首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of pulsed electric fields on the activity and structure of pepsin   总被引:4,自引:0,他引:4  
A continuous pulsed electric field (PEF) system integrated with six co-field flow PEF treatment chambers was used to study the inactivation of pepsin. The inactivation of pepsin activity was a function of applied electric field strength, electrical conductivity, and pH. The inactivation of pepsin by PEF followed a first-order model. The first-order inactivation kinetic constant of pepsin was 0.012 (1/mus) in 7.5 mM HCl (pH 2.0) at 34.2 kV/cm. Aggregation of pepsin was observed during PEF treatment; however, the inactivation took place before the formation of aggregates. Circular dichroism analysis showed that inactivation of pepsin by PEF was correlated to the loss of beta-sheet structure in a pepsin molecule. The relative residual activity of PEF-treated pepsin was correlated to the relative molar ellipticity at 215 nm. Both PEF- and heat-induced inactivation of pepsin were correlated with the alteration of the secondary structure (beta-sheet dominant structure) of pepsin.  相似文献   

2.
Soybeans were stored in 84% relative humidity at 30 degrees C (adverse conditions) for 9 months and in 57% relative humidity at 20 degrees C, cold (4 degrees C), and an uncontrolled ambient garage for 18 months. Glycinin was isolated and purified; its structural properties were characterized. The purified glycinin from soybean in the adverse conditions was associated with a significant amount of sugar and showed reductions in hydrophobic interactions after 3 months; the total free sulfhydryl content in glycinin decreased, but the intramolecular disulfide bonds increased; the alpha-helix content of secondary structure slightly increased, but the beta-sheet content decreased. The structure of glycinin purified from the other three conditions showed no significant changes for 18 months of storage when compared to the control. The molecular mass of glycinin remained in the range of 313-340 kDa during the whole storage period for the four conditions.  相似文献   

3.
Ovalbumin (OVA) was phosphorylated by dry-heating in the presence of pyrophosphate at pH 4.0 and 85 degrees C for 1 and 5 days, and the physicochemical and structural properties of phosphorylated OVA were investigated. The phosphorus content of OVA increased to 1.01% by phosphorylation, and the electrophoretic mobility of PP-OVA also increased. Although the solubility of dry-heated OVA decreased, the decrease was slightly depressed by phosphorylation. The circular dichroism spectra showed that the change of the secondary structure in the OVA molecule, as measured by alpha-helix content, was mild by phosphorylation. The exchange reaction between the sulfhydryl and disulfide groups was enhanced and the surface hydrophobicity of OVA increased by phosphorylation. The tryptophan fluorescence intensity of OVA decreased by phosphorylation, suggesting that the conformational change occurred in the OVA molecule by phosphorylation. Although the differential scanning calorimetry thermograms of OVA showed a lowering of the denaturation temperature from 78.3 to 70.1 degrees C by phosphorylation, the stability of OVA against heat-induced insolubility at pH 7.0 was improved. The results indicated molten (partially unfolded) conformations of OVA formed by dry-heating in the presence of pyrophosphate.  相似文献   

4.
Lysozyme was selected as a model enzyme to investigate the effects of pulsed electric fields (PEF) on its activity and structure. The irreversible inactivation of lysozyme in sodium phosphate buffer (10 mM, pH 6.2) induced by PEF at 35 kV/cm followed a first-order model when the treatment time was longer than 300 micros. Unfolding of lysozyme structure was induced by PEF, accompanied by the cleavage of disulfide bonds and self-association aggregation when the applied PEF dosage was higher than a critical level. The inactivation of lysozyme by PEF was correlated to the loss of alpha-helix in secondary structure. The relative residual activity of PEF-treated lysozyme was in close agreement with the relative molar ellipticity at 208 nm. Both PEF- and heat-induced inactivations of lysozyme were correlated to the alteration of the secondary structure of lysozyme, but the effects of PEF and heat treatment on secondary structure were inconsistent.  相似文献   

