首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A commercial indirect swine influenza virus (SIV) H1N1 enzyme-linked immunosorbent assay (ELISA) was compared with the hemagglutination inhibition (HI) assay by testing 72 samples from experimentally infected pigs and 780 field samples of undefined SIV status. The HI assay was performed using SIV isolates A/Swine/IA/73 for H1N1 and A/Swine/IA/8548-1/98 for H3N2. The ELISA used an SIV isolated in 1988. The results showed that HI and ELISA detected an antibody in 11 and 6, respectively, of 72 serum samples collected from pigs experimentally infected with a 1992 SIV isolate (A/Swine/IA/40776/92). The presence of antibodies in these experimental samples was confirmed by HI tests in which all 72 samples were positive against the homologous virus, a more recent H1N1 SIV isolate (A/Swine/NVSL/01) supplied by National Veterinary Services Laboratories, Ames, Iowa, and a 1999 H1N1 isolate currently used in a commercial vaccine. On testing 780 field samples, an overall agreement of 85.5% was generated between the HI and ELISA. This study demonstrated that the ELISA is a useful serodiagnostic screening test at herd level for detecting swine antibodies against SIV. However, a new SIV isolate representing current SIV strains circulating in the field is needed to replace the older isolates used in the HI and ELISA to increase the test accuracy for serodiagnosis of SIV.  相似文献   

2.
Serum samples from 1,011 wild boars hunted in 2012 were collected for serological surveillance for 4 subtypes (pandemic A (H1N1) 2009 and classical H1N1, H1N2 and H3N2) of swine influenza virus (SIV). Samples from 12 of the boars were identified as positive for SIV (pandemic A (H1N1) 2009, n=9; classical H1N1, n=2; and H1N2, n=1) by a hemagglutination inhibition test (HI test) and a nucleoprotein (NP)-based enzyme-linked immunosorbent assay (NP-ELISA). Although the overall seroprevalence of SIV in the Korean wild boar population was somewhat low compared with that in China and the U.S.A., the apparent prevalence of pandemic H1N1 was notable. Therefore, continuous monitoring of the wild boar population is needed as it may be a major reservoir for pandemic H1N1, facilitating its spread to humans and domestic pigs.  相似文献   

3.
对2009年H1N1甲型流感流行前后的上海地区养殖场户410份猪血清样品,分别采用血凝抑制试验(hemagglutination inhibition,HI)和酶联免疫吸附试验(enzyme-linked immunosorbent assay,ELISA)进行检测H1N1甲型流感病毒和猪流感病毒(Swine in?uenza virus,SIV)。检测结果表明,除2007年外,2008~2010年猪血清中均存在不同水平的HI抗体,阳性率呈显著上升趋势,且抗体水平与猪群饲养周期及饲养密度正相关,而与猪流感病毒的流行无相关性。  相似文献   

4.
This paper reports on a serological and virological survey for swine influenza virus (SIV) in densely populated pig areas in Spain. The survey was undertaken to examine whether the H1N2 SIV subtype circulates in pigs in these areas, as in other European regions. Six hundred sow sera from 100 unvaccinated breeding herds across Northern and Eastern Spain were examined using haemagglutination inhibition (HI) tests against H1N1, H3N2 and H1N2 SIV subtypes. Additionally, 225 lung samples from pigs with respiratory problems were examined for the presence of SIV by virus isolation in embryonated chicken eggs and by a commercial membrane immunoassay. The virus isolates were further identified by HI and RT-PCR followed by partial cDNA sequencing. The HI test on sera revealed the presence of antibodies against at least one of the SIV subtypes in 83% of the herds and in 76.3% of the animals studied. Of the 600 sow sera tested, 109 (18.2%), 60 (10%) and 41 (6.8%) had SIV antibodies to subtype H1N2 alone, H3N2 alone and H1N1 alone, respectively. Twelve H3N2 viruses, 9 H1N1 viruses and 1 H1N2 virus were isolated from the lungs of pigs with respiratory problems. The analysis of a 436 nucleotide sequence of the neuraminidase gene from the H1N2 strain isolated further confirmed its identity. Demonstrably, swine influenza is still endemic in the studied swine population and a new subtype, the H1N2, may be becoming established and involved in clinical outbreaks of the disease in Spain.  相似文献   

