首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: To determine whether pasture, and specifically the addition of fructan carbohydrate to the diet, induces exaggerated changes in serum insulin concentration in laminitispredisposed (LP) ponies, compared with ponies with no history of the condition, and also to determine insulin responses to the dexamethasone suppression test. DESIGN: Prospective study. ANIMALS: 10 LP and 11 control adult nonobese mixed-breed ponies. PROCEDURES: Insulin-modified IV glucose tolerance tests were performed (5 ponies/group). In diet studies, ponies were kept on pasture and then changed to a hay diet (10 ponies/group). Second, ponies were maintained on a basal hay diet (4 weeks) before being fed a hay diet supplemented with inulin (3 g/kg/d [1.4 g/lb/d]). Serum insulin and plasma glucose concentrations were analyzed before and after dietary changes. Serum cortisol and insulin concentrations were also measured in a standard dexamethasone suppression test. RESULTS: The LP ponies were insulin resistant (median insulin sensitivity of 0.27 x 10(4) L min(-1) mU(-1) in LP ponies, compared with 0.64 x 10(4) L min(-1) mU(-1) in control ponies). Median insulin concentration in LP ponies was significantly greater than that in control ponies at pasture, decreased in response to feeding hay, and was markedly increased (5.5-fold) following the feeding of inulin with hay. The LP ponies had a greater increase in serum insulin concentration at 19 hours after dexamethasone administration (median, 222.9 mU/L), compared with control ponies (45.6 mU/L). CONCLUSIONS AND CLINICAL RELEVANCE: Nonobese ponies predisposed to develop laminitis had compensated insulin resistance, and this phenotype was revealed by feeding plant fructan carbohydrate or by dexamethasone administration.  相似文献   

2.
Hyperlipemia in horses is a disorder of lipid metabolism peculiar to ponies. This study reports changes of blood biochemical values from the acute to the postconvalescent phases in 3 Shetland ponies with hyperlipemia in Japan. Diseased ponies (all 7 to 9 years old, in late pregnancy, and obese) were fed in the same farm. The periods of their hospitalizations ranged from 30 to 45 days. Twelve well-conditioned ponies (3 to 13 years old) around parturition were used to establish baseline values for blood test results. Main clinical findings in the affected ponies were depression, dysphagia, anorexia, ventral edema and milky-appearing plasma. Hypertriglyceridemia (40- to 70-fold rise of controls) was found in the acute phase of the disease in the affected ponies, and was derived from increased very-low density lipoproteins. Aspartate transaminase and gamma-glutamyl transpeptidase activities, blood urea nitrogen, and creatinin concentrations were increased in acute ponies compared to controls, suggesting impairment of liver and kidney functions. However, these values gradually recovered until the end of postconvalescent phase. Hyperinsulinemia was observed in the acute phase of the hyperlipemia of all affected ponies. And an exaggerated insulin response to intravenous glucose was observed in the 2 ponies given intravenous glucose tolerance tests. These findings suggest decreased insulin sensitivity in hyperlipemic ponies.  相似文献   

3.
A high basal plasma or serum insulin concentration is commonly accepted as an indicator of Cushing's disease in horses. The results of the combined dexamethasone suppression test and thyrotropin-releasing hormone stimulation test were compared with the basal insulin concentrations and insulin response tests of eight hyperinsulinaemic and insulin-resistant ponies with clinical histories of chronic or recurrent laminitis that were suspected of having Cushing's disease. Seven of the eight ponies had normal responses to the combined test indicating that basal insulin concentrations are not a specific indicator of the disease.  相似文献   