5.
Raman spectroscopy was used to elucidate structural changes of beta-lactoglobulin (BLG), whey protein isolate (WPI), and bovine serum albumin (BSA), at 15% concentration, as a function of pH (5.0, 7.0, and 9.0), heating (80 degrees C, 30 min), and presence of 0.24% kappa-carrageenan. Three data-processing techniques were used to assist in identifying significant changes in Raman spectral data. Analysis of variance showed that of 12 characteristics examined in the Raman spectra, only a few were significantly affected by pH, heating, kappa-carrageenan, and their interactions. These included amide I (1658 cm(-1)) for WPI and BLG, alpha-helix for BLG and BSA, beta-sheet for BSA, CH stretching (2880 cm(-1)) for BLG and BSA, and CH stretching (2930 cm(-1)) for BSA. Principal component analysis reduced dimensionality of the characteristics. Heating and its interaction with kappa-carrageenan were identified as the most influential in overall structure of the whey proteins, using principal component similarity analysis.  相似文献   

6.
Phytocystatins are the plant thiol protease inhibitors involved in several reaction mechanisms of the plant system like regulation of proteolytic activity and storage of proteins. Biochemical and biophysical changes induced by fungicide SDD in phytocystatin purified from Phaseolus mungo have been investigated in terms of mass spectroscopy, Fourier transform infrared spectroscopy, and fluorescence spectroscopy, at pH 7.0, with varying fungicide concentrations (1-9 mM) and a time of incubation ranging from 2 to 8 h at 37 degrees C, with a fixed cystatin concentration (1.5 mM). Reactive oxygen species responsible for inhibitor damage were also investigated, and thiourea was found to scavenge the free radicals generated by SDD. FTIR analysis indicates a significant conformational transition from alpha-helix to beta-sheet structure; quenching of fluorescence is evident by fluorescence spectroscopy. The activity assay showed a decrease in inhibitory activity, as well as a fragmentation of the inhibitor was observed in electrophoresis. Results obtained implicate that exposure of phytocystatins to SDD involves physicochemical changes in cystatins leading to damage and a decrease in the activity of the inhibitor.  相似文献   

7.
Fourier transform infrared (FT-IR) microspectroscopy and low-field (LF) proton NMR transverse relaxation measurements were used to study the changes in protein secondary structure and water distribution as a consequence of aging (1 day and 14 days) followed by salting (3%, 6%, and 9% NaCl) and cooking (65 degrees C). An enhanced water uptake and increased proton NMR relaxation times after salting were observed in aged meat (14 days) compared with nonaged meat (1 day). FT-IR bands revealed that salting induced an increase in native beta-sheet structure while aging triggered an increase in native alpha-helical structure before cooking, which could explain the effects of aging and salting on water distribution and water uptake. Moreover, the decrease in T2 relaxation times and loss of water upon cooking were attributed to an increase in aggregated beta-sheet structures and a simultaneous decrease in native protein structures. Finally, aging increased the cooking loss and subsequently decreased the final yield, which corresponded to a further decrease in T2 relaxation times in aged meat upon cooking. However, salting weakened the effect of aging on the final yield, which is consistent with the increased T2 relaxation times upon salting for aged meat after cooking and the weaker effect of aging on protein secondary structural changes for samples treated with high salt concentration. The present study reveals that changes in water distribution during aging, salting, and cooking are not only due to the accepted causal connection, i.e., proteolytic degradation of myofibrillar structures, change in electrostatic repulsion, and dissolution and denaturation of proteins, but also dynamic changes in specific protein secondary structures.  相似文献   

8.
Structural changes of alkali-treated rockfish protein isolate (AKPI) during frozen storage were elucidated using a Raman spectrometer and scanning electron microscope (SEM). The results were compared to conventional surimi (CS). No significant textural difference was noted between AKPI stored at pH 5.5 and 7.0. The strongest texture was found for AKPI frozen with cryoprotectants and CS, while the weakest texture was observed in AKPI frozen without cryoprotectants. SEM revealed the most discontinuity in gels of AKPI with no cryoprotectants and a more aggregated microstructure after storage at pH 5.5 than at neutral pH. Raman spectral analysis demonstrated refolding of AKPI by pH readjustment to 7.0, although the refolded structure was not identical to that before the pH shift. CS showed higher alpha-helix content (approximately 50%) than AKPI (approximately 20-30%). Frozen storage induced a decrease and an increase in the alpha-helix content of CS and AKPI samples, respectively. AKPIs were slightly less stable than CS during frozen storage.  相似文献   

