首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A total of 124 Duroc and 99 Landrace primiparous and multiparous sows were assigned, within breed and contemporary group, to control (N) or 10% added fat (F) diets on d 105 of gestation based on parity and genetic line (control or selected for improved sow productivity), to determine the effects of genetic line and fat addition to the lactation diet on sow and litter performance. Weekly feed intake was not affected (P greater than .10) by genetic line for Duroc and Landrace sows but feed intake was reduced (P = .08) during wk 1 to 4 for Duroc sows and during wk 1 and 4 for Landrace sows (P less than .05) when they were fed diet F compared with diet N. Select (S)-line Duroc and Landrace sows lost more weight during lactation (P less than .01) than did control (C)-line sows. Select-line Landrace sows lost more backfat during lactation (P less than .05) than did C-line sows. Landrace sows lost less weight during lactation (P less than .05) when fed diet F than when fed diet N. The total number of pigs born, born alive, and alive at 21 d and at weaning were higher (P less than .01) for S-line Duroc sows, and litter size at 21 d and at weaning was higher (P less than .01) for S-line Landrace sows than for C-line litters within each breed. Pig survival from birth to weaning was increased (P = .07) for Duroc sows fed diet F but not for Landrace sows.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Gilts (n = 208) were used to evaluate the effect of lysine (protein) intake over three parities on lactation and subsequent reproductive performance. Sows were assigned randomly to one of five experimental diets at each farrowing. The five corn-soybean mealbased lactation diets contained increasing concentrations of total lysine (.60, .85, 1.10, 1.35, and 1.60%) and CP (14.67, 18.15, 21.60, 25.26, and 28.82%). Other amino acids were provided at a minimum of 105% of the NRC (1988) ratio to the lysine requirement. Sows had ad libitum access to their assigned diets from parturition until weaning (19.5+/-.2 d postpartum). All sows were fed a common gestation diet (14% CP and .68% lysine) from weaning to next farrowing. Litter size was standardized by d 3 postpartum to 10 pigs in parity 1 and 11 pigs in parity 2 and 3. Increasing dietary lysine (protein) linearly decreased (P<.05) voluntary feed intake of parity 1 (from 5.4 to 4.6 kg/d), 2 (from 6.5 to 5.8 kg/d), and 3 sows (from 6.8 to 6.2 kg/d). With the increase of dietary lysine (protein) concentration during lactation, litter weight gain responded quadratically (P<.05) in all three parities. Maximal litter ADG was 2.06, 2.36, and 2.49 kg/d in parities 1, 2, and 3, respectively, which occurred at about 44, 55, and 56 g/d of lysine intake for parity 1, 2, and 3 sows, respectively. Increasing dietary lysine (protein) had no effect (P>.1) on sow weight change, weaning-to-estrus interval, and farrowing rate in all three parities and no effect on backfat change in parity 2 and 3, but tended to increase backfat loss linearly (P<.1) in parity 1. A linear decrease of second litter size (total born, from 11.7 to 10.1, P<.1; born alive, from 11.0 to 8.9, P<.01) was observed when dietary lysine (protein) increased during the first lactation. Lysine (protein) intake during the second lactation had a quadratic effect on third litter size (P<.05; total born: 13.3, 11.2, 11.6, 11.9, and 13.6; born alive: 11.8, 10.1, 10.3, 11.2, and 12.4). However, fourth litter size was not influenced by lysine (protein) intake during the third lactation. These results suggest that the lysine (protein) requirement for subsequent reproduction is not higher than that for milk production. Parity influences the lysine (protein) requirement for lactating sows and the response of subsequent litter size to previous lactation lysine (protein) intake.  相似文献   