4.
Ten hyperinsulinaemic ponies divided into conditioned (N = 5) and rested (N = 5) groups were evaluated for their insulin and glucose response following oral glucose administration at Weeks 0, 2, 4, and 6. All ponies received a controlled intake of a pelleted ration during the study. In both groups body weight had decreased from baseline by Week 4 and remained low. After 2 weeks of exercise, ponies in the conditioned group had significantly decreased insulin and glucose indices, including peak insulin response, area under the insulin curve from 0 to 210 min (TIS), and the TIS value: area under the glucose curve from 0 to 210 min. By Week 4 of conditioning, although the insulin and glucose indices continued to decrease in the exercised ponies, there was no significant difference between the groups. Over the first 6 weeks of the study all ponies improved their insulin sensitivity accompanied by a loss of body weight. The conditioned ponies were further evaluated during deconditioning at Weeks 8, 10 and 12. The improved insulin sensitivity was maintained during deconditioning.  相似文献   

5.
OBJECTIVE: To determine effects of dexamethasone on glucose dynamics and insulin sensitivity in healthy horses. ANIMALS: 6 adult Standardbreds. PROCEDURES: In a balanced crossover study, horses received dexamethasone (0.08 mg/ kg, IV, q 48 h) or an equivalent volume of saline (0.9% NaCl) solution (control treatment) during a 21-day period. Horses underwent a 3-hour frequently sampled IV glucose tolerance test (FSIGT) 2 days after treatment. Minimal model analysis of glucose and insulin data from FSIGTs were used to estimate insulin sensitivity (Si), glucose effectiveness (Sg), acute insulin response to glucose (AIRg), and disposition index. Proxies for Si (reciprocal of the inverse square of basal insulin concentration [RISQI]) and beta-cell responsiveness (modified insulin-to-glucose ratio [MIRG]) were calculated from basal plasma glucose and serum insulin concentrations. RESULTS: Mean serum insulin concentration was significantly higher in dexamethasone-treated horses than control horses on days 7, 14, and 21. Similarly, mean plasma glucose concentration was higher in dexamethasone-treated horses on days 7, 14, and 21; this value differed significantly on day 14 but not on days 7 or 21. Minimal model analysis of FSIGT data revealed a significant decrease in Si and a significant increase in AIRg after dexamethasone treatment, with no change in Sg or disposition index. Mean RISQI was significantly lower, whereas MIRG was higher, in dexamethasone-treated horses than control horses on days 7, 14, and 21. CONCLUSIONS AND CLINICAL RELEVANCE: The study revealed marked insulin resistance in healthy horses after 21 days of dexamethasone administration. Because insulin resistance has been associated with a predisposition to laminitis, a glucocorticoid-induced decrease in insulin sensitivity may increase risk for development of laminitis in some horses and ponies.  相似文献   

6.
Two Atlantic bottlenose dolphins (Tursiops truncatus) were given 0.11 mg/kg dexamethasone p.o., and complete blood count and serum chemistry analyses, including insulin, thyroxine (T4) adrenocorticotrophic hormone (ACTH), and cortisol level determinations, were performed at 0 hr, 24 hr, 36 hr, 48 hr, 7 days, and 17 days. Significant changes included neutrophilia, eosinopenia, lymphopenia, elevated insulin, and depressed ACTH and cortisol levels within 24 hr of dexamethasone administration. These effects were rapid, and values returned to normal within 48 hr.  相似文献   