9.
Fragmentation of forest ecosystems increases the proportion of edge habitat and is accompanied by a change in plant species composition. The recreational use of urban forests leads to decreased vegetation cover and the formation of paths, and thus, to fragmentation at small scales. We studied the impacts of forest and path edge effects on the soil microbial community structure (by using the phospholipid fatty acid (PLFA) method) and microbial activity (measured as basal respiration) in 34 mesic boreal urban forest fragments in Finland. We sampled the humus layer 1) from the forest edge into the interior (0–80 m), and 2) at different distances from paths. Microbial community structure was only slightly affected by the forest edge but differences were found between distances of 0–10 m and over 50 m from the edge. These changes correlated with changes in soil pH. Although changes in the microbial community structure were not pronounced, microbial biomass and activity were 30–45% lower at the first 20 m into the forest fragments, due to a low moisture content of the humus near the edge. The decreased microbial activity detected at forest edges implies decreased litter decomposition rates, and thus, a change in ecosystem nutrient cycling. The microbial community structure differed between paths and surrounding areas and correlated with changes in soil pH. Paths also supported approximately 25–30% higher microbial biomass with a transition zone of at least 1 m from the path edge. Path associated disturbances (mainly alterations in vegetation and soil pH) were reflected in the soil microbial community structure up to 1.5 m from the paths.  相似文献   

10.
Purification of a lipoxygenase enzyme from the cultivar Tresor of durum wheat semolina (Triticum turgidum var. durum Desf) was reinvestigated furnishing a new procedure. The 895-fold purified homogeneous enzyme showed a monomeric structure with a molecular mass of 95 +/- 5 kDa. Among the substrates tested, linoleic acid showed the highest k(cat)/K(m) value; a beta-carotene bleaching activity was also detected. The enzyme optimal activity was at pH 6. 8 on linoleic acid as substrate and at pH 5.2 for the bleaching activity on beta-carotene, both assayed at 25 degrees C. The dependence of lipoxygenase activity on temperature showed a maximum at 40 degrees C for linoleic acid and at 60 degrees C for bleaching activity on beta-carotene. The amino acid composition showed the presence of only one tryptophan residue per monomer. Far-UV circular dichroism studies carried out at 25 degrees C in acidic, neutral, and basic regions revealed that the protein possesses a secondary structure content with a high percentage of alpha- and beta-structures. Near-UV circular dichroism, at 25 degrees C and at the same pH values, pointed out a strong perturbation of the tertiary structure in the acidic and basic regions compared to the neutral pH condition. Moreover, far-UV CD spectra studying the effects of the temperature on alpha-helix content revealed that the melting point of the alpha-helix is at 60 degrees C at pH 5.0, whereas it was at 50 degrees C at pH 6.8 and 9.0. The NH(2)-terminal sequence allowed a homology comparison with other lipoxygenase sequences from mammalian and vegetable sources.  相似文献   

11.
Structural changes involved in the reactivation of peroxidases (PODs) from broccoli and horseradish (HRP) following heat denaturation were investigated by using circular dichroism and absorption spectroscopy. Cooling heat-treated enzymes resulted in rapid refolding of the secondary structure into an inactive structural species, similar in conformation to the native enzyme. Reassociation of heme to the refolded peroxidase, as well as molecular rearrangement of the structure around the heme, occurs during incubation at approximately 25 degrees C and results in the return of biological activity. The secondary structure of neutral broccoli POD (N) is relatively heat labile, resulting in a rapid loss of activity, but the level of reactivation is high because the structure at the heme pocket is relatively stable. Acidic broccoli POD and HRP are more heat stable than N, but have a low degree of reactivation. Loss of activity is due primarily to alteration of the structure at the heme pocket. Effects of bovine serum albumin and pH on reactivation of PODs are also discussed. Keywords: Peroxidase; reactivation; horseradish; broccoli; circular dichroism; absorption spectroscopy.  相似文献   

