首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: To evaluate changes in serum concentrations of biochemical markers of bone metabolism and insulin-like growth factor I (IGF-I) associated with treadmill exercise in young horses. ANIMALS: 12 two-year-old Thoroughbred mares. PROCEDURE: During a 20-week study period, 6 horses were exercised on a treadmill 3 times a week (exercise group) and 6 horses received walking exercise 6 days a week (controls). Serum concentrations or activity of biochemical markers and IGF-I were assessed biweekly. Bone mineral density and content of the first phalanx were measured by dual-energy X-ray absorbiometry (DEXA) on completion of the study. RESULTS: Compared with values in controls, bone mineral density and content were higher and serum concentrations of osteocalcin (a marker of bone formation) and the carboxy-terminal telopeptide of type I collagen (a marker of bone resorption; ICTP) were lower in exercised horses. Serum concentration and activity of the bone formation markers carboxy-terminal propeptide of type I collagen and bone-specific alkaline phosphatase (BAP) were not different between the 2 groups. Serum IGF-I concentration was lower in the exercise group, compared with control values; there was a significant correlation between change in IGF-I values and changes in osteocalcin, ICTP, and BAP values at the end of the study. CONCLUSIONS AND CLINICAL RELEVANCE: Treadmill exercise over 20 weeks induced adaptive changes in bones of 2-year-old Thoroughbreds; training appears to increase bone mineral density, thereby enhancing mechanical strength of bone, but decreases bone turnover. Results indicated an association between changes in serum IGF-I concentration and bone cell activity in horses.  相似文献   

2.
OBJECTIVE: To investigate the relationship between stage of estrous cycle and bone cell activity in Thoroughbreds. SAMPLE POPULATION: Blood samples collected from forty-seven 2-year-old Thoroughbred mares in training for racing. PROCEDURES: Blood samples were collected monthly (in April through September) from the mares. Stage of estrus was determined by assessing serum progesterone concentration. Bone cell activity was determined by measuring concentrations of 2 markers of bone formation (osteocalcin and the carboxy-terminal propeptide of type I collagen [PICP]) and a marker of bone resorption (the cross-linked carboxy-terminal telopeptide of type I collagen [ICTP]) in sera. RESULTS: When the relationship between stage of the estrous cycle and markers of bone cell activity was examined, serum concentrations of both osteocalcin and ICTP were significantly higher in mares that were in the luteal phase, compared with mares that were at other stages of the estrous cycle. Stage of estrus did not affect serum PICP concentration. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicate that bone cell activity in Thoroughbred mares fluctuates during the estrous cycle; serum concentrations of markers of bone formation and bone resorption are increased during the luteal phase. Further studies are required to determine whether these changes are of clinical importance and increase the risk of injury for mares in training during the breeding season. As in humans, stage of estrus must be considered as a source of uncontrollable variability in serum bone marker concentrations in horses.  相似文献   

3.
This study describes longitudinal changes in serum levels of biochemical markers of bone cell activity in a group of 24 thoroughbred foals from birth to 18 months of age. The markers of bone formation included the type I collagen carboxy-terminal propeptide (PICP), the bone-specific isoenzyme of alkaline phosphatase (BAP), and osteocalcin (OC). Levels of the cross-linked telopeptide of type I collagen (ICTP), a marker of bone resorption, and the N-terminal propeptide of type III collagen (PNIIIP), a marker of soft tissue turnover, were also measured. Levels of all markers fell significantly between birth and 18 months of age (70-80 per cent); this decrease being most marked between 0 and 6 months. However, a transient increase in levels of the markers then occurred between 6 and 14 months of age. The timing of this increase was specific for each parameter. ICTP and OC concentrations increased between October and December. PICP concentrations increased between December and April whereas the increase in PIIINP was coincident with the peak in weight gain between April and June. Changes in BAP concentration were less distinct at this time. Season was shown to have significant effects on the biochemical markers independent from the effect of age. Concentrations of all markers decreased with increasing body weight and at any given age heavier horses had lower marker levels. These results show that biochemical markers of bone cell activity and soft tissue turnover follow characteristic patterns of change in growing thoroughbreds influenced by age, season and bodyweight. The demonstration that the reference ranges for the biochemical markers change from month to month means that single samples from individuals are of little value for monitoring bone cell activity in growing thoroughbreds.  相似文献   

