首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 998 毫秒
1.
为了解吉林省中部地区畜禽养殖温室气体的排放量和空间分布特征,根据联合国政府间气候变化化专门委员会(intergovernmental panel on climate change,简称IPCC)(2006)提供的方法,通过获取2005—2015年吉林省中部地区畜禽产量和排放因子,估算农业畜禽养殖温室气体排放量。结果表明,2005—2014年平均甲烷排放总量为1 175.70万t CO2-eq/年,氧化亚氮排放总量243.66万t CO2-eq/年;2005—2015年期间畜禽温室气体排放量呈先上升后下降趋于平缓趋势,2007—2010年排放量高于11年平均值(1 419.36万t CO2-eq/年),这与吉林省其他牛、猪、奶牛和山羊养殖数量变化有着明显关系;2005—2015年四平市、吉林市、榆树市、农安县和德惠市平均温室气体排放量为6 719.9万t CO2-eq,占吉林省中部温室气体排放量的44.21%。  相似文献   

2.
[目的]估算贵州省六盘水市温室气体排放量,分析其2005—2014年的动态变化情况。[方法]参照《2006年IPCC国家温室气体清单指南》与《省级温室气体清单编制指南》推荐方法,对2005—2014年六盘水市温室气体排放量进行估算。[结果]2005—2014年六盘水市温室气体总排放量为89 495.78万t,其中,能源部门排放量为75 083.60万t,占总排放量83.90%,是六盘水市温室气体最大的排放贡献源;其次为森林碳汇(20 859.40万t),占总排放量的23.31%;农业生产排放量最小,仅占0.43%。2005—2014年六盘水市人均和单位面积温室气体排放呈持续增加,人均温室气体排放量年均增长18.1%,单位面积温室气体排放量年均增长17.1%,万元GDP温室气体排放量年均降低9.6%。[结论]2005—2014年六盘水市温室气体人均排放量较大,需采取相关措施。  相似文献   

3.
农业生产过程产生的温室气体在全球温室气体排放总量中占有较大比例,黑龙江省作为中国重要的农业大省,其农业温室气体排放的估算分析,对实现农业低碳减排具有重要意义。基于2005-2015年黑龙江农业生产数据,估算了农业生产过程中主要排放源CH_4和N_2O排放量,并提出了低碳农业发展的规划建议。结果表明:2015年,黑龙江省农业温室气体排放总量已上升至117.845万t,其中养殖业温室气体排放总量达51.967万t,主要来自反刍畜禽肠胃道内发酵CH_4排放,以及畜禽粪便管理过程CH_4和N_2O的排放,分别达到了48.527万、2.058万和1.382万t;种植业温室气体排放量达65.878万t,主要来自水稻种植CH_4排放,以及农业种植土壤本底和施肥N_2O的排放,分别达到了61.949万、2.764万和1.165万t。  相似文献   

4.
东北季节性冻融农田土壤CO2、CH4、N2O通量特征研究   总被引:4,自引:2,他引:2  
为了评估季节性冻融交替对土壤温室气体排放的影响,采用静态暗箱-气相色谱法,监测了东北松嫩平原两种典型农田生态系统(稻田和玉米田)非生长季土壤CO_2、CH_4和N_2O通量变化。研究表明:三种温室气体排放在土壤冻结期、覆雪期、融雪期和解冻期具有明显的季节动态特征。冻结期和融雪期对温室气体排放贡献最大,这两个时期内稻田和玉米田CO_2排放量分别占非生长季总累积排放量的74.9%和68.6%,稻田CH_4排放占非生长季总排放的95.7%,尽管玉米田土壤CH_4以吸收为主,但在融雪过程中存在明显释放峰,短暂的融雪期内N_2O呈集中爆发性释放,稻田和玉米田N_2O通量峰值分别是冻结前的40倍和99倍,排放量占到总累积排放量的73.9%和80.7%,覆雪期土壤CH_4和N_2O存在弱的吸收。另外,土壤温室气体排放存在土地利用方式间的差异,表现在稻田土壤比玉米田(非生长季)具有更高的温室气体排放潜力。稻田土壤CO_2、CH_4和N_2O累积排放量均高于玉米田,表现为净排放(源),而玉米田土壤CH_4通量表现为净吸收(汇);稻田土壤CO_2和CH_4平均排放速率显著高于玉米田;除覆雪期外,其他时期内三种温室气体平均通量在两类农田之间也存在显著差异。总之,在评价季节性冻土区温室气体排放时需要重视土壤冻结和融化过程,同时需要考虑不同土地利用方式间的差异。  相似文献   