12.
Studying the secondary structure of proteins leads to an understanding of the components that make up a whole protein. An understanding of the structure of the whole protein is often vital to understanding its digestive behavior in animals and nutritive quality. Usually protein secondary structures include alpha-helix and beta-sheet. The percentages of these two structures in protein secondary structures may influence feed protein quality and digestive behavior. Feathers are widely available as a potential protein supplement. They are very high in protein (84%), but the digestibility of the protein is very low (5%). The objective of this study was to use synchrotron-based Fourier transform infrared (FTIR) microspectroscopy to reveal chemical features of feather protein secondary structure within amide I at ultraspatial resolution (pixel size = 10 x 10 microm), in comparison with other protein sources from easily digested feeds such as barley, oat, and wheat tissue at endosperm regions (without destruction of their inherent structure). This experiment was performed at beamline U2B of the Albert Einstein Center for Synchrotron Biosciences at the National Synchrotron Light Source (NSLS) in Brookhaven National Laboratory (BNL), U.S. Dept of Energy (NSLS-BNL, Upton, NY). The results showed that ultraspatially resolved chemical imaging of feed protein secondary structure in terms of beta-sheet to alpha-helix peak height ratio by stepping in pixel-sized increments was obtained. Using synchrotron FTIR microspectroscopy can distinguish structures of protein amide I among the different feed protein sources. The results show that the secondary structure of feather protein differed from those of other feed protein sources in terms of the line-shape and position of amide I. The feather protein amide I peaked at approximately 1630 cm(-1). However, other feed protein sources showed a peak at approximately 1650 cm(-1). By using multicomponent peak modeling, the relatively quantitative amounts of alpha-helix and beta-sheet in protein secondary structure were obtained, which showed that feather contains 88% beta-sheet and 4% alpha-helix, barley contains 17% beta-sheet and 71% alpha-helix, oat contains 2% beta-sheet and 92% alpha-helix, and wheat contains 42% beta-sheet and 50% alpha-helix. The difference in percentage of protein secondary structure may be part of the reason for different feed protein digestive behaviors. These results demonstrate the potential of highly spatially resolved infrared microspectroscopy to reveal feed protein secondary structure. Information from this study by the infrared probing of feed protein secondary structure may be valuable as a guide for feed breeders to improve and maintain protein quality for animal use.  相似文献   

13.
Fourier transform horizontal attenuated total reflectance (FT-HATR) was used to examine changes in the secondary structure of gluten proteins in a flour-water dough system during mixing. Midinfrared spectra of mixed dough revealed changes in four bands in the amide III region associated with secondary structure in proteins: 1317 (alpha-helix), 1285 (beta-turn), 1265 (random coil), and 1242 cm (-1) (beta-sheet). The largest band, which also showed the greatest change in second derivative band area (SDBA) during mixing, was located at 1242 cm (-1). The bands at 1317 and 1285 cm (-1) also showed an increase in SDBA over time. Conversely, the band at 1265 cm (-1) showed a corresponding decrease over time as the doughs were mixed. All bands reached an optimum corresponding to the minimum mobility of the dough as determined by the mixograph. Increases in alpha-helix, beta-turn, and beta-sheet secondary structures during mixing suggest that the dough proteins assume a more ordered conformation. These results demonstrate that it is possible, using infrared spectroscopic techniques, to relate the rheological behavior of developing dough in a mixograph directly to changes in the structure of the gluten protein system.  相似文献   