4.
OBJECTIVE: To determine whether plasma concentrations of bone turnover markers in growing Hanoverian foals are influenced by age, housing conditions, or osteochondrosis. ANIMALS: 165 healthy foals and 119 foals with osteochondrosis. PROCEDURES: Foals were allocated according to birth date and housing management into groups of early-born (born before March 31, 2001; n = 154 foals, 88 of which were healthy and 66 of which had osteochondrosis) and late-born (born after March 31, 2001; 130 foals, 77 of which were healthy and 53 of which had osteochondrosis) foals. Plasma osteocalcin and carboxyterminal propeptide of type I collagen concentrations were analyzed as markers of bone formation, and carboxyterminal telopeptide of type I collagen concentration was analyzed as a marker of bone resorption. Foals underwent radiographic evaluation to screen for osteochondrosis. RESULTS: Plasma concentrations of osteocalcin, carboxyterminal propeptide of type I collagen, and carboxyterminal telopeptide of type I collagen decreased with age, but these changes were more distinct in late-born foals than in early-born foals. Neither sex nor predisposition to develop osteochondrosis affected the pattern of bone marker changes in either group. CONCLUSIONS AND CLINICAL RELEVANCE: An age-related decrease in concentrations of bone markers was seen during the first 200 days of life. Changes in bone marker concentrations were similar for foals with osteochondrosis and healthy foals. The correlation between the decrease in bone marker concentration and date of birth indicates that there are differences in skeletal development between early- and late-born foals.  相似文献   

5.
OBJECTIVE: To evaluate a human assay for quantification of carboxy-terminal cross-linking telopeptide of type I collagen (CTX-I), assess the influence of age on plasma CTX-I concentration, investigate the relationship between plasma CTX-I and serum osteocalcin concentrations, and determine whether concentrations of plasma CTX-I or serum osteocalcin fluctuate in circadian manner in horses. HORSES: 75 clinically normal horses. PROCEDURE: Cross-reactivity between equine serum CTX-I and CTX-I antibodies in an automated electrochemiluminescent sandwich antibody assay (ECLIA) was evaluated via a specificity test (ie, dilution test) and recovery calculation. Serum osteocalcin concentration was measured with an equine-specific osteocalcin radioimmunoassay. To analyze diurnal variations in plasma CTX-I and serum osteocalcin concentrations, blood samples were obtained hourly during a 24-hour period. RESULTS: Results of the dilution test indicated good correlation (r > 0.99) between expected serum CTX-I concentrations and measured serum CTX-I concentrations. The calculated CTX-I recovery was 97.6% to 109.9%. Plasma CTX-I and serum osteocalcin concentrations were correlated. Plasma CTX-I concentration was inversely correlated with age of the horse. No significant circadian variations in plasma CTX-I and serum osteocalcin concentrations were detected. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that the fully automated CTX-I ECLIA can be used for evaluation of plasma and serum samples from horses and may be a useful tool to monitor bone metabolism changes. Horses in this study did not have notable diurnal fluctuations in serum osteocalcin and plasma CTX-I concentrations.  相似文献   

6.
In this study, blood-borne biochemical markers were used to track comparative rates of bone turnover in horses fed differing amounts of Ca, P and Mg. Bone turnover was tracked by serum osteocalcin; bone resorption by the carboxyterminal telopeptide of type I collagen (ICTP); and bone formation by the carboxyterminal propeptide of type I procollagen (PICP). Twenty-one longyearling Quarter Horses were blocked by gender and age, randomly assigned to one of four diets and subjected to 128 d of race training. The study was conducted in 32-d periods, each consisting of 28 d of race training followed by a 4-d fecal and urine collection, or a 4-d rest period. Blood samples were taken weekly during the training period. Serum and plasma samples were analyzed for biochemical markers of bone activity using RIA procedures. Onset of training resulted in elevated blood concentrations of ICTP, PICP and osteocalcin. Concentrations of ICTP and PICP were greater during the first 64 d of training, indicating increased bone activity during the first half of the training period. Horses with the greatest intake of minerals exhibited greater concentrations of PICP (bone formation marker) and lesser concentrations of ICTP (bone breakdown marker). Further, ICTP, PICP and osteocalcin concentrations decreased dramatically following 4-d of confinement and relative inactivity. Therefore it appears that feeding minerals at levels greater than current NRC recommendations provided a protective effect on the developing skeleton of the young racehorse. Additionally, the biochemical markers used in this study were sensitive enough to track daily changes in bone activity resulting from daily changes in stress to the skeleton.  相似文献   

