首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Selective logging, fire suppression, forest succession and climatic changes have resulted in high fire hazards over large areas of the western USA. Federal and state hazardous fuel reduction programs have increased accordingly to reduce the risk, extent and severity of these events, particularly in the wildland–urban interface. In this study, we examined the effects of mechanical fuel reduction treatments on the activity of bark beetles in ponderosa pine, Pinus ponderosa Dougl ex. Laws., forests located in Arizona and California, USA. Treatments were applied in both late spring (April–May) and late summer (August–September) and included: (1) thinned biomass chipped and randomly dispersed within each 0.4 ha plot; (2) thinned biomass chipped, randomly dispersed within each plot and raked 2 m from the base of residual trees; (3) thinned biomass lopped-and-scattered (thinned trees cut into 1–2 m lengths) within each plot; (4) an untreated control. The mean percentage of residual trees attacked by bark beetles ranged from 2.0% (untreated control) to 30.2% (plots thinned in spring with all biomass chipped). A three-fold increase in the percentage of trees attacked by bark beetles was observed in chipped versus lopped-and-scattered plots. Bark beetle colonization of residual trees was higher during spring treatments, which corresponded with peak adult beetle flight periods as measured by funnel trap captures. Raking chips away from the base of residual trees did not significantly affect attack rates. Several bark beetle species were present including the roundheaded pine beetle, Dendroctonus adjunctus Blandford (AZ), western pine beetle, D. brevicomis LeConte (AZ and CA), mountain pine beetle, D. ponderosae Hopkins (CA), red turpentine beetle, D. valens LeConte (AZ and CA), Arizona fivespined ips, Ips lecontei Swaine (AZ), California fivespined ips, I. paraconfusus Lanier (CA) and pine engraver, I. pini (Say) (AZ). Dendroctonus valens was the most common bark beetle infesting residual trees. A significant correlation was found between the number of trees chipped per plot and the percentage of residual trees with D. valens attacks. A significantly higher percentage of residual trees was attacked by D. brevicomis in plots that were chipped in spring compared to the untreated control. In lopped-and-scattered treatments, engraver beetles produced substantial broods in logging debris, but few attacks were observed on standing trees. At present, no significant difference in tree mortality exists among treatments. A few trees appeared to have died solely from D. valens attacks, as no other scolytids were observed in the upper bole. In a laboratory study conducted to provide an explanation for the bark beetle responses observed in this study, monoterpene elution rates from chip piles declined sharply over time, but were relatively constant in lopped-and-piled treatments. The quantities of β-pinene, 3-carene, -pinene and myrcene eluting from chips exceeded those from lopped-and-piled slash during each of 15 sample periods. These laboratory results may, in part, explain the bark beetle response observed in chipping treatments. The implications of these results to sustainable forest management are discussed.  相似文献   

2.
We studied the bark beetle guild (Coleoptera: Scolytidae) in the ponderosa pine forests of northern Arizona to explore if the species assemblages and relative abundance differ between managed and unmanaged stands. Four stand conditions were assessed: (1) unmanaged stands with high tree density, (2) thinned stands, (3) thinned and burned (with prescribed fire) stands and (4) stands that had been burned by stand replacing wildfires. The study was conducted in the ponderosa pine forests of the Coconino Plateau, northern Arizona. For several decades this area has been relatively free of bark beetle outbreaks despite the current overstocked condition of many stands. We found that a similar species assemblage composed of Dendroctonus frontalis, D. brevicomis, D. valens, D. approximatus, D. ponderosae, and Ips pini occurred across all four stand conditions over 3 years of study. The population levels of all these species were endemic across all stand conditions. The non-aggressive D. approximatus and D. valens were indicator species for thinned and unmanaged stands, respectively, but this was not consistent among years. The ambrosia beetle Gnathotrichus sp. and the bark beetle predator Enoclerus sp. consistently indicated stands burned by wildfire. In addition to our field experiment, we analyzed the historical pattern of attacks of bark beetles in our area of study. Our findings suggest that the pattern of attack of D. brevicomis (the only Dendroctonus species for which attacks have been reported) and Ips spp. has been through scattered small infestations in groups of 1–10 trees. Whereas small infestations by Ips spp. are increasing, those for D. brevicomis are decreasing. Although we agree that the high density stands in northern Arizona are in an “unhealthy” condition, our results do not show that they were supporting large bark beetle outbreaks. Our results challenge the theoretical assumptions about the relationship between stand structure, tree resistance and bark beetle performance.  相似文献   