14.
The purification and characterization of a novel extracellular beta-1,3-1,4-glucanase from the thermophilic fungus Paecilomyces thermophila J18 were studied. The strain produced the maximum level of extracellular beta-glucanase (135.6 U mL(-1)) when grown in a medium containing corncob (5%, w/v) at 50 degrees C for 4 days. The crude enzyme solution was purified by 122.5-fold with an apparent homogeneity and a recovery yield of 8.9%. The purified enzyme showed as a single protein band on SDS-PAGE with a molecular mass of 38.6 kDa. The molecular masses were 34.6 kDa and 31692.9 Da when detected by gel filtration and mass spectrometry, respectively, suggesting that it is a monomeric protein. The enzyme was a glycoprotein with a carbohydrate content of 19.0% (w/w). Its N-terminal sequence of 10 amino acid residues was determined as H2N-A(?)GYVSNIVVN. The purified enzyme was optimally active at pH 7.0 and 70 degrees C. It was stable within pH range 4.0-10.0 and up to 65 degrees C, respectively. Substrate specificity studies revealed that the enzyme is a true beta-1,3-1,4-D-glucanase. The K m values determined for barley beta-D-glucan and lichenan were 2.46 and 1.82 mg mL(-1), respectively. The enzyme hydrolyzed barley beta-D-glucan and lichenan to yield bisaccharide, trisaccharide, and tetrasaccharide as the main products. Circular dichroism studies indicated that the protein contains 28% alpha-helix, 24% beta-sheet, and 48% random coil. Circular dichroism spectroscopy is also used to investigate the thermostability of the purified enzyme. This is the first report on the purification and characterization of a beta-1,3-1,4-glucanase from Paecilomyces sp. These properties make the enzyme highly suitable for industrial applications.  相似文献   

15.
The conformation of oat globulin dispersions (10% in D2O) under the influence of pH, chaotropic salts, protein structure perturbants, and heating conditions was studied by Fourier transform infrared (FTIR) spectroscopy. The FTIR spectrum of oat globulin showed major bands from 1670 to 1634 cm(-1), corresponding to the four major types of secondary structures, that is, beta-turns, beta-sheets, alpha-helices, and random coils. At extreme acidic and alkaline pH conditions, there were changes in intensity in the bands attributed to beta-sheet structures (1626, 1634, and 1682 cm(-1)), and shifts of the bands to higher or lower wavenumbers, indicating changes in conformation. In the presence of some chaotropic salts, the 1626 and 1634 cm(-1) bands were shifted upward, with a marked decrease in the intensity of the 1634 cm(-1) peak. The addition of several protein structure perturbants led to a slight shift in the alpha-helix/random coil bands and a marked reduction in the beta-sheet peaks, suggesting protein unfolding. Heating under aggregating conditions led to slight shifts in all of the major bands and progressive changes in the intensity of the alpha-helix, beta-sheet, and beta-turn peaks, suggesting protein denaturation. This was accompanied by marked increases in intensity of the two intermolecular beta-sheet bands (1682 and 1624-1626 cm(-1)) associated with the formation of aggregated strands. The IR spectra of soluble and insoluble aggregates showed a redistribution of native and extensively denatured proteins in the two fractions.  相似文献   

16.
We investigated the effect of goethite and copper on almond β-glucosidase activity. The activity of β-glucosidase was found to be inhibited at dissolved copper concentrations exceeding 0.2 mm . Copper was most influential in the pH range 5–5.5, at which the enzyme activity was reduced by 50% or more at total copper concentrations of 0.2 mm compared with copper-free assays. At pH 4, the presence of 0.2 mm copper reduced the activity by 15% at most. Copper caused a shift of the pH optimum towards lower pH. Goethite did not influence β-glucosidase activity significantly, although up to 95% of the enzyme was adsorbed on its surface. The adsorption seemed to be caused principally by non-electrostatic forces which were too weak to affect the structure of the enzyme. Goethite reduced the inhibitory effect of copper because of the strong affinity of copper for goethite, as observed in batch adsorption experiments. The sorption of the enzyme on goethite was not competitive with copper at concentrations less than 0.2 mm ; at larger concentrations, however, the presence of the enzyme reduced copper adsorption. The influence of copper on enzyme activity as well as the influence of copper in combination with goethite could be described with a model combining Michaelis–Menten enzyme kinetics with a simple conditionally first-order reaction law for the binding of copper by the enzyme.  相似文献   