7.
8.
The first aim of this study was to establish a profile of age-related normal serum concentrations of osteocalcin (OC) in Ardenner horses. For this first part, blood samples from 49 healthy Ardenner horses were collected. The second aim was to study two biochemical markers of bone metabolism, OC and a carboxy-terminal cross-linking telopeptide of type I collagen (CTX-I), in 30 young Ardenner horses during 1 year. Amongst them, 17 showed lesions of juvenile degenerative joint disease in the distal forelimbs. A specific radioimmunoassay for equine OC was used to measure the serum concentration of the marker. The serum concentration of CTX-I was measured using a commercially available human assay validated for use in the horse. The effect of age, sex, season and health status (with or without lesions) was assessed. Levels of OC fall between birth and the adult stage: this decrease being most marked between birth and 1 year of age. This age-related decrease of OC was confirmed in the 30 young Ardenner horses, but CTX-I levels remained constant in this group. The Levels of the two markers changed significantly with the season with higher concentrations during the winter. No significant difference was shown either between the two sexes or between the two health statuses.  相似文献   

9.
Bone responds to exercise with changes in bone (re-)modelling, which might be monitored non-invasively with biochemical bone markers. The aim of this study was to evaluate the influence of exercise on serum osteocalcin and serum carboxy-terminal cross-linked telopeptide of type I collagen generated by matrix metalloproteinases (CTX-MMP) concentration in young racehorses. Seventy-one 2 to 4-year-old Thoroughbreds were included in this prospective infield study. Blood sampling was performed six times (i.e. six sampling cycles) during a 9-month period. Serum samples were analysed with commercial osteocalcin and CTX-MMP radioimmunoassays. Two-year-old racehorses had higher serum osteocalcin and CTX-MMP values than 3-year-old horses. Gender and training amplitude did not significantly influence serum osteocalcin and CTX-MMP values. Two-year-old horses showed an increase in osteocalcin values between cycles 2 and 3 and an increase in serum CTX-MMP values between cycles 1 and 2. Serum osteocalcin and CTX-MMP concentrations decreased between cycles 4 and 5, and 5 and 6. Three-year-old horses showed an increase in serum osteocalcin levels between cycles 3 and 4 and an increase in serum CTX-MMP concentrations between cycles 1 and 2, and 3 and 4. Serum osteocalcin levels decreased between cycles 5 and 6, whereas serum CTX-MMP levels decreased between cycles 4 and 5, and 5 and 6. Two- and three-year-old horses showed a decreased osteocalcin/CTX-MMP ratio between cycles 1 and 2. Moreover, 2-year-old horses showed an increase in the osteocalcin/CTX-MMP ratio between cycles 2 and 3. Sore shin formation did not significantly influence serum osteocalcin and CTX-MMP values. Serum osteocalcin and CTX-MMP are promising bone markers for monitoring exercise induced changes in equine bone metabolism.  相似文献   

10.
REASONS FOR PERFORMING STUDY: Dorsal metacarpal disease (DMD) is a common problem in 2-year-old racehorses and results in loss of a significant number of days from training. Biochemical markers of bone cell activity measured early in the training season could have value for identifying 2-year-old Thoroughbred racehorses that develop DMD. OBJECTIVES: To determine the association between serum concentrations of osteocalcin, the carboxyterminal propeptide of type I collagen (PICP) and the carboxyterminal cross-linked telopeptide of type I collagen (ICTP) measured early in the training season and the risk of DMD. METHODS: Blood samples were collected from 165 two-year-old Thoroughbreds during late November/early December. Osteocalcin and PICP were measured as markers of bone formation, and ICTP as a marker of bone resorption. Training and veterinary records for each horse were monitored over the following training/racing season (10 months). Cases were defined as an episode where signs of DMD were sufficiently severe for a horse to miss at least 5 consecutive days of training. Classification tree and logistic regression analysis were used to identify the most important factors suitable for prediction of DMD risk. RESULTS: There were 24 cases of DMD during the season (14.6% cumulative incidence), with an average time to recognition of approximately 6 months (May). The earliest recognised case was in February and the latest in September. Osteocalcin and ICTP concentrations in the early stages of the training season were significantly higher in horses that subsequently developed DMD (P = 0.017 and 0.019, respectively). DMD cases were also significantly older compared to noncases (21.04 vs. 20.44 months, P = 0.023). Using a multivariable logistic regression model, it was possible to postulate a set of diagnostic rules to predict the likelihood of DMD injury during the season. This suggested that horses with ICTP concentrations above 12365 ug/l and older than 20.5 months are 2.6 times more likely to develop DMD. CONCLUSIONS: The measurement of the bone resorption marker ICTP could be useful for identification of 2-year-olds at increased risk of developing DMD. POTENTIAL RELEVANCE: These findings, together with other strategies such as modification of training regimens, e.g. early introduction of short distances of high-speed exercise into the training programme, could help reduce the days lost to training as a result of DMD.  相似文献   