3.
Wildfires burned over 200,000 ha of forest lands in Florida from April to July 1998. This unique disturbance event provided a valuable opportunity to study the interactions of summer wildfires with the activity of pine feeding insects and their associates in the southeastern United States. We compared tree mortality with abundance of bark and ambrosia beetles, reproduction weevils and wood borers relative to fire severity. Over 27% of residual live trees in stands that experienced high fire severity died between October 1998 and May 1999. An additional 2–3% of trees that initially survived the fire died during the second year compared to <1% mortality in unburned stands. One year after the fire, more than 75% of the trees surviving in high fire severity stands had roots infected with one or more species of Leptographium and/or Graphium spp. and nearly 60% of the sampled roots were infected. No such fungi were recovered from roots of trees in unburned stands. Significantly, more root weevils, Hylobius pales and Pachylobius picovorus, were captured in unbaited pitfalls in the moderate and high fire severity stands than in the controls. Mean trap catches of Ips grandicollis, Dendroctonus terebrans and Hylastes salebrosus, three common bark beetles that feed on phloem tissue of pines, were lower in Lindgren traps in the fire-damaged areas than in the control stands. In contrast, catches of the ambrosia beetles, Xyleborus spp. and Monarthrum mali, were higher in burned stands than in control stands. The generalist predator, Temnochila virescens (Coleoptera: Trogositidae), showed a strong positive relationship between abundance and fire severity, while the flat bark beetle, Silvanus sp. (Coleoptera: Sylvanidae), exhibited the reverse trend. Our results show that most tree mortality occurred within 1 year of the fire. Ips or Dendroctonus bark beetle populations did not build up in dead and weakened trees and attack healthy trees in nearby areas. The prevalence of Leptographium spp. in roots may be a symptom of, or result in, weakened trees that may affect the trees’ susceptibility to bark beetles in the future.  相似文献   

4.
Summary Studies on the variability of galleries of pine bark beetles (Col., Ipidae) The variability of the galleries of bark beetles haven't been considered enough till now. Examples of anomalies are given and reduced to their causes. The great pine bast beetle,Myelophilus piniperda, builds the mother-gallery under the bark of stumps downwards instead of above. This can be fed back to the conditions of humidity in the stumps. The little pine bast beetle,Myelophilus minor, when attacking lying stems, often lays eggs only into the higher part of the gallery which is kept free from bore meal. Under the influence of different environment factors also other species of Hylesinini and Ipini show anomalies in building up their galleries.  相似文献   

5.
Between 1987 and 2000, a spruce beetle (Dendroctonus rufipennis) outbreak infested 1.19 million ha of spruce (Picea spp.) forests in Alaska, killing most of the large diameter trees. We evaluated whether these forests would recover to their pre-outbreak density, and determined the site conditions on which spruce germinated and survived following the spruce beetle outbreak in forests of the Anchor River watershed, Kenai Peninsula, Alaska. White spruce (Picea glauca) and Lutz's spruce (Picea × lutzii), a hybrid between white and Sitka spruce (Picea sitchensis), dominate the study area. We measured the pre- and post-outbreak density of spruce in 108 3 m × 80 m plots across the study area by recording all live trees and all dead trees >1.5 m tall in each plot. To determine the fine scale site conditions on which spruce germinated and survived, we measured ground surface and substrate characteristics within 20 cm circular plots around a subset of post-outbreak spruce seedlings. The density of post-outbreak spruce (855/ha) was adequate to restock the stands to their pre-outbreak densities (643/ha) for trees >1.5 m tall. We could not accurately estimate recovery for pre-outbreak spruce seedlings because dead seedlings may have decayed in the 5–18 years since the beetle outbreak occurred. At the fine scale, spruce that germinated post-outbreak grew on a wide variety of substrates including downed log, stump, mesic organic mat, peat, hummocks and mineral soil. They exhibited a strong preference for downed logs (53%) and stumps (4%), and most (91%) of the downed logs and stumps that spruce rooted on were heavily decayed. This preference for heavily decayed logs and stumps was especially evident given that their combined mean cover was only 2% in the 3 m × 80 m plots. Within the 3 m × 80 m plots, spruce seedling survival was negatively correlated with bluejoint (Calamagrostis canadensis) litter cover.  相似文献   