5.
The influenza invariant matrix 2 (M2) protein is a potential subunit vaccine candidate to induce protective immunity against broader strains of influenza A viruses (IAV). Antibodies to M2 protein have not been well characterized in IAV natural hosts. To characterize M2-specific antibodies in pigs, an ELISA to the extracellular region of the M2 (M2e) protein was developed. Sera from pigs experimentally infected with three different swine influenza virus (SIV) subtypes, immunized with an SIV inactivated vaccine, or positive for SIV maternally derived antibodies (MDA) in the absence of SIV infection were tested in assay. Confirmation of antibody titer status of pigs, was determined using a hemagglutination-inhibition (HI) test and the presence of antibodies to matrix 1 (M1) protein was measured by a recombinant M1 (rM1)-based ELISA. The antibody titers to the HA and M2e proteins but not to the rM1 were directly correlated to the dose of virus used to infect the pigs and the level of antibodies detected by the HI assay varied according to SIV subtype. Pigs experimentally infected with SIV produced low levels of M2e antibodies compared to antibodies detected by the HI and rM1 assays. Vaccination alone followed by infection did not increase the levels of M2e antibodies in contrast to HA and rM1 antibodies. Pigs with MDA had different levels of HA antibodies and were positive to M2e antibodies, but results were not correlated to HA antibodies levels and inconsistently present.  相似文献   

6.
An immunoperoxidase monolayer assay (IPMA) has been developed to detect antibodies against swine influenza A virus (SIV) in pig sera. The test was evaluated by using sequential sera from pigs experimentally infected with H1N1 subtype of SIV. Two hundred field serum samples that had been examined by the hemagglutination inhibition (HI) test were also tested. Antibodies specific to SIV were detected as early as 3 days postinoculation (dpi) in the IPMA test as compared with 7 dpi by the HI test. Unlike HI, no serum treatment was required in the IPMA test. Regardless of the virus used in the test, IPMA detected antibodies to both H1N1 and H3N2 subtypes of SIV whereas HI detects antibodies against either H1N1 or H3N2, depending upon the virus used in the test. Results of this study indicate that IPMA is a useful test for screening of pig sera for SIV antibodies.  相似文献   

7.
8.
Swine influenza is caused by type A influenza virus. Pigs can be infected by both avian and human influenza viruses; therefore, the influenza virus infection in pigs is considered an important public health concern. The aims of present study were to asses the seroprevalence of swine influenza subtypes in Spain and explore the risk factors associated with the spread of those infections. Serum samples from 2151 pigs of 98 randomly selected farms were analyzed by an indirect ELISA for detection of antibodies against nucleoprotein A of influenza viruses and by the hemagglutination inhibition (HI) using H1N1, H1N2 and H3N2 swine influenza viruses (SIV) as antigens. Data gathered in questionnaires filled for each farm were used to explore risk factors associated with swine influenza. For that purpose, data were analyzed using the generalized estimating equations method and, in parallel by means of a logistic regression. By ELISA, 92 farms (93.9%; CI(95%): 89.1-98.7%) had at least one positive animal and, in total, 1340/2151 animals (62.3%; CI(95%): 60.2-64.3%) were seropositive. A total of 1622 animals (75.4%; CI(95%): 73.6-77.2%) were positive in at least one of the HI tests. Of the 98 farms, 91 (92.9%; CI(95%): 87.7-98.1%) had H1N1 seropositive animals; 63 (64.3%; CI(95%): 54.6-73.9%) had H1N2 seropositive pigs and 91 (92.9%; CI(95%): 87.7-98.1%) were positive to H3N2. Mixed infections were detected in 88 farms (89.8; CI(95%): 83.7-95.9%). Three risk factors were associated with seroprevalences of SIV: increased replacement rates in pregnancy units and, for fatteners, existence of open partitions between pens and uncontrolled entrance to the farm.  相似文献   