11.
Biochemical markers of bone turnover have been shown to be useful as inexpensive and noninvasive tools for monitoring skeletal health. The reference range for bone markers in dogs has been set by different age groups. However, other sources of biological variations were not fully investigated in dogs. To explore whether sex influences the interpretation of bone marker data we examined serum bone markers in 33 male and 25 female dogs. The bone markers selected for this study were: bone alkaline phosphatase (BALP) and osteocalcin (OC) as indicators of bone formation, and C-terminal telopeptide (CTx) of type I collagen as marker of bone resorption. All concentrations of bone markers were lower, but still within the reference range reported for dogs. We found statistically significant differences of the median OC and CTx serum concentrations between males and females. The results of this study suggest that there are sex differences in biochemical markers of bone turnover in dogs which should be considered in interpretation of bone marker data.  相似文献   

12.
OBJECTIVE: To determine whether serum concentrations of biomarkers of skeletal metabolism can, in conjunction with radiographic evaluation, indicate severity of osteochondrosis in developing horses. ANIMALS: 43 Dutch Warmblood foals with varying severity of osteochondrosis. PROCEDURE: 24 foals were monitored for 5 months and 19 foals were monitored for 11 months. Monthly radiographs of femoropatellar-femorotibial and tibio-tarsal joints were graded for osteochondral abnormalities. Serial blood samples were assayed for 8 cartilage and bone biomarkers. At the end of the monitoring period, foals were examined for macroscopic osteochondrosis lesions. RESULTS: Temporal relationships were evident between certain serum biomarkers and osteochondrosis severity in foals during their first year. Biomarkers of collagen degradation (collagenase-generated neoepitopes of type-II collagen fragments, type-I and -II collagen fragments [COL2-3/4C(short)], and cross-linked telopeptide fragments of type-I collagen) and bone mineralization (osteocalcin) were positive indicators of osteochondrosis severity at 5 months of age. In foals with lesions at 11 months of age, osteochondrosis severity correlated negatively with COL2-3/4C(short) and osteocalcin and positively with C-propeptide of type-II procollagen (CPII), a collagen synthesis marker. Radiographic grading of osteochondrosis lesions significantly correlated with macroscopic osteochondrosis severity score at both ages and was strongest when combined with osteocalcin at 5 months and CPII at 11 months. CONCLUSIONS AND CLINICAL RELEVANCE: The ability of serum biomarkers to indicate osteochondrosis severity appears to depend on stage of disease and is strengthened with radiography. In older foals with more permanent lesions, osteochondrosis severity is significantly related to biomarker concentrations of decreased bone formation and increased cartilage synthesis.  相似文献   

13.
Serum and urinary markers of bone turnover may be of value in animals as noninvasive tools for determining the response of the skeleton to disease and injury. Although normal values for bone markers have been reported for the Beagle, concerns remain that breed to breed differences will complicate the interpretation of bone marker data in dogs. To explore this, we examined serum bone markers in two breeds of vastly different size, Pomeranians and Irish Wolfhounds. Our hypothesis was that serum concentrations of bone markers are similar in toy and giant dog breeds and fall within the same range as those reported for Beagles. Bone alkaline phosphatase (BALP) and carboxy-terminal telopeptide of type I collagen (ICTP), respectively markers of bone formation and bone resorption, were measured in age matched Pomeranians (n=14) and Irish Wolfhounds (n=14). No statistically significant differences between the mean BALP and mean ICTP serum concentrations from Pomeranians and Irish Wolfhounds were found. All BALP and ICTP concentrations were within the reference range reported for Beagles. The results of this study suggest that serum BALP and ICTP concentrations in giant and toy breeds are the same as in Beagles and that these assays may be used for dogs of all sizes.  相似文献   