7.
OBJECTIVE: To evaluate genetic and metabolic predispositions and nutritional risk factors for development of pasture-associated laminitis in ponies. DESIGN: Observational cohort study. ANIMALS: 160 ponies. PROCEDURES: A previous diagnosis of laminitis was used to differentiate 54 ponies (PL group) from 106 nonlaminitic ponies (NL group). Pedigree analysis was used to determine a mode of inheritance for ponies with a previous diagnosis of laminitis. In early March, ponies were weighed and scored for body condition and basal venous blood samples were obtained. Plasma was analyzed for glucose, insulin, triglycerides, nonesterified fatty acids, and cortisol concentrations. Basal proxies for insulin sensitivity (reciprocal of the square root of insulin [RISQI]) and insulin secretory response (modified insulin-to-glucose ratio [MIRG]) were calculated. Observations were repeated in May, when some ponies had signs of clinical laminitis. RESULTS: A previous diagnosis of laminitis was consistent with the expected inheritance of a dominant major gene or genes with reduced penetrance. A prelaminitic metabolic profile was defined on the basis of body condition, plasma triglyceride concentration, RISQI, and MIRG. Meeting > or = 3 of these criteria differentiated PL- from NL-group ponies with a total predictive power of 78%. Determination of prelaminitic metabolic syndrome in March predicted 11 of 13 cases of clinical laminitis observed in May when pasture starch concentration was high. CONCLUSIONS AND CLINICAL RELEVANCE: Prelaminitic metabolic syndrome in apparently healthy ponies is comparable to metabolic syndromes in humans and is the first such set of risk factors to be supported by data in equids. Prelaminitic metabolic syndrome identifies ponies requiring special management, such as avoiding high starch intake that exacerbates insulin resistance.  相似文献   

8.
Cortisol, triiodothyronine (T3), thyroxine (T4), insulin, and glucose responses to thyrotropin-releasing hormone (TRH) were evaluated in 12 healthy, mature horses and in 7 horses and 4 ponies with clinical signs of pituitary adenoma (PA). Within 1 hour after TRH administration, the increase in T3 and T4 was similar in healthy horses and animals with PA. Plasma cortisol in the group with PA increased (P less than 0.05) within 0.25 hours after TRH administration, and remained increased for 1.5 hours. In the control group, a significant increase in plasma cortisol concentrations did not develop after TRH administration. Plasma glucose and insulin concentrations were higher in animals with PA than in the healthy horses throughout the experiment (6 hours).  相似文献   

9.
A case of pituitary dependent hyperadrenocorticism in a horse is reported. Clinical signs included hirsutism, polydipsia and general debility. The horse was persistently hyperglycaemic and glucose values were unchanged following subcutaneous administration of insulin. Resting cortisol values were normal, but dexamethasone suppression of cortisol concentration was shorter than normal. Plasma glucose, cortisol, insulin and glucagon concentrations were measured as part of an intravenous glucose tolerance test. The patient responses were different from those in a control pony.  相似文献   

10.
The plasma cortisol responses of 11 normal cats to intravenous dexamethasone at a dose rate of 0.01 mg kg-1 whole bodyweight, were evaluated. Mean plasma cortisol concentrations decreased significantly (P less than 0.01) at three hours and eight hours following dexamethasone administration. Results of this study indicate that plasma cortisol levels are significantly decreased for at least eight hours following low dose intravenous dexamethasone administration in normal cats.  相似文献   

11.
A 5-year-old female dog with hyperadrenocorticism was determined to have pituitary-dependent hyperadrenocorticism even though plasma cortisol concentrations were not suppressed after high-dosage dexamethasone administration. The diagnosis was based on a supranormal response of plasma cortisol to ACTH administration and a lack of suppression of plasma cortisol concentration after administration of 0.1 mg of dexamethasone/kg. Although a higher dosage of dexamethasone (1 mg/kg) did not cause suppression of plasma cortisol, plasma ACTH concentrations in the dog were increased above those in clinically normal dogs, supporting a diagnosis of pituitary-dependent hyperadrenocorticism. During treatment with mitotane, the dog became unconscious and died. Necropsy revealed a pituitary tumor that had compressed and displaced the hypothalamus. Although high-dosage dexamethasone suppression tests often are useful in the differential diagnosis of hyperadrenocorticism, a lack of suppression of plasma cortisol does not necessarily exclude pituitary-dependent hyperadrenocorticism.  相似文献   