3.
Ninety-one primiparous and multiparous sows and their pigs were used to evaluate the effects of a novel carbohydrate- and protein-based feed ingredient (Nutri-Pal, NP) on sow and litter performance during lactation. Nutri-Pal is a feed supplement for sows that consists of a blend of milk chocolate, brewer's yeast, whey products, and glucooligosaccharides. The dietary treatments consisted of a corn-soybean meal control and a corn-soybean meal plus 5% NP fed from d 110 of gestation to weaning. The diets were formulated to be equal in total Lys and ME. Sows were allotted to treatment based on parity, body weight, and the date of d 110 of gestation. There were 46 and 45 sows per treatment over four farrowing groups. Litters were standardized to 10 pigs and weighed within 1 d of farrowing, and all sows weaned at least 8 pigs at an average age of 21 d. Sows were weighed on d 110 of gestation, d 1 postfarrowing, and at weaning. Sows were fed three times daily during lactation. Sows were checked twice daily after weaning for signs of estrus. The weaning weight of sows fed NP was increased (P < 0.10) compared with those fed the control diet. Sows fed the control diet tended (P = 0.11) to lose more weight per day from d 110 of gestation to weaning than the sows fed NP. Otherwise, sow response variables (sow weight on d 110 of gestation and d 1 postfarrowing, d 110 of gestation to d 1 postfarrowing and lactation weight change per day, d 110 of gestation to d 1 postfarrowing, lactation, and total feed intake, days to estrus, pigs born alive or dead, and litter and average pig birth weight) were not affected (P > 0.10) by diet. There were no effects (P > 0.10) of diet on litter performance response variables (pigs weaned, litter and average pig weaning weight and gain, and survival percent). The NP feed ingredient had minor effects on sow productivity, but it did not affect litter productivity indices.  相似文献   

4.
In nine trials, 278 late-term gravid sows were fed isocaloric amounts (8,500 kcal metabolizable energy (ME)/d) of a fortified, corn-soybean meal based diet in which 20% of their daily ME intake was supplied by corn starch, 1,3-butanediol or lard from about d 106 of gestation to parturition. After parturition, the sow's daily ME intake was increased to 18,000 kcal. Sows fed starch and lard remained on their respective diets for the duration of a 28-d lactation; whereas, those initially fed butanediol were switched to the starch diet after parturition. Number of pigs born per litter, average pig birth weight and incidence of stillbirths were not influenced (P greater than .30) by the prepartum diet of the sow. However, the inclusion of isocaloric levels of butanediol for starch in the preparatum diet and lard for starch in the pre- and postpartum diets increased the number of pigs weaned per litter by .45 (P less than .13) and .16 pigs (8.25, 7.96 vs 7.80) and improved the survival rate of pigs from birth to weaning by 4.3 (P less than .13) and 2.7 percentage units (84.5, 82.8 vs 80.1%), respectively. Average pig weights at 28 d of age for litters of sows fed butanediol prepartally were similar to those of sows fed starch, but were less (P less than .01) than those of sows fed lard throughout lactation.  相似文献   

5.
Two experiments were conducted to determine the voluntary feed intake and performance of lactating sows fed diets containing a sucrose/milk chocolate product (MCP) blend (Exp. 1) or dried porcine solubles (DPS; Exp. 2). Dried porcine solubles is a coproduct of heparin extraction from porcine small intestines. In Exp. 1, mixed-parity sows (n = 108) at two research centers were assigned to a corn-soybean-meal-based diet formulated to contain 0.9% total lysine or a similar diet that contained 4% sucrose and 2% MCP on an as-fed basis. Sows were allowed ad libitum access to dietary treatments from the day of farrowing until pigs were weaned at approximately 21 d postpartum. Diet had no significant effect on voluntary feed intake of sows during lactation, backfat depth, or postweaning interval to estrus, but it had variable effects on body weight changes. Inclusion of the sucrose/MCP blend in diets elicited a 2% improvement in litter weaning weight at one research center and a 6% depression in litter weaning weight at the other center (diet x research center, P < 0.05). Litter size throughout lactation was unaffected by dietary treatment. In Exp. 2, mixed-parity sows (n = 119) at two research centers were assigned to corn-soybean meal-based diets formulated to contain 0.9% total lysine with 0, 1.5, or 3.0% added DPS. Sows were assigned to dietary treatments within research center, farrowing group, and parity at parturition. Dried porcine solubles tended to increase (P < 0.10) total feed consumed in the first 9 d of lactation and average daily feed intake over the entire lactation (6.03, 6.53, and 6.30 kg) for sows fed 0, 1.5, and 3.0% DPS, respectively. Litter size and weight on d 18 of lactation were not affected by concentration of DPS in the diet. Days from weaning to estrus and percentage of sows displaying estrus were not influenced by diet. We conclude that inclusion of the sucrose/MCP blend in the diet for lactating sows had no consistent effect on voluntary feed intake of sows and weight gain of nursing pigs. Inclusion of DPS at 1.5 or 3.0% tended to improve feed intake of lactating sows but had no significant influence on litter performance.  相似文献   