5.
根据湖北省2007-2014年畜禽饲养量,按照《省级温室气体清单编制指南(试行)》要求,评估了湖北省2007-2014年畜禽养殖过程中的温室气体(GHG)排放潜力,并比较了2010年湖北省各地区的温室气体排放潜力以及各畜禽肠道甲烷(CH_4)、粪便CH_4、粪便氧化亚氮(N_2O)的排放状况。结果表明:(1)2007-2014年湖北省温室气体排放潜力总体呈现上升趋势,2014年达1 535.01万t CO2-eq,增幅11.50%;(2)2010年湖北省襄阳、孝感、黄冈和恩施的畜牧业温室气体排放潜力最大,占全省的58.81%;(3)非奶牛、水牛对肠道CH_4排放的贡献率最大,分别为43%、31%;猪是粪便CH_4和N_2O排放的主要来源,分别占粪便CH_4和N_2O排放潜力的83%和39%。因此,湖北省各地区应在保证畜牧业持续发展的同时,积极采取温室气体减排措施;针对不同畜禽种类、不同地理区域,应当有的放矢,因地制宜。  相似文献   

6.
在对新疆近17年城镇居民可支配收入与畜牧业温室气体排放现状分析的基础上,对城镇经济发展与畜牧业温室气体的关系进行探讨。结果表明,2001—2017年,畜牧业温室气体的排放量整体随城镇居民可支配收入的增加而下降。城镇居民可支配收入与畜牧业温室气体排放的关系可以分为3个阶段。在第一和第三阶段,城镇居民人均可支配收入每增加1 000元畜牧业温室气体二氧化碳排放当量增加量分别为147.8×104t和16.1×104t,第二阶段减少量为115.9×104t。  相似文献   

7.
【目的】评估福建省规模化养猪场利用沼气工程处理粪便产生的温室气体减排效益,以推动规模化养猪场沼气工程建设,实现生猪养殖业清洁生产。【方法】根据国际通用的温室气体减排量计算方法,以2010年和2015年为例,计算福建省规模化养猪场粪便资源量及沼气生产潜力,评估粪便资源全部用于沼气工程建设所带来的减排效益。【结果】2010年和2015年福建省规模化养猪场排泄物干物质总量分别为169.93万t和163.29万t,其产沼气潜力分别为7.14亿m~3和6.86亿m~3。假设规模化养猪场粪便所产沼气全部用于替代薪柴,则分别可替代薪柴245.42万t和235.84万t,减少CO_2排放量分别为268.74万t和258.25万t;假设规模化养猪场粪便所产沼气全部用于替代煤炭,则分别可替代煤炭130.85万t和125.74万t,减少CO_2排放量110.89万t和106.56万t。如果养猪场粪便全部用于沼气工程,则分别可减少CH_4排放3.59万t和3.45万t。【结论】沼气工程在有效处理禽畜粪便的同时生产了优质燃料,沼气替代传统能源减少了CO_2排放,禽畜粪便厌氧消化减少了CH_4排放,带来了显著的社会经济及环境效益。  相似文献   