9.
We compared the efficacy of 3 commercial vaccines against swine influenza A virus (SIV) and an experimental homologous vaccine in young pigs that were subsequently challenged with a variant H3N2 SIV, A/Swine/Colorado/00294/2004, selected from a repository of serologically and genetically characterized H3N2 SIV isolates obtained from recent cases of swine respiratory disease. The experimental vaccine was prepared from the challenge virus. Four groups of 8 pigs each were vaccinated intramuscularly at both 4 and 6 wk of age with commercial or homologous vaccine. Two weeks after the 2nd vaccination, those 32 pigs and 8 nonvaccinated pigs were inoculated with the challenge virus by the deep intranasal route. Another 4 pigs served as nonvaccinated, nonchallenged controls. The serum antibody responses differed markedly between groups. After the 1st vaccination, the recipients of the homologous vaccine had hemagglutination inhibition (HI) titers of 1:640 to 1:2560 against the challenge (homologous) virus. In contrast, even after 2nd vaccination, the commercial-vaccine recipients had low titers or no detectable antibody against the challenge (heterologous) virus. After the 2nd vaccination, all the groups had high titers of antibody to the reference H3N2 virus A/Swine/Texas/4199-2/98. Vaccination reduced clinical signs and lung lesion scores; however, virus was isolated 1 to 5 d after challenge from the nasal swabs of most of the pigs vaccinated with a commercial product but from none of the pigs vaccinated with the experimental product. The efficacy of the commercial vaccines may need to be improved to provide sufficient protection against emerging H3N2 variants.  相似文献   

10.
Hemagglutination inhibition (HI) has been a reliable method for determining porcine antibody levels to the well-characterized swine influenza virus (SIV) H1N1 and H3N2 subtypes. However, the recent emergence of the novel H1N2 serotype of SIV and the persistence of 2 other serotypes (H1N1 and H3N2) in the United States swine population represents a significant challenge to diagnostics. Both standardized and modified HI protocols were used in a blinded study to examine a collection of 50 control sera representing a total of 12 swine that were experimentally inoculated with one of the 3 SIV subtypes. Using these control sera data, a statistical basis for analysis was established in an attempt to classify 30 field sera with known case histories or seroprevalance into SIV serotype categories. By this approach 57% of the field sera could be classified into specific categories. The remaining samples that could not be classified reliably were most likely composed of heterogeneous anti-SIV antibody populations. These results indicate that although serological differentiation might be possible in a controlled environment, applications of these methods to field samples are currently problematic. Approaches other than HI will be required to fulfill the current need for SIV diagnostics and surveillance when specific serotype identification is required.  相似文献   

11.
Sows and gilts lack immunity to human adenovirus 5 (Ad-5) vectored vaccines so immunogens of swine pathogens can be expressed with these vaccines in order to immunize suckling piglets that have interfering, maternally derived antibodies. In this study 7-day-old piglets, that had suckled H3N2 infected gilts, were sham-inoculated with a non-expressing Ad-5 vector or given a primary vaccination with replication-defective Ad-5 viruses expressed the H3 hemagglutinin and the nucleoprotein of swine influenza virus (SIV) subtype H3N2. The hemagglutination inhibition (HI) titer of the sham-inoculated group (n = 12) showed continued antibody decay whereas piglets vaccinated with Ad-5 SIV (n = 23) developed an active immune response by the second week post-vaccination. At 4 weeks-of-age when the HI titer of the sham-inoculated group had decayed to 45, the sham-inoculated group and half of the Ad-5 SIV vaccinated pigs were boosted with a commercial inactivated SIV vaccine. The boosted pigs that had been primed in the presence of maternal interfering antibodies had a strong anamnestic response while sham-inoculated pigs did not respond to the commercial vaccine. Two weeks after the booster vaccination the pigs were challenged with a non-homologous H3N2 virulent SIV. The efficacy of the vaccination protocol was demonstrated by abrogation of clinical signs, by clearance of challenge virus from pulmonary lavage fluids, by markedly reduced virus shedding in nasal secretions, and by the absence of moderate or severe SIV-induced lung lesions. These recombinant Ad-5 SIV vaccines are useful for priming the immune system to override the effects of maternally derived antibodies which interfere with conventional SIV vaccines.  相似文献   