17.
Studies were carried out using a soil perfusion apparatus for the removal of lignin from waste water. It was observed that when a medium (pH 7.0) with lignin having about 1200 color units was perfused through a soil column, perfusate contained only 250 to 300 color units after three days of perfusion and pH was reduced to less than 5.0 with 70 to 80% reduction in Total Organic Carbon (TOC). With a sterile soil column the color was not removed and there was no change in TOC content. When the medium was buffered at pH 7.0, there was no reduction in color units. When the pH of the perfusate reduced to less than 5.0, it was also observed that the nitrate content had increased considerably. These results indicated that due to microbial activity lignin molecules might have been biotransformed and adsorbed on the soil column at lower pH. The major group of microorganisms were also isolated from the soil and their significance is discussed in this paper.  相似文献   

18.
Raman spectroscopic study of oat globulin conformation   总被引:2,自引:0,他引:2  
Analysis of Raman spectra of oat globulin showed that extreme pH values caused an increase in the amide and C-H stretching band intensity, indicating changes in the secondary structures of the protein due to denaturation. Similar changes were observed when oat globulin was treated with chaotropic salts and several protein perturbants. Sodium dodecyl sulfate, beta-mercaptoethanol, and ethylene glycol also caused a shift in the amide III' band, suggesting a transition from beta-sheet to a random coil conformation. Heating at temperatures near the denaturation temperature of oat globulin led to increases in the amide and C-H band intensity, indicating unfolding of the protein. The data indicate that FT-Raman spectroscopy is suitable for studying the secondary structure of plant proteins such as oat globulin.  相似文献   

19.
Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) were used to study changes in the conformation of globulin from common buckwheat (Fagopyrum esculentum Moench) (BWG) under various environmental conditions. The IR spectrum of the native BWG showed several major bands from 1691 to 1636 cm(-1) in the amide I' region, and the secondary structure composition was estimated as 34.5% beta-sheets, 20.0% beta-turns, 16.0% alpha-helices, and 14.4% random coils. Highly acidic and alkaline pH conditions induced decreases in beta-sheet and alpha-helical contents, as well as in denaturation temperature (Td) and enthalpy of denaturation (DeltaH), as shown in the DSC thermograms. Addition of chaotropic salts (1.0 M) caused progressive decreases in ordered structures and thermal stability following the lyotropic series of anions. The presence of several protein structure perturbants also led to changes in IR band intensities and DSC thermal stabilities, suggesting protein unfolding. Intermolecular antiparallel beta-sheet (1620 and 1681 cm(-1)) band intensities started to increase when BWG was heated to 90 degrees C, suggesting the initiation of protein aggregation. Increasing the time of the preheat treatment (at 100 degrees C) caused progressive increases in Td and pronounced decreases in DeltaH, suggesting partial denaturation and reassociation of protein molecules.  相似文献   

20.
The effects of water activity (A(w)) and lipid addition on the secondary structure of powdery zein were investigated using Fourier transform infrared spectroscopy. Two fatty acid esters, i.e., the linolenic and eicosapentaenoic acid ethyl esters (LAE and EPE), were mixed with the zein powder. The powders were stored in the "dry" state (with silica gel) and the "humid" state (A(w) = 0.9). The powdery zein without the lipids was shown to have a high content of the intermolecular hydrogen-bonded beta-sheet in the "dry" state, indicating the presence of protein aggregates. An increase in A(w) induced a decrease in this beta-sheet, concomitant with increases in the alpha-helix and beta-turn structures. The addition of LAE caused decreases in the alpha-helix and intermolecular hydrogen-bonded beta-sheet of zein when the powder was stored in the "humid" state, suggesting the strong interaction of LAE and zein molecules. However, LAE did not affect the secondary structure of zein in the "dry" state. The addition of EPE hardly influenced the secondary structure of zein, irrespective of A(w). These results are discussed in relation to the antioxidative activity of zein in the powder system, which had studied previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号