8.
长三角地区蔬菜生产的活性氮损失和温室气体排放估算   总被引:1,自引:2,他引:1  
基于相关统计数据,本文采用生命周期评价(LCA)方法,研究了长三角地区三省一市蔬菜生产的活性氮损失和温室气体排放。结果表明:长三角地区蔬菜生产的活性氮损失和温室气体排放潜值较高,2012—2016年平均分别为103 kg N·hm~(-2)和5 930kg CO_2-eq·hm~(-2);不同年份间活性氮损失和温室气体排放差异显著,2015年活性氮损失和温室气体排放潜值最低,分别为95 kg N·hm~(-2)和5 618 kg CO_2-eq·hm~(-2),其活性氮损失和温室气体排放潜值分别较其他年份低6.5%~12.3%和3.5%~9.0%;5 a平均活性氮损失和温室气体排放潜值露地蔬菜分别为106 kg N·hm~(-2)和5 157 kg CO_2-eq·hm~(-2);设施蔬菜分别为93 kg N·hm~(-2)和8 760 kg CO_2-eq·hm~(-2);与该区其他省市蔬菜生产相比,浙江5 a平均活性氮损失低2.8%~13.7%,安徽温室气体排放潜值低1.4%~10.7%。针对蔬菜生产高氮肥投入、活性氮损失以及温室气体排放问题,在田间管理时可采取控制氮肥用量、优化施用氮肥、合理使用增效氮肥等措施。  相似文献   

9.
采用《2006年IPCC国家温室气体清单指南》和《省级温室气体清单编制指南》推荐的温室气体核算方法计算1996-2010年河南省温室气体排放,基于Kaya恒等式,运用LMDI对河南省温室气体排放进行因素分解。研究结果表明:河南省温室气体排放从1996年22 017.20×104t增加到2010年的87 790.47×104t,增幅为74.92%,能源活动的温室气体占总排放量的比例为81.71%,工业过程占8.96%,农业占8.82%,废弃物处理占1.59%。导致河南省温室气体排放持续增加的驱动因素主要为人均GDP,经济的快速发展加速了温室气体的排放,适当的放缓经济增长速度有利于减缓温室气体排放。  相似文献   

10.
分析了吉林省农业生产温室气体排放系数,对2000—2014年吉林省温室气体排放量进行了估算。结果表明:12000—2014年吉林省温室气体排放量由1 927.94万t增长到2 445.25万t,经历了快速上升、快速下降和缓慢上升3个阶段,目前吉林省正处于农业温室气体排放上升阶段,减排压力较大;22000—2014年吉林省温室气体中CH_4的排放贡献率为41.41%,N_2O的排放贡献率为58.69%;32000—2014年农用地N_2O是吉林省温室气体第一排放源,年均所占比重为46.32%,其他温室气体排放量从大到小依次为动物肠道CH_4、动物粪便管理N_2O和稻田CH_4,所占比重分别为29.83%、14.11%、10.41%。最后,依据吉林省温室气体排放量和结构特征,从农业生产角度提出了减排措施。  相似文献   

11.
Livestock cultivation is a significant source of greenhouse gas (GHG) emissions, accounting for 14.5% of the total anthropogenic emissions. China is responsible for a considerable share of the global livestock emissions, particularly caused by pork production. We used the Kaya identity and the logarithmic mean Divisia index (LMDI) to decompose the national annual GHG emissions from enteric fermentation and manure management in pig farming in China from 1976 to 2016. We decomposed the sources of the emissions into five driving factors: (1) technological progress (e.g., feed improvement); (2) structural adjustment in the livestock sector; (3) structural adjustment in agriculture; (4) affluence; and (5) population growth. The results showed that the net GHG emissions from the pig sector in China increased 16 million tons (Mt) of carbon dioxide equivalents (CO2eq) during the study period. The decomposition analysis revealed that structural adjustment in agriculture, growing affluence, and population growth contributed to an increase of the GHG emissions of pork production by 23, 41, and 13 Mt CO2eq, respectively. The technological progress and structural changes in animal husbandry mitigated emissions by –51 and –11 Mt CO2eq, respectively. Further technological progress in pig production and optimizing the economic structures are critical for further reducing GHG emissions in China’s pig industry. Our results highlight the dominant role of technological changes for emission reductions in the pig farming.  相似文献   