12.
The suppressive effects of three different low dosages of dexamethasone (5, 10 and 15 micrograms kg-1) on serum cortisol concentrations were evaluated in 10 normal cats. On four different days, serum was collected before and at two, four, six and eight hours after the intravenous administration of saline or dexamethasone. Following the administration of saline, no significant difference in mean serum cortisol concentrations was noted between the basal or postinjection values. In contrast, mean serum cortisol concentrations decreased significantly (P less than 0.05) by two hours and remained significantly below mean basal values eight hours after injection of all three dosages of dexamethasone. The degree of cortisol suppression became progressively greater as the dosages of dexamethasone were increased. After administration of the highest dose of dexamethasone (15 micrograms kg-1), serum cortisol decreased to below 5 ng ml-1 by two to four hours and remained suppressed (under 5 ng ml-1) eight hours after injection in all cats. In contrast, two of the 10 cats showed a slight escape from cortisol suppression by eight hours after injection of dexamethasone at the dosage of 10 micrograms kg-1, whereas a dosage of 5 micrograms kg-1 failed to suppress cortisol concentrations below 10 ng ml-1 at any of the sampling times in one cat and was associated with increasing serum cortisol concentrations at eight hours after injection in three cats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The purpose of this study was to determine the effects of prolonged administration of insulin, whilst maintaining normal glucose concentrations, on hoof lamellar integrity in vivo on healthy ponies with no known history of laminitis or insulin resistance. Nine clinically healthy, unrelated ponies were randomly allocated to either a treatment group (n =5; 5.9+/-1.7 years) or control group (n =4; 7.0+/-2.8 years). The treatment group received insulin via a euglycaemic hyperinsulinaemic clamp technique modified and prolonged for up to 72 h. Control ponies were infused with an equivalent volume of 0.9% saline. Ponies were euthanized at the Obel grade 2 stage of clinical laminitis and hoof lamellar tissues were harvested and examined for histopathological evidence of laminitis. Basal serum insulin and blood glucose concentrations were 15.7+/-1.8 microU/mL and 5.2+/-0.1 mmol/L, respectively (mean+/-SE) and were not significantly different between groups. Mean serum insulin concentration in treatment ponies was 1036+/-55 microU/mL vs. 14.6 microU/mL in controls. All ponies in the treatment group developed clinical and histological laminitis (Obel grade 2) in all four feet within 72 h (55.4+/-5.5h), whereas none of the control ponies developed laminitis. There was no clinical evidence of gastrointestinal involvement and the ponies showed no signs of systemic illness throughout the experiment. The data show that laminitis can be induced in healthy young ponies, with no prior history of laminitis, by maintaining prolonged hyperinsulinaemia with euglycaemia. This suggests a role for insulin in the pathogenesis of laminitis, independent of hyperglycaemia, or alterations in hind-gut fermentation. For the clinician, early detection and control of hyperinsulinaemia may facilitate management of endocrinopathic laminitis.  相似文献   

14.
Changes in thyroxine (T4), triiodothyronine (T3), and cortisol during a combined adrenal (dexamethasone suppression/adrenocorticotrophic hormone response test) and thyroid function tests (thyroid-stimulating hormone [TSH] response test) were determined in 20 healthy hospitalized pet dogs. The effect of dexamethasone on T4 and T3 changes was evaluated during a simultaneous TSH response/dexamethasone suppression adrenocorticotrophic hormone response test. Greater ranges in basal cortisol concentrations and slower changes after dexamethasone was administered were observed in healthy pet dogs kenneled in a hospital setting than those reported for conditioned laboratory dogs. Pet dogs were observed to demonstrate cortisol suppression more reliably at 4 hours than at 2 hours after dexamethasone was administered. Dexamethasone had no effect on the response to TSH as assessed by T4 and T3 assays, thus supporting the validity of combining adrenal and thyroid response tests in a 5-hour period.  相似文献   