6.
Four treatments (control, burn-only, thin-only, and thin-and-burn) were evaluated for their effects on bark beetle-caused mortality in both the short-term (one to four years) and the long-term (seven years) in mixed-conifer forests in western Montana, USA. In addition to assessing bark beetle responses to these treatments, we also measured natural enemy landing rates and resin flow of ponderosa pine (Pinus ponderosa) the season fire treatments were implemented. All bark beetles were present at low population levels (non-outbreak) for the duration of the study. Post-treatment mortality of trees due to bark beetles was lowest in the thin-only and control units and highest in the units receiving burns. Three tree-killing bark beetle species responded positively to fire treatments: Douglas-fir beetle (Dendroctonus pseudotsugae), pine engraver (Ips pini), and western pine beetle (Dendroctonus brevicomis). Red turpentine beetle (Dendroctonus valens) responded positively to fire treatments, but never caused mortality. Three fire damage variables tested (height of crown scorch, percent circumference of the tree bole scorched, or degree of ground char) were significant factors in predicting beetle attack on trees. Douglas-fir beetle and pine engraver responded rapidly to increased availability of resources (fire-damaged trees); however, successful attacks dropped rapidly once these resources were depleted. Movement to green trees by pine engraver was not observed in plots receiving fire treatments, or in thinned plots where slash supported substantial reproduction by this beetle. The fourth tree-killing beetle present at the site, the mountain pine beetle, did not exhibit responses to any treatment. Natural enemies generally arrived at trees the same time as host bark beetles. However, the landing rates of only one, Medetera spp., was affected by treatment. This predator responded positively to thinning treatments. This insect was present in very high numbers indicating a regulatory effect on beetles, at least in the short-term, in thinned stands. Resin flow decreased from June to August. However, resin flow was significantly higher in trees in August than in June in fire treatments. Increased flow in burned trees later in the season did not affect beetle attack success. Overall, responses by beetles to treatments were short-term and limited to fire-damaged trees. Expansions into green trees did not occur. This lack of spread was likely due to a combination of high tree vigor in residual stands and low background populations of bark beetles.  相似文献   

7.
Two methods were compared for capturing the bark beetle Ips duplicatus Sahlberg (Coleoptera: Curculionidae, Scolytinae): lure-baited, insecticide-treated tripod trap logs (TRIPODs) versus Theysohn pheromone traps (TPTs). In 2008 and 2011 and at each of three clearcuts, five TPTs and five TRIPODs baited with ID Ecolure pheromone evaporators were installed with 10 m spacing. The pheromone evaporators were renewed every 8 weeks. The TRIPODs were treated with the insecticide Vaztak 10 EC in mid-April and then every 5 weeks thereafter. Trap logs and traps were inspected weekly during the entire period of I. duplicatus flight activity (April–September). Two to three times more beetles were trapped by the TPTs than by the TRIPODs. The TPTs captured more females than males, while TRIPODs captured equivalent numbers of males and females or more males than females on some dates. The TPTs and TRIPODs trapped approximately the same numbers of males, but the TPTs captured more females than the TRIPODs. Both traps captured more adults in spring than in summer. The higher numbers of entomophagous arthropods, including the predacious beetles Thanasimus formicarius L. and T. femoralis, were captured in the TRIPODs than in the TPTs.  相似文献   

8.
Lodgepole pine (Pinus contorta Dougl. ex Loud.)-dominated ecosystems in north-central Colorado are undergoing rapid and drastic changes associated with overstory tree mortality from a current mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreak. To characterize stand characteristics and downed woody debris loads during the first 7 years of the outbreak, 221 plots (0.02 ha) were randomly established in infested and uninfested stands distributed across the Arapaho National Forest, Colorado. Mountain pine beetle initially attacked stands with higher lodgepole pine basal area, and lower density and basal area of Engelmann spruce (Picea engelmannii [Parry]), and subalpine fir (Abies lasiocarpa (Hook.) Nutt. var. lasiocarpa) compared to uninfested plots. Mountain pine beetle-affected stands had reduced total and lodgepole pine stocking and quadratic mean diameter. The density and basal area of live overstory lodgepole declined by 62% and 71% in infested plots, respectively. The mean diameter of live lodgepole pine was 53% lower than pre-outbreak in infested plots. Downed woody debris loads did not differ between uninfested plots and plots currently infested at the time of sampling to 3 or 4–7 years after initial infestation, but the projected downed coarse wood accumulations when 80% of the mountain pine beetle-killed trees fall indicated a fourfold increase. Depth of the litter layer and maximum height of grass and herbaceous vegetation were greater 4–7 years after initial infestation compared to uninfested plots, though understory plant percent cover was not different. Seedling and sapling density of all species combined was higher in uninfested plots but there was no difference between infested and uninfested plots for lodgepole pine alone. For trees ≥2.5 cm in diameter at breast height, the density of live lodgepole pine trees in mountain pine beetle-affected stands was higher than Engelmann spruce, subalpine fir, and aspen, (Populus tremuloides Michx.), in diameter classes comprised of trees from 2.5 cm to 30 cm in diameter, suggesting that lodgepole pine will remain as a dominant overstory tree after the bark beetle outbreak.  相似文献   