14.
Serum markers of bone metabolism were analyzed in Arabian horses from birth through 2 yr. The marker of bone formation utilized was osteocalcin (OC), and the marker for degradation was carboxy-terminal pyridinoline cross-linked telopeptide region of type I collagen (ICTP). Blood samples were taken via jugular venipuncture the day of birth, d 15, d 30, d 45, d 60, and every 30 d thereafter through d 720. Serum was obtained and analyzed for OC and ICTP. Osteocalcin concentrations increased immediately after birth, were variable, and returned to baseline by d 300. By d 330, concentrations of OC began to decrease from d 0 and stayed at this lower concentration through d 510. From d 540 through 720, OC concentrations were similar to baseline. A decrease from baseline (d 0) in ICTP concentrations was seen on d 60, and ICTP continued to decline in concentration through d 720. Therefore, concentrations of OC and ICTP decreased over time as previously reported, and this study characterizes those changes on a monthly basis. Variability and general concentrations for OC and ICTP obtained in this study will provide valuable information for future experimental design and use of these markers in young horses and will aid researchers in determining treatment effects without being confounded by changes in concentrations caused by growth.  相似文献   

15.
Sixteen Quarter Horse-type geldings were used to examine the response of biochemical markers of bone metabolism to forced exercise prior to and during race training. The study began when the average age of the horses was 15 months. Horses were exercised on a high-speed treadmill for 14 weeks, and were subsequently placed into race training. Serum was collected and assayed for concentrations of osteocalcin (BGP), the carboxyterminal telopeptide of type I collagen (ICTP) and the carboxyterminal propeptide of type I procollagen (PICP). When data were normalized from the onset of race training, ICTP and PICP concentrations were higher in the pre-exercised horses (P<.05 and P<.1, respectively) indicating higher rates of bone turnover. Overall, bone turnover appeared to be decreased during race training, as concentrations of PICP and ICTP were lower when compared to values seen during the pre-training Phase.  相似文献   

16.
OBJECTIVE: To evaluate diurnal variation in concentrations of selected markers of bone metabolism in dogs. ANIMALS: Ten 3- to 4-year-old ovariectomized Beagles. PROCEDURE: Blood and urine samples were obtained in the morning before dogs were fed (8 AM) and then at 2-hour intervals for 24 hours. This procedure was repeated 2 weeks later. Concentrations of osteocalcin (OC) and carboxy terminal telopeptide of type-I collagen (ICTP) were measured in serum, using a radioimmunoassay; concentrations of hydroxyproline (HYP), pyridinoline (PYD), and deoxypyridinoline (DPD) were analyzed in urine. Hydroxyproline concentration was measured by means of a colorimetric test, whereas PYD and DPD concentrations were quantified by use of high-performance liquid chromatography. RESULTS: In both parts of the study, HYP concentrations increased significantly, compared with values before feeding, until 8 hours after feeding; HYP concentrations then returned to prefeeding values. Concentrations of DPD and PYD decreased from before feeding until 2 PM and then increased until 8 PM. The ICTP concentrations slowly decreased until 4 PM but returned to prefeeding values thereafter. In both parts of the study, concentrations of OC decreased during the day and then increased to reach values similar to those obtained before feeding. CONCLUSIONS: Changes in the concentrations of bone markers were detected throughout the day in the dogs of this study. Increase in HYP concentration most likely was related to feeding. As documented for bone resorption and formation in other species, circadian rhythms were evident for concentrations of DPD, PYD, and OC. Investigators should consider the time of sample collection when measuring these markers.  相似文献   

17.
The aim of the present study was to determine the efficacy of the bone markers osteocalcin (OC) and carboxyterminal cross-linked telopeptide of type-I collagen (ICTP) in evaluating new bone formation in the dog, using commercially available immunoassay kits. Dogs were randomly divided into three groups and a circular external skeletal fixation system (CESF) was mounted on the tibia. In the first group a distraction osteogenesis procedure of the crus was performed. The second group received an osteotomy without crural lengthening, whereas the third group served as a sham-operated control. Bone formation was assessed using densitometric image analysis of crural radiographs. Despite significant differences in the amount of newly formed bone, this finding was not reflected in the plasma levels of OC and ICTP. In conclusion, OC and ICTP were not efficacious as markers of bone formation and resorption during osteogenesis in this canine model.  相似文献   