12.
Swine influenza virus (SIV) and Mycoplasma hyopneumoniae (Mhp) are widespread in farms and are major pathogens involved in the porcine respiratory disease complex (PRDC). The aim of this experiment was to compare the pathogenicity of European avian-like swine H1N1 and European human-like reassortant swine H1N2 viruses in na?ve pigs and in pigs previously infected with Mhp. Six groups of SPF pigs were inoculated intra-tracheally with either Mhp, or H1N1, or H1N2 or Mhp+H1N1 or Mhp+H1N2, both pathogens being inoculated at 21 days intervals in these two last groups. A mock-infected group was included. Although both SIV strains induced clinical signs when singly inoculated, results indicated that the H1N2 SIV was more pathogenic than the H1N1 virus, with an earlier shedding and a greater spread in lungs. Initial infection with Mhp before SIV inoculation increased flu clinical signs and pathogenesis (hyperthermia, loss of appetite, pneumonia lesions) due to the H1N1 virus but did not modify significantly outcomes of H1N2 infection. Thus, Mhp and SIV H1N1 appeared to act synergistically, whereas Mhp and SIV H1N2 would compete, as H1N2 infection led to the elimination of Mhp in lung diaphragmatic lobes. In conclusion, SIV would be a risk factor for the severity of respiratory disorders when associated with Mhp, depending on the viral subtype involved. This experimental model of coinfection with Mhp and avian-like swine H1N1 is a relevant tool for studying the pathogenesis of SIV-associated PRDC and testing intervention strategies for the control of the disease.  相似文献   

13.
为了解华南地区猪群中猪流感病毒(SIV)的流行及其遗传变异情况,本研究从2016年~2017年广东、广西等地猪群236份猪肺脏病料组织和143份鼻拭子样品中分离鉴定得到3株SIV,全基因组测序和遗传演化分析结果显示,3个分离株均属于H1N1亚型欧亚类禽分支SIV,并且均与pdm09分支病毒株发生了重组。HA蛋白分子特征分析结果显示,A/Swine/Guangxi/NK/2016 HA蛋白第23位糖基化位点发生了缺失。3265份血清样品抗体监测结果显示,欧亚类禽H1N1、pdm09 H1N1和H3N2 SIV的血清抗体阳性率分别为27.53%、20.98%和34.85%。另外,0.64%的(21份)血清样品为H9N2亚型流感病毒抗体阳性,并且猪群中不同亚型和不同分支SIV之间混合感染的情况非常普遍。猪群中流感病毒血清抗体监测结果显示,EA H1N1、pdm09和H3N2亚型SIV HI抗体滴度最高均可达到1:1280,而H9N2亚型HI抗体滴度最高为1:160,表明H9N2 AIV虽然可以感染猪,但对猪还不适应。各月份的血清抗体阳性率分析显示,SIV的流行具有季节性,冬季(11月、12月和1月份)的流行最为严重。本研究可为华南地区猪群SI防控及疫苗株的筛选提供参考依据。  相似文献   