9.
A combined species – provenance – family experiment with Scots pine and lodgepole pine was planted in Canada and Sweden. One aim of the experiment was to evaluate the two species’ sensitivities to pathogens and insects 25 years after establishment in their non-native continents. In Canada, Scots pine had better average survival than lodgepole pine, but survival rates among trees from the best seed-lots were equal. In Canada only western gall rust infected Scots pine to some extent, and mountain pine beetles attacked and killed Scots pine more frequently than lodgepole pine. At one site in Sweden, lodgepole pine had higher survival rates than Scots pine, whether evaluated as an overall average or with data from only the best surviving seed-lots. At the other Swedish site, the species’ survival rates were equal, largely since moose damage was much more frequent on lodgepole pine than on Scots pine. Adaptation to local conditions seemed to be important in the resistance of stem breakage caused by heavy snowfalls. The exotic species generally seemed to resist the new threats, but more serious damage by mountain pine beetle on Scots pine than on lodgepole pine in Canada demonstrates possible drawbacks when using exotic species which are phylogenetically similar to native.  相似文献   

10.
The ambrosia beetle Gnathotrichus materiarius, which originally came from North America, was discovered in southern Finland in 1996. In 1997, using Norwegian drainpipe traps baited with pheromones of Gnathotrichus retusus and G. sulcatus, we collected beetles in the region where the first specimen had been caught in order to determine whether this potential pest species had become established in the area. Samples from a total of 16 traps included 79 species of beetles and 719 individuals, but no specimens of G. materiarius. The most abundant species in the samples were the ambrosia beetles Xyleborus dispar and Trypodendron lineatum. Several predators and other associates of bark beetles were also captured. The majority of the beetles caught were saproxylic species.  相似文献   

11.
Widespread bark beetle outbreaks are currently affecting multiple conifer forest types throughout western North America, yet many ecosystem-level consequences of this disturbance are poorly understood. We quantified the effect of mountain pine beetle (Dendroctonus ponderosae) outbreak on nitrogen (N) cycling through litter, soil, and vegetation in lodgepole pine (Pinus contorta var. latifolia) forests of the Greater Yellowstone Ecosystem (WY, USA) across a 0-30 year chronosequence of time-since-beetle disturbance. Recent (1-4 years) bark beetle disturbance increased total litter depth and N concentration in needle litter relative to undisturbed stands, and soils in recently disturbed stands were cooler with greater rates of net N mineralization and nitrification than undisturbed sites. Thirty years after beetle outbreak, needle litter N concentration remained elevated; however total litter N concentration, total litter mass, and soil N pools and fluxes were not different from undisturbed stands. Canopy N pool size declined 58% in recent outbreaks, and remained 48% lower than undisturbed in 30-year old outbreaks. Foliar N concentrations in unattacked lodgepole pine trees and an understory sedge were positively correlated with net N mineralization in soils across the chronosequence. Bark beetle disturbance altered N cycling through the litter, soil, and vegetation of lodgepole pine forests, but changes in soil N cycling were less severe than those observed following stand replacing fire. Several lines of evidence suggest the potential for N leaching is low following bark beetle disturbance in lodgepole pine.  相似文献   