18.
This study examined the effect of supplementation of a bioavailable source of silicon (sodium zeolite A) on altering systemic markers of bone metabolism in horses. Twenty yearlings (ten Quarter Horses and ten Arabians) were randomly grouped as silicon (Si) supplemented (S; n=10), in which yearlings consumed 2% of the total diet as a Si-containing supplement, and a second non-supplemented control group (C; n=10). Blood samples were taken on days 0, 15, 30 and 45. Both plasma and serum were collected; the plasma was analyzed for Si concentrations and serum was analyzed for osteocalcin (OC), carboxy-terminal pyridinoline cross-linked telopeptide region of type I collagen (ICTP), and pyridinoline and deoxypyridinoline crosslinks (PYD). Supplemented yearlings had higher plasma Si concentrations than C yearlings by day 15, and remained higher than C yearlings on days 30 and 45 (P < 0.0001 for all days). There were no differences between treatment groups for OC or PYD concentrations (P > .05); however, ICTP concentrations were lower in S yearlings on day 45 when compared to C yearlings (P = .04). Results indicate that sodium zeolite A supplementation (consumed at 2% of the total diet) increases plasma Si concentrations. Furthermore, results indicate that Si-supplemented yearlings may have decreased bone resorption, which may provide for greater net bone formations, as OC concentrations were not different between groups. Unfortunately, systemic markers give no indication as to the quality of the bone that may be formed, and further research in the area of Si supplementation, bone metabolism and bone strength is required to establish conclusive evidence as to the benefits of supplemental Si to the skeletal system.  相似文献   

19.
This study tested whether the supplement (Aquacid), high in calcium and other minerals, can alter markers of bone metabolism and mineralization of the equine third metacarpus bone. Radiographs were taken of the left third metacarpus of 14 yearlings. Radiographic bone aluminum equivalence (RBAE) of each cortex was calculated to estimate mineral content. Blood samples were also taken at this time. Horses were ranked according to RBAE and gender, were pair-matched, and randomly assigned to two treatment groups. Each group was provided one of two mineral supplements in addition to their normal diet. The treated group (Aq) received 75 g Aquacid/horse/d, which provided an additional 15 g of calcium. The control group (Co) received 39.5 g of limestone to provide similar amounts of calcium. The study lasted for 112 days, with blood being taken every 28 days. At day 56 and 112, additional radiographs was taken to track changes in RBAE. Blood was analyzed for osteocalcin (a bone formation marker) and serum C-telopeptide crosslaps of type I collagen (a bone resorption marker) to detect alterations in bone metabolism. Using day 0 values as a covariate for bone markers, there was a trend (P = .07) for osteocalcin concentrations to be greater in Aq horses than in Co. Likewise, C-telopeptide crosslaps of type I collagen concentrations were greater (P < .0001) in Aq horses than in Co. There were minimal differences in RBAE values. These findings suggest Aquacid, while not altering bone mass, increases bone turnover and may aid in repairing damaged bone and preventing injuries.  相似文献   

20.
The primary objective of this research was to determine the effect of supplemental dietary silicon (Si) on plasma and milk Si concentrations of lactating mares and the subsequent effect on plasma Si concentrations in nursing foals. Additionally, the role of Si on altering biochemical markers of bone turnover was investigated, because supplemental Si may be advantageous in enhancing bone health. Twelve Arabian mare/foal units were pair-matched by foaling date and randomly assigned to two groups, Si-supplemented (Supplemented) or control (Control). Blood and milk samples were taken on d 0, 15, 30, and 45, d 0 being the 1st d after parturition. Plasma and milk (or colostrum) Si concentrations were determined and serum was analyzed for osteocalcin, carboxy-terminal pyridinoline cross-linked telopeptide region of type I collagen, and pyridinoline and deoxypyridinoline crosslinks. All Supplemented mares had higher (P < 0.01) plasma Si concentrations than Control by d 30, and Supplemented mares' milk had higher (P < 0.01) Si concentrations on d 45 than Control mares' milk. By d 45, foals of Supplemented mares had higher (P < 0.01) plasma Si concentrations than foals of Control mares. Supplemental Si did not influence (P > 0.36) bone metabolism in foals; however, trends (P < 0.10) for altered bone metabolism were observed in postpartum mares. Results indicate that supplemental Si increases plasma and milk Si concentrations. Further research is required to determine whether Si has a role in altering serum biochemical markers of bone and collagen activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号