GD3 were compared to known benchmark soil profiles. The FGD by‐product significantly increased EC, exchangeable and soluble Ca2+, and SO4 2? and decreased CO3 2?, exchangeable sodium (Na+), and soluble Na+. pH, EC, HCO3 ?, CO3 2?, and Cl? were higher in surface soils of GD1 than GD3. Soil hardness, soil moisture content, Cl?, and calcium carbonate (CaCO3) were higher in GD1 than in GD3, whereas the amount of available P was lower in GD1. Interestingly, the concentration of Cl?, a toxic element for plant growth, was 2.5 and 1.5 times higher in GD1 than in GD3 and control soil, respectively. In the comparison study of subsoils, GD1 and GD3 were classified as having typical characteristics of saline‐alkali soil (pH>8.5; exchangeable‐sodium‐percentage [ESP]>15; EC>4.0) and alkali soil (pH>8.5; ESP>15; EC<4.0), respectively.  相似文献   

19.
Abstract

Changing conventional tillage to conservation tillage systems affects nitrogen (N) cycling in agroecosystems. Our objective was to evaluate the role of soil organic pools, specially plant residues, as sources‐sinks of nitrogen in an humid and warm temperate environment cropped to wheat, under plow‐ and no‐tillage. The experimental site was in the Argentine Pampa on a Typic Hapludoll. A balance‐sheet method was used: Nupt+Nres=Nsow+Nmin, where Nupt=N uptake by the crop at harvest; Nsow=soil mineral N as NH4 and NO3 at 0–90 cm depth, one month before sowing, plus N added as fertilizer; Nres=residual soil mineral N as NH4 and NO3 at 0–90 cm depth, at harvest; Nmin=N mineralized from humus and plant residues during wheat growing period. Nupt did not differ between tillage systems. Nitrogen supply by the mineral N pool, estimated by the difference Nsow‐Nres, was ca. 150 kg N ha‐1 in both tillage systems. Plant residues decomposed and released N under both treatments. This organic N pool decreased 77% along the crop cycle. Nmin, calculated using the balance equation was 83 kg N ha‐1, and did not differ between tillage managements, representing 35% of Nupt. This results highlight the importance of the organic pools as sources of N for wheat in the Humid Pampa. They also brink our attention on the importance for evaluate residue decomposition and humus mineralization in warm‐temperate regions when fertilizer requirements are determined, in order to minimize environmental hazard and economic losses by overfertilization.  相似文献   

20.
Abstract

Heavy metals are often added indiscriminantly to soils in pesticides, fertilizers, manures, sewage sludges, and mine wastes, causing an imbalance in nutrient elements in soils. Heavy‐metal toxicity causes plant stress in various degrees dependent on the tolerance of the plant to a specific heavy metal. The objectives of this study were (i) to show that plant species and soils respond differently to heavy metals and (ii) to show the necessity for proper quantity and balance of heavy metals in soils for plant growth.

Three Fe‐inefficient and three Fe‐efficient selections of soybean, corn, and tomato were grown on two alkaline soils with Cu and Zn ranging from 14 to 340 and Mn from 20 to 480 kg/ha. Heavy‐metal toxicity caused Fe deficiency to develop in these plants. The Fe‐inefficient T3238fer tomato and ys1/ys1 corn developed Fe deficiency on all treatments and both soils. T3238FER tomato (Fe‐efficient) did not develop heavy metal toxicity symptoms on any treatment or soil. The soybean varieties and WF9 corn were intermediate in their response.

The unpredictable response of both the soil and the plant to heavy metals make general recommendations difficult. In order to maintain highly productive soils, we need to know what we are adding to soils and the consequences. Without some control, the continued addition of heavy metals to soils is a crisis in embryo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号