15.
Identification of ponies (Equus caballus) at increased risk of pasture-associated laminitis would aid in the prevention of the disease. Insulin resistance has been associated with laminitis and could be used to identify susceptible individuals. Insulin resistance may be diagnosed by feeding supplementary water-soluble carbohydrate (WSC) and measuring blood glucose and insulin concentrations. The aim of this study was to assess the glycemic and insulinemic responses of 7 normal (NP) and 5 previously laminitic (PLP), mixed breed, native UK ponies fed glucose, fructose, and inulin [1 g/(kg(.)d) for 3 d] or no supplementary WSC (control) in spring and fall after a 7-d adaptation to a pasture or hay diet. Blood samples were taken for 12 h after feeding on each day, and baseline and peak concentrations and area under the curve (AUC) for glucose and insulin were recorded. Linear mixed models were used for statistical analysis. Differences between PLP and NP groups were most marked after glucose feeding with differences in peak glucose (P = 0.02) and peak insulin (P = 0.016) concentrations. Season and diet adaptation also affected results. Peak concentrations of glucose and insulin occurred 2 to 4 h after WSC feeding. Peak insulin concentration was greater and more variable in fall, particularly in PLP adapted to fall pasture. Baseline glucose and insulin concentrations varied between individuals and with season and diet adaptation but were not greater in PLP than NP. Insulin AUC was greater in PLP than NP after feeding both glucose and fructose (P = 0.017), but there were no differences between PLP and NP in glucose AUC. Glycemic and insulinemic changes were less (P ≤ 0.05) after feeding fructose than glucose, although differences between PLP and NP were still evident. Minimal changes in glucose and insulin concentrations occurred after inulin feeding. Measurement of peak insulin 2 h after feeding of a single dose of glucose (1 g/kg) may be a simple and practical way to aid identification of laminitis-prone ponies before the onset of clinical disease, particularly when ponies are adapted to eating fall pasture.  相似文献   

16.
Glucose tolerance and insulin sensitivity in ponies and Standardbred horses   总被引:3,自引:0,他引:3  
The existence of an innate insulin insensitivity in ponies was investigated and compared with the situation in larger breeds of horse. Ponies that were fat or had previously suffered laminitis were found to be far more intolerant to oral glucose loading (1 g/kg bodyweight [bwt]) than normal ponies or Standardbreds. These ponies also exhibited a far greater response in plasma insulin levels after glucose loading. Insulin response tests (0.4 iu/kg bwt insulin intravenously) showed only a minimal and very protracted response in both the fat and laminitic groups. The relevance of these findings in regulation of carbohydrate and lipid metabolism, and their role in the pathogenesis of hyperlipaemia, are discussed.  相似文献   

17.
Sustained dexamethasone administration to horses results in insulin resistance, which may predispose them to laminitis. A single dose of dexamethasone is commonly used as a diagnostic aid, yet the effect of a single dose of dexamethasone on glucose homeostasis in horses is not well defined. The objective of this study was to characterize the change in glucose dynamics over time in response to a single dose of dexamethasone. A combined glucose-insulin tolerance test (CGIT) was performed on 6 adult geldings before and at 2, 24, and 72 h postdexamethasone (40 microg/kg of BW, i.v.); a minimum of 1 wk of rest was allowed between treatments. Before any treatment, the CGIT resulted in a hyperglycemic phase followed by a hypoglycemic phase. Dexamethasone affected glucose dynamics in 3 ways: 1) at 2 h, dexamethasone shortened the ascending branch of the negative phase (P < 0.001) of the test, indicating moderate insulin resistance; 2) at 24 h, dexamethasone impaired glucose clearance by extending the positive phase and eliminating the negative phase while insulin was elevated before the CGIT, indicating a decreased response to insulin; and 3) at 72 h, dexamethasone caused a deeper nadir value (P < 0.001) compared with predexamethasone, indicating an increased response to insulin. It was concluded that dexamethasone decreased the response to insulin as early as 2 h and maximally at 24 h. At 72 h, dexamethasone caused an increased response to insulin, which was unexpected.  相似文献   