12.
In the southern Rocky Mountains, current mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks and associated harvesting have set millions of hectares of lodgepole pine (Pinus contorta var. latifolia Engelm. ex Wats.) forest onto new stand development trajectories. Information about immediate, post-disturbance tree regeneration will provide insight on dynamics of future stand composition and structure. We compared tree regeneration in eight paired harvested and untreated lodgepole pine stands in the Fraser Experimental Forest that experienced more than 70% overstory mortality due to beetles. New seedlings colonized both harvested and untreated stands in the first years after the beetle outbreak. In harvested areas the density of new seedlings, predominantly lodgepole pine and aspen, was four times higher than in untreated stands. Annual height growth of pine and fir advance regeneration (e.g., trees established prior to the onset of the outbreak) has doubled following overstory mortality in untreated stands. Growth simulations based on our regeneration data suggest that stand basal area and stem density will return to pre-beetle levels in untreated and harvested stands within 80-105 years. Furthermore, lodgepole pine will remain the dominant species in harvested stands over the next century, but subalpine fir will become the most abundant species in untreated areas. Owing to terrain, economic and administrative limitations, active management will treat a small fraction (<15%) of the forests killed by pine beetle. Our findings suggest that the long-term consequences of the outbreak will be most dramatic in untreated forests where the shift in tree species composition will influence timber and water production, wildfire behavior, wildlife habitat and other forest attributes.  相似文献   

13.
秦岭华山松小蠹生态位研究   总被引:31,自引:8,他引:23  
通过对秦岭林区海拔1600~2200m的中山地带华山松小蠹虫种类和生态位的研究,结果表明:在秦岭林区入侵危害寄主华山松的小蠹虫有19种,其中能构成竞争和共存的小蠹虫主要有11种。虽然,这11种小蠹虫具有各自不同的生态位宽度,且存在不同程度的生态位重叠,但各小蠹虫可依据其对寄主树木营养和空间需求的不同、种群密度的相互制约,以及入侵寄主树木时序的差异达到竞争的平衡和共存。秦岭华山松小蠹生态系统的建立,首先是由华山松大小蠹入侵健康华山松,并通过携带蓝变真菌入侵寄主树木,迅速克服寄主树木抗性系统,使寄主树木树势衰弱;其次松六齿小蠹、暗额星坑小蠹和松十二齿小蠹,作为秦岭华山松的主要次期性小蠹,迅速入侵衰弱的寄主华山松;最后其它次期性小蠹虫入侵寄主树木,利用寄主华山松剩余营养和空间。从而实现秦岭华山松立木小蠹生态系统的动态稳定。  相似文献   

14.
小蠹虫是一类重要的森林害虫,多为次期性害虫。通过调查,在太原市为害油松的主要种类是松六齿小蠹、松八齿小蠹和松十二齿小蠹;成虫扬飞期分别出现在5月份、7月份、8月份、9月份,是防治的关键时期;引起小蠹虫成灾的原因除自然因素外,主要是人为因素,所以防控小蠹虫要以虫情测报为基础,以检疫和林木管护措施为主导,并辅以生物、人工、化学等综合防控措施。  相似文献   

15.
The wood bulk density, bark mass and decomposition rate constants of cut stumps of the main European boreal tree species were assessed along a 40-year chronosequence of clear-felled sites with and without prescribed burning. Using the single exponential model, the annual decomposition rate constants k of above-ground stumps were calculated as 0.048, 0.052 and 0.068 year−1 for Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and birch (Betula sp.), respectively. Bark decomposed faster than wood and bark fragmentation increased the rate of decomposition. There was a significant negative effect of burning on decomposition rate for pine wood, and for pine and spruce bark but not for spruce and birch wood or for birch bark. The decomposition of bark of all species was slower with larger diameter stumps but only slightly slower in the case of birch wood. Our results suggest (i) using different decomposition rate constants for wood and bark, (ii) taking into account fragmentation as it greatly increases the volume loss, and (iii) adjusting of k in carbon dynamics studies on burned sites. Such refinements to estimates of coarse woody debris decomposition constants could aid in identification of ecosystems and management scenarios necessary to maximize carbon storage and conserve biodiversity. Prescribed burning for restoration purposes decreases decomposition rates and consequently ensures longer persistence of stumps for maintaining biodiversity in intensively managed forests.  相似文献   