14.
OBJECTIVE: To examine clinical signs, virus infection and shedding, and transmission of swine influenza virus (SIV) subtype H1N2 among seropositive pigs. ANIMALS: Eighteen 3-week-old pigs with maternal antibodies against SIV subtypes H1N1, H3N2, and H1N2. PROCEDURE: Ten pigs (principal) were inoculated intranasally with subtype H1N2 and 2 groups of contact pigs (n = 4) each were mixed with principal pigs on day 7 (group 1) or 28 (group 2). Two principal pigs each were necropsied on days 4, 14, 21, 28, and 42 days after inoculation. Four pigs in each contact group were necropsied 35 and 14 days after contact. Virus excretion was evaluated after inoculation or contact. Lung lesions and the presence of SIV in various tissues were examined. RESULTS: Mild coughing and increased rectal temperature were observed in principal pigs but not in contact pigs. Nasal virus shedding was detected in all principal pigs from day 2 for 3 to 5 days, in group 1 pigs from day 2 for 4 to 9 days after contact, and in group 2 pigs from day 4 for 2 to 6 days after contact. Trachea, lung, and lymph node specimens from infected pigs contained virus. Antibody titers against all 3 subtypes in all pigs gradually decreased. CONCLUSIONS AND CLINICAL RELEVANCE: Protection from viral infection and shedding was not observed in pigs with maternal antibodies, but clinical disease did not develop. Vaccination programs and good management practices should be considered for control of SIV subtype H1N2 infection on swine farms.  相似文献   

15.
An enzyme-linked immunosorbent assay (ELISA) was developed for detection and quantification of serum antibodies to transmissible gastroenteritis virus (TGEV) in swine. Sera from pigs inoculated with cell culture-origin TGEV or gut-origin TGEV were tested for anti-TGEV antibody by ELISA and by serum virus-neutralization test (NT). The ELISA detected antibody 3 days (av) sooner than did the NT when sera from pigs inoculated with cell culture-origin TGEV were tested and 1 day sooner than did the NT when sera from pigs inoculated with gut-origin TGEV were tested. The ELISA appeared to be more sensitive than the NT, since ELISA was more responsive to low-level antibody and ELISA titers exceeded NT titers.  相似文献   

16.
This study investigated the efficacy of a bivalent swine influenza virus (SIV) vaccine in piglets challenged with a heterologous H1N1 SIV isolate. The ability of maternally derived antibodies (MDA) to provide protection against a heterologous challenge and the impact MDA have on vaccine efficacy were also evaluated. Forty-eight MDA(+) pigs and 48 MDA(-) pigs were assigned to 8 different groups. Vaccinated pigs received two doses of a bivalent SIV vaccine at 3 and 5 weeks of age. The infected pigs were challenged at 7 weeks of age with an H1N1 SIV strain heterologous to the H1N1 vaccine strain. Clinical signs, rectal temperature, macroscopic and microscopic lesions, virus excretion, serum and local antibody responses, and influenza-specific T-cell responses were measured. The bivalent SIV vaccine induced a high serum hemagglutination-inhibition (HI) antibody titer against the vaccine virus, but antibodies cross-reacted at a lower level to the challenge virus. This study determined that low serum HI antibodies to a challenge virus induced by vaccination with a heterologous virus provided protection demonstrated by clinical protection and reduced pneumonia and viral excretion. The vaccine was able to prime the local SIV-specific antibody response in the lower respiratory tract as well as inducing a systemic SIV-specific memory T-cell response. MDA alone were capable of suppressing fever subsequent to infection, but other parameters showed reduced protection against infection compared to vaccination. The presence of MDA at vaccination negatively impacted vaccine efficacy as fever and clinical signs were prolonged, and unexpectedly, SIV-induced pneumonia was increased compared to pigs vaccinated in the absence of MDA. MDA also suppressed the serum antibody response and the induction of SIV-specific memory T-cells following vaccination. The results of this study question the effectiveness of the current practice of generating increased MDA levels through sow vaccination in protecting piglets against disease.  相似文献   