12.
为了探讨全国畜牧业碳排放的时空特征并预测到2060年的碳排放趋势,本研究利用排放因子法对全国2001—2017年畜牧业碳排放进行估算,并根据中国膳食协会所制定的膳食指标的食肉量进行预测。结果表明:2001—2017年全国畜牧业CO2e排放量整体呈现出升高-降低-回升-降低的趋势,并在2005年达到畜牧业碳排放峰值,估算为4.86亿t。在碳排放源中,畜禽胃肠道发酵的碳排放量占比高于畜禽粪便管理系统,并且在主要畜禽种类中非奶牛养殖过程中的碳排放量要高于其他的畜禽种类。在空间分布上,中南和西南地区的碳排放量相较于我国其他地区更高。根据膳食指标规定的健康食肉量标准进行调整,对于碳减排有着显著的积极影响,在未来40年内可减少畜牧业碳排放量的25%~75%。研究表明,在2001—2017年间全国畜牧业已在2005年实现碳达峰,在未来膳食结构中肉类消费量改善的前提下,畜牧业碳排放量的持续降低有利于我国碳中和目标的实现。  相似文献   

13.
畜禽产品碳足迹研究进展与分析   总被引:2,自引:2,他引:0  
畜禽养殖业是重要的温室气体排放源,科学评估畜禽产品的碳足迹,对减排技术的选择和低碳农业的发展具有重要意义。笔者在总结国内外畜禽产品碳足迹评估方法的基础上,汇总了中国及欧美等发达国家评估鸡蛋、猪肉、牛肉和牛奶等畜禽产品碳足迹的研究结果,并对现有研究结果进行综合分析。从畜禽产品产生的碳足迹分析,选择的功能单位不同对畜禽产品的碳足迹有明显影响,每生产1 kg牛肉的碳足迹最大,达到(20.51±8.39)kg CO2-eq;其次为每生产1 kg猪肉和1 kg鸡蛋,分别为(4.24±1.07) kg CO2-eq和(2.24±0.83)kg CO2-eq;每生产1 kg牛奶的碳足迹最小,为(1.19±0.40) kg CO2-eq;畜禽产品每提供1 kg蛋白质的碳足迹从大到小依次为牛肉、牛奶、猪肉和鸡蛋,分别为(103.05±42.14)、(39.72±13.20)、(32.09±8.14)和(19.37±7.15)kg CO2-eq;畜禽产品每提供1 kg脂肪的碳足迹从大到小依次为牛肉、牛奶、鸡蛋和猪肉,分别为(488.25±199.65)、(37.23±12.37)、(29.28±10.80)和(11.45±2.91) kg CO2-eq;畜禽产品每提供1 000 kcal能量的碳足迹从大到小依次为牛肉、牛奶、鸡蛋和猪肉,分别为(16.41±6.71)、(2.21±0.73)、(1.56±0.57)和(1.07±0.27) kg CO2-eq。从畜禽产品的生产环节对系统排放量的贡献率分析,饲料作物种植和生产加工环节是鸡蛋和猪肉生产时温室气体排放最高的环节,该环节分别占鸡蛋和猪肉生产系统排放量的(74.0±16.5)%和(61.3±7.6)%;肠道发酵甲烷排放对牛肉和牛奶生产过程中碳足迹贡献比例最大,分别占牛肉和牛奶生产系统排放量的(53.7±8.2)%和(52.7±6.1)%。从畜禽产品生产产生的温室气体对系统排放量的贡献率分析,CO2是鸡蛋生产碳足迹中贡献率最高的温室气体,其排放量占整个系统的(55.42±2.7)%,N2O是猪肉生产碳足迹中贡献率最高的温室气体,占整个系统其排放量的(56.8±10.4)%,CH4是牛肉和牛奶生产碳足迹中贡献率最高的温室气体,分别占牛肉和牛奶碳足迹的(50.2±8.3)%和(58.6±8.3)%。目前国外尤其是欧美等发达国家关于畜禽产品碳足迹研究相对较多,但采用的评估方法和计算模型不同,需要建立统一的畜禽产品碳足迹评估方法。中国在畜禽产品碳足迹评估领域仍处于起步阶段,建议在国内外现有研究的基础上,建立符合中国生产实际的评价方法,系统评估中国畜禽产品的碳足迹,同时针对不同畜禽产品碳足迹贡献率高的环节开展减排技术研究,为科学评估中国畜禽产品的碳足迹,筛选减排技术,降低碳排放强度提供支持。  相似文献   