16.
Outbreaks of bark beetles and drought both lead to concerns about increased fire risk, but the relative importance of these two factors is the subject of much debate. We examined how mountain pine beetle (MPB) outbreaks and drought have contributed to the fire regime of lodgepole pine forests in northwestern Colorado and adjacent areas of southern Wyoming over the past century. We used dendroecological methods to reconstruct the pre-fire history of MPB outbreaks in twenty lodgepole pine stands that had burned between 1939 and 2006 and in 20 nearby lodgepole pine stands that were otherwise similar but that had not burned. Our data represent c. 80% of all large fires that had occurred in lodgepole pine forests in this study area over the past century. We also compared Palmer Drought Severity Index (PDSI) and actual evapotranspiration (AET) values between fire years and non-fire years. Burned stands were no more likely to have been affected by outbreak prior to fires than were nearby unburned stands. However, PDSI and AET values were both lower during fire years than during non-fire years. This work indicates that climate has been more important than outbreaks to the fire regime of lodgepole pine forests in this region over the past century. Indeed, we found no detectable increase in the occurrence of high-severity fires following MPB outbreaks. Dry conditions, rather than changes in fuels associated with outbreaks, appear to be most limiting to the occurrence of severe fires in these forests.  相似文献   

17.
Abstract

This study evaluates how the placement and the different possible outcomes of a spruce retention tree affected species richness and assemblages of spruce-associated saproxylic beetles. In a field experiment in the boreal zone of central Norway, high stumps were created and compared with residual wood pieces (i.e. top boles with branches), in clear-cuts versus in forest edges. Flight interception traps were mounted close to the substrate. The results were analysed using rarefaction techniques, ordination (DCA) and anova. It was found that the placement of retention trees of spruce does matter: beetle assemblages were significantly different in stumps in the four treatments. For all species pooled, the species richness was higher in stumps in clear-cuts than in stumps or boles in the forest edge. Four red-listed species were more abundant near stumps than boles, and two red-listed species were more abundant in clear-cuts than forest edge. To cater for the variety of habitat preferences among forest beetles in managed forest, managers should leave both standing spruce trees (many of which will end up as windthrown, downed boles) and some high stumps (to secure some upright dead wood), in both exposed clear-cut and semi-shaded forest edge.  相似文献   

18.
Heavy loss of pine trees has been occurring for several decades throughout central to southwestern districts of Japan. In spite of beetles abundantly found under bark of dead trees, entomologists were inclined to the assumption that some other agents had already infected healthy trees before beetle attack based on various findings. It has been proved recently that the causative agent was the pine wood nematode (Bursaphelenchus lignicolus) newly discovered by pathologists and its transmitter was the Japanese pine sawyer (Monochamus alternatus). Aerial application of insecticides against the sawyer is now employed as a tentative measure of control.  相似文献   

19.
We review current knowledge about the use of management treatments to reduce human-induced threats to old ponderosa pine (Pinus ponderosa) trees. We address the following questions: Are fire-induced damage and mortality greater in old than younger trees? Can management treatments ameliorate the detrimental effects of fire, competition-induced stress, and drought on old trees? Can management increase resistance of old trees to bark beetles? We offer the following recommendations for the use of thinning and burning treatments in old-growth ponderosa pine forests. Treatments should be focused on high-value stands where fire exclusion has increased fuels and competition and where detrimental effects of disturbance during harvesting can be minimized. Fuels should be reduced in the vicinity of old trees prior to prescribed burns to reduce fire intensity, as old trees are often more prone to dying after burning than younger trees. Raking the forest floor beneath old trees prior to burning may not only reduce damage from smoldering combustion under certain conditions but also increase fine-root mortality. Thinning of neighboring trees often increases water and carbon uptake of old trees within 1 year of treatment, and increases radial growth within several years to two decades after treatment. However, stimulation of growth of old trees by thinning can be negated by severe drought. Evidence from young trees suggests that management treatments that cause large increases in carbon allocation to radial xylem growth also increase carbon allocation to constitutive resin defenses against bark beetle attacks, but evidence for old trees is scarce. Prescribed, low-intensity burning may attract bark beetles and increase mortality of old trees from beetle attacks despite a stimulation of bole resin production.  相似文献   

20.
The community composition of Carabid beetles, some species ofwhich are known predators of pine beauty moth, was examinedwithin a Scottish plantation forest. Sites differing in soiltype and the species of trees planted were sampled with pitfalltraps in most weeks of a 3—year period. There were faunaldifferences between sites with lodgepole pine on deep peat andother sites in the study (lodgepole pine on iron-pan soil, speciesmixture of lodgepole and Scots pine, and pure stands of Scotspine). In general deep peat sites supported fewer species andindividuals of carabids. Three Carabus species were implicatedas likely predators of Panolis flammea pupae and each was lessabundant on the sites with lodgepole pine. It is suggested thatthe susceptibility to pine beauty moth of lodgepole pine growingon deep peat substrates is at least partly attributable to impoverishedpredator faunas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号