17.
部分猪场H1和H3亚型猪流感的血清学调查   总被引:1,自引:0,他引:1  
为了解中国部分省市规模化猪场H1和H3亚型猪流感病毒的流行情况,采用血凝抑制试验对采集于广东、湖南、河南省12个市县28个规模化猪场的799份血清进行H1和H3亚型猪流感病毒的抗体检测。结果表明,H1亚型抗体阳性率在0~83.33%之间,猪抗体总阳性率为46.18%(369/799),猪场阳性率为89.29%(25/28)。H3亚型抗体阳性率在0~100.00%之间,猪抗体总阳性率为61.33%(490/799),猪场阳性率为85.71%(24/28)。广东、湖南和河南地区H1亚型抗体阳性率分别为48.91%、40.26%和50.67%,H3亚型抗体阳性率分别为58.55%、70.78%和78.67%。在被调查的上述3个地区的猪群中,H1和H3亚型猪流感病毒的感染较为普遍,其中H3亚型感染率高于H1亚型,且各地区猪流感病毒的流行情况存在地域性差异。  相似文献   

18.
Swine influenza virus is an economically important pathogen to the U.S. swine industry. New influenza subtypes and isolates within subtypes with different genetic and antigenic makeup have recently emerged in U.S. swineherds. As a result of the emergence of these new viruses, diagnosticians' ability to accurately diagnose influenza infection in pigs and develop appropriate vaccine strategies has become increasingly difficult. The current study compares the ability of subtype-specific commercial enzyme-linked immunosorbent assays (ELISA), hemagglutination inhibition (HI), and serum neutralization (SN) assays to detect antibodies elicited by multiple isolates within different subtypes of influenza virus. Pigs were infected with genetically and antigenically different isolates of the 3 major circulating subtypes within populations of swine (H1N1, H1N2, and H3N2). Serum was collected when all pigs within a group collectively reached HI reciprocal titers >or=160 against that group's homologous challenge virus. The antibody cross-reactivity of the sera between isolates was determined using ELISA, HI, and SN assays. In addition, the correlation between the 3 assays was determined. The assays differed in their ability to detect antibodies produced by the viruses used in the study. The results provide important information to diagnostic laboratories, veterinarians, and swine producers on the ability of 3 common serological assays used in identifying infection with influenza in pigs.  相似文献   

19.
广东部分地区H1和H3亚型猪流感抗体监测和病毒分离   总被引:2,自引:0,他引:2  
从广东省17个未免疫猪流感病毒(SIV)疫苗的规模化猪场和3个肉联厂的待屠宰猪群中采集2 155份血清样品,采用ELISA方法进行猪流感的血清学调查。结果发现,种猪和肉猪H1亚型猪流感抗体阳性率分别为39.6%(329/830)和37.6%(498/1325),H3亚型抗体阳性率分别为10.8%(90/830)和4.6%(61/1325),H1+H3阳性率分别为5.2%(43/830)和1.8%(25/1325)。从281份猪鼻拭样品和肺样品中分离并鉴定出5株猪流感病毒,其中H1N1亚型3株,H3N2亚型和H1N2亚型各1株。  相似文献   

20.
猪圆环病毒2型感染对猪瘟疫苗体液免疫应答的影响   总被引:3,自引:0,他引:3  
采用ELISA方法对单独接种猪瘟疫苗组(CSFV组,n=3)、PCV2感染且出现病毒血症后接种猪瘟疫苗组(PCV2/CSFV组,n=3)及PCV2感染同时接种猪瘟疫苗组(CSFV/PCV2组,n=3)不同时相血清中的猪瘟抗体进行检测;并对PCV2感染对照组(PCV2组)及PCV2/CSFV和CSFV/PCV2组血清中PCV2特异的抗体和核酸分别进行ELISA和PCR检测.结果表明,在接种后52 d CSFV组血清中抗体的阻断值显著高于CSFV/PCV2组(P<0.05);接种后42 d和52 d CSFV组平均抗体效价明显高于PCV2/CSFV和CSFV/PCV2组,其中在52 d CSFV组抗体阳性率这100%(3/3)而PCV2/CSFV和CSFV/PCV2在相应时相抗体阳性率仅为67%(2/3).结果提示PCV2感染可在一定程度上抑制猪瘟疫苗特异性的抗体反应.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号