14.
基于相关统计数据,通过文献调研方法,估算了我国河南、河北和山东3个典型省份在小麦和玉米上消费的化学氮肥产生的温室气体排放量,包括化学氮肥施用产生的土壤N_2O直接排放、通过挥发沉降和淋溶径流途径损失的氮素导致的N_2O间接排放以及不同种类化学氮肥在生产和运输过程中的温室气体排放。结果表明:河南、河北和山东3个典型省份在小麦上消费的化学氮肥产生的温室气体排放量分别为1536万、847万、1153万t CO_2–eq·a–1,单位播种面积温室气体排放量分别为2.85、3.61、3.09 t CO_2–eq·hm–2·a–1,单位产量温室气体排放量分别为0.46、0.60、0.51 t CO_2–eq·t~(–1)·a~(–1);相应省份在玉米上消费的化学氮肥产生的温室气体排放量分别为717万、720万、912万t CO_2–eq·a–1,单位播种面积温室气体排放量分别为2.19、2.27、2.92 t CO_2–eq·hm–2·a–1,单位产量温室气体排放量分别为0.40、0.43、0.46 t CO_2–eq·t~(–1)·a~(–1)。研究表明,化学氮肥消费带来的温室气体排放主要来自于化学氮肥在生产过程中的温室气体排放以及化学氮肥施用导致的土壤N_2O直接排放这两部分。  相似文献   

15.
基于《全国农产品成本收益资料汇编》以及收集的相关参数数据,采用生命周期评价法分析2004-2013年山西省小麦生产中不同功能单位的碳足迹变化动态并解析其构成,以期为山西省小麦的低碳清洁化生产与气候变化的缓解提供一定的理论依据。结果表明:山西省小麦生产的温室气体排放从2004年的3 798.5 kg/hm2(CO2-eq)增加到2013年的4 650.5 kg/hm2(CO2-eq),年均增加74.9 kg/hm2(CO2-eq);肥料应用(尤其是氮肥和复合肥)、土壤N2O以及机械操作的能源消耗是其主要构成,占总排放的90%以上。山西省小麦的产量碳足迹总体上变化不大,而产值碳足迹、成本碳足迹以及净利润碳足迹均表现为逐渐降低的趋势,其中成本碳足迹达到显著水平。考虑土壤有机碳储量变化后,不同功能单位的小麦碳足迹均大幅度降低。综上所述,合理施肥、加强机械一体化推广以及增加土壤固碳是降低山西省小麦碳足迹的主要途径。  相似文献   

16.
江苏省农业碳排放时序特征与趋势预测   总被引:2,自引:1,他引:1  
为探讨江苏省农业碳排放时序特征及未来碳排放趋势,利用排放因子法对江苏省2000—2019年农业碳排放进行估算,并运用STIRPAT模型对2020—2030年全省农业碳排放趋势进行预测。结果表明:江苏省2000—2019年的CO2排放当量(CO2e)整体呈现降低-升高-降低的趋势,并在2005年达峰,估算为8 361.77万t,其中种植业、畜牧业则分别在2010年、2003年达峰,种植业排放量远高于畜牧业。农业CO2e排放强度呈先升高后降低的趋势,2003年后排放强度逐年递减,到2019年已降至1.31 t·万元-1;在各碳源中,水稻种植是全省农业碳排放的最大排放源,而在主要畜禽中,猪养殖过程中造成的碳排放远高于其他畜禽;预计2020—2030年,伴随城镇化发展、农业人均GDP提高和农业碳排放强度的进一步降低,全省农业CO2e排放量仍将呈下降趋势,在减碳的同时可以兼顾农业经济高效发展。研究表明,江苏省农业已实现碳达峰,未来农业碳排放的持续降低将有利于加速全省碳中和目标的实现。  相似文献   