18.
Endocrine and metabolic responses to anaesthesia with three different anaesthetic regimes were examined in six ponies. All animals were anaesthetised with each protocol: acepromazine-thiopentone-isoflurane, xylazine-ketamine- halothane and xylazine-ketamine-isoflurane. Anaesthesia was maintained for 2 h. Pulse rate, respiratory rate, arterial blood pressure, arterial blood gases and pharyngeal and skin temperature were measured and blood was withdrawn for glucose, lactate, cortisol, insulin, liver and muscle enzymes and total protein assay. Measurements were made before anaesthesia, at 20 min intervals during anaesthesia and at 20 mins and 2, 4, 6 and 24 h after anaesthesia. The effects of anaesthesia were similar in all groups. Arterial blood pressure decreased and oxygen tension and plasma cortisol concentration increased in all groups. Arterial carbon dioxide tension increased and respiratory rate and pH decreased in all ponies anaesthetised with isoflurane. There was a tendency for increased glucose and lactate concentrations and decreased insulin concentration and packed cell volume, particularly in the xylazine-ketamine groups. There was no change in pulse rate except for a transient increase at induction with thiopentone. The results were compared with data reported by Taylor (1989), which were collected from the same animals during acepromazine-thiopentone-halothane anaesthesia, and were found to be similar. It was concluded that these commonly used anaesthetic protocols themselves constitute a considerable insult or stressor in horses. However, the stress response to all the regimes investigated was similar and the precise stimulus to this response has yet to be elucidated.  相似文献   

19.
Nine Thoroughbred horses were assessed to determine the normal response of insulin, glucose, cortisol, plasma potassium (K) and erythrocyte K through conditioning and to exercise over 400 and 1,000 m. In addition, adrenaline, noradrenaline, cortisol, plasma K, erythrocyte K and L-lactate concentrations were evaluated in response to maximal exercise with and without the administration of acepromazine. Conditioning caused no obvious trends in plasma K, erythrocyte K, insulin or glucose concentration. Serum cortisol increased (P less than 0.05) from the initial sample at Week 1 to Weeks 4 and 5 (attributed to a response to training), and then decreased. During conditioning, three horses had low erythrocyte K concentrations (less than 89.3 mmol/litre). Further work is needed to define the significance of low erythrocyte K concentrations in the performance horse. In all tests maximal exercise increased plasma K, glucose and cortisol concentrations, whereas insulin and erythrocyte K concentrations decreased. Thirty minutes following exercise, plasma K and erythrocyte K concentrations returned to resting values; whereas glucose and cortisol concentrations continued to increase and the insulin concentration also was increased. The magnitude of the changes varied for pre-conditioned vs post-conditioned exercise tests and the duration of exercise. The administration of acepromazine prior to exercise over 1,000 m failed to alter the circulating noradrenaline and adrenaline concentrations in anticipation of exercise or 2 mins following exercise. Acepromazine administration, however, did cause lower L-lactate concentration 2 mins (P less than 0.03) and 30 mins (P less than or equal to 0.005) following exercise. Also, erythrocyte K showed a delayed return to baseline levels at 30 mins post exercise. Further evaluation of these trends may help explain the beneficial role acepromazine plays in limiting signs of exertional rhabdomyolysis when administered prior to exercise.  相似文献   

20.
Glucose was infused intravenously into six ponies during halothane anaesthesia, to evaluate its effect on their endocrine response to anaesthesia. The ponies were premedicated with acepromazine, and anaesthesia was induced with thiopentone and maintained with halothane in oxygen for two hours. Glucose was infused to maintain the plasma glucose concentration above 20 mmol/litre. Anaesthesia was associated with hypothermia, a decrease in haematocrit, hypotension, hyperoxaemia, respiratory acidosis and an increase in the plasma concentrations of lactate and arginine vasopressin. The concentration of beta-endorphin in plasma increased transiently after 20 minutes but there were no changes in concentrations of adrenocorticotrophic hormone, dynorphin, cortisol or catecholamines. These data suggest that the glucose infusion attenuated the normal adrenal response of ponies to halothane anaesthesia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号