17.
为探讨畜禽养殖业不断发展带来的粪便、尿液及养分排放问题,基于安徽省2009—2018年畜禽养殖数据,采用排泄系数法估算畜禽粪尿排放量及其主要污染物含量的变化,分析了安徽省不同种类畜禽养殖粪尿养分时空格局及演化特征。结果表明,安徽省粪尿排放量由2009年的5 597.1万t上升至2015年的6 337.5万t,后下降至2018年的4 511.0万t。家禽粪便、猪粪中TN、TP、CODCr、NH3-N含量占全省比例较高,而牛尿中污染物含量最低,2018年猪粪中CODCr、NH3-N含量占比较2011年有所升高。全省畜禽养殖污染物排放量在空间分布上总体呈由北向南递减的规律,阜阳市粪尿排放量全省最高,2011年达923.5万t。皖北地区猪粪中的TP、NH3-N及CODCr含量较高,皖南地区各类污染物中家禽粪便占比较大,此外牛尿污染物含量显著低于其他粪尿。随着省内畜禽污染防治力度不断加大,2018年全省粪污排放量显著下降,在推进产业结构调整时应侧重生猪和家禽的粪污控制工作。  相似文献   

18.
为研究贮存高度和锯末覆盖厚度对猪粪NH3和温室气体排放量及其增温潜势的影响,以猪粪为贮存材料,锯末为覆盖材料,试验设2种猪粪贮存高度(20 cm和40 cm)和3种锯末覆盖高度(0、10 cm和20 cm),共6个处理,每个处理3个重复。通过动态箱技术对猪粪贮存过程中NH3和温室气体排放进行不间断测试,每小时测量一次进气口和排气口NH3、N2O、CH4和CO2的质量浓度,进而计算增温潜势,共测量42 d。结果表明:猪粪便的贮存高度对各种气体排放量均有显著影响,与20 cm贮存高度的猪粪相比,40 cm贮存高度猪粪的NH3、N2O和CO2排放量显著降低,而CH4排放量显著增加。锯末覆盖降低了猪粪贮存过程中NH3和CO2的排放量,但是增加了CH4的排放量;锯末覆盖对不同贮存高度猪粪N2O排放量影响不同,锯末覆盖增加了20 cm贮存高度猪粪N2O排放量,却降低了40 cm贮存高度猪粪N2O排放量。各处理组单位质量猪粪排放的总温室气体增温潜势为36.62~62.83 g·kg-1(CO2基础)。覆盖可以减少猪粪贮存过程中总温室气体增温潜势11.59%~23.61%,但差异不显著。与20 cm贮存高度的猪粪相比,40 cm贮存高度显著降低了猪粪总温室气体增温潜势达36.26%~41.48%。研究表明,增加猪粪贮存高度可以减少猪粪贮存过程中总温室气体的增温潜势。  相似文献   

19.
This study investigated the carbon (C) and nitrogen (N) gas emissions (N2O, NH3, CO2 and CH4) from solid pig manure management in China. Gas emissions were quantified from static piles over 60 days during summer in China's Yangtze River Basin, using Drager-Tube and static chamber-gas chromatography techniques. High emissions of NH3 and N2O were observed at the early stage of storage, but high emission of CH4 occured later during storage. Overall, 62% of the total C in the original pile was lost; CO2 and CH4 emissions accounted for 57 and 0.2% of C lost respectively. Over the same time, 41% of the total N in the original pile was lost; NH3 and N2O emissions accounted for 15 and 0.3% of N lost respectively. The volatilization of NH3 during storage in summer was 4.56 g NH3 per kg dry weight. The total greenhouse gas (GHG) emissions during storage accounted for 67.93 g CO2 equivalent per kg dry weight; N2O and CH4 contributed to 46 and 55% of total GHG emissions respectively. Given China's major role in pig production, further attention should given to pig manure management to mitigate its contribution to atmospheric pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号