6.
Forty-five gravid cross-bred sows (mean parity 3.3 +/- .3) were randomly allotted to two dietary treatments: corn-soybean mean (CS) or CS plus 60 mg salinomycin per kilogram of diet (CSS). Sows were fed their respective diets through two successive parities with dietary treatment initiated at 100 d postcoitum and continued until weaning of the second successive litter. Therefore, sows fed CSS received salinomycin for 14 d before the first parturition and for approximately 153 d before the second parturition. Daily feed intake was restricted to 2 kg.hd-1.d-1 during gestation and to 3 kg.hd-1.d-1 from weaning to breeding. All sows. had ad libitum access to feed during lactation. Sows were weighed 7 d prior to parturition, at weaning and at breeding. Weaning-to-estrus interval and farrowing interval were recorded for all sows. Litters were weighed at birth and weaning. There were no differences (P greater than .05) between dietary treatments in sow weights before parturition, at weaning or at breeding for either first or second farrowing. The CSS-fed sows lost more weight from weaning to breeding after the first (P less than .03) and second (P less than .05) lactation periods than CS-fed sows. The CSS-fed sows tended to gain more (P = .06) weight during lactation than CS-fed sows. There were no differences (P greater than .05) between treatments in lactation feed intake, weaning-to-estrus interval, farrowing interval, litter size born or weaned, litter weights at birth or at weaning, or in sow culling rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Supplementing diets with n-3 fatty acids from fish oil has been shown to improve reproductive performance in dairy cattle and sheep, but there is little published literature on its effects in sows. The aim of this study was to evaluate the reproductive performance of sows fed fish oil as a source of n-3 PUFA prefarrowing and during lactation. From d 107.7 ± 0.1 of pregnancy, 328 sows ranging in parity from 0 to 7 (parity 1.95 ± 0.09, mean ± SE) were fed either a diet containing tallow (control) or an isocaloric diet containing 3 g of fish oil/kg of diet (n-3). Diets were formulated to contain the same amount of DE (13.9 MJ/kg), crude fat (54 g/kg), and CP (174 g/kg). Sows were fed their treatment diet at 3 kg daily for 8 d before farrowing and continued on treatment diets ad libitum until weaning at 18.7 ± 0.1 d of lactation. After weaning, all sows were fed a gestation diet without fish oil until their subsequent farrowing. There was no effect (P > 0.310) of feeding n-3 diets prefarrowing on piglet birth weight, preweaning growth rate, piglet weaning weight, or sow feed intake. However, n-3 sows had a larger subsequent litter size (10.7 ± 0.3 vs. 9.7 ± 0.3 total born; 10.2 ± 0.3 vs. 9.3 ± 0.3 born live; P < 0.05). In conclusion, this is the first study to demonstrate that feeding sows a diet containing n-3 PUFA from fish oil fed before farrowing and during lactation increased litter size in the subsequent parity independent of energy intake.  相似文献   

8.
An experiment was conducted to test the hypothesis that hybrid rye can replace a part of the corn in gestation and lactation diets without negatively affecting sow and litter performance. For each phase, a corn–soybean meal diet and three diets in which hybrid rye replaced 25%, 50%, or 75% of corn were formulated. Two hundred sows were randomly allotted by parity to the four treatments. Results indicated that diet did not affect body weight or average daily gain (ADG) of sows or number of pigs born. The number of pigs weaned, litter weaning weight, and litter ADG increased and then decreased (quadratic, P < 0.05) as hybrid rye in diets increased. Pig mortality and number of crushed pigs tended (quadratic, P < 0.10) to be reduced as hybrid rye was added to the diet. Serum cytokines did not differ among treatments on day 105 of gestation or in pigs on the day of weaning, but interleukin (IL)-4, IL-10, and IL-18 on day 13 of lactation increased and then decreased (quadratic, P < 0.05) as hybrid rye inclusion increased in diets. Milk urea N increased (linear, P < 0.05) as hybrid rye was included in the diet, but no other differences in milk composition were observed. Overall, replacing 25% or 50% of corn with hybrid rye resulted in improved lactation performance, and replacing 75% of corn with hybrid rye resulted in sow and litter performance that was not different from that of sows fed control diets.  相似文献   

9.
Four experiments involving 265, 410, 894, and 554 sows (Exp. 1 to 4, respectively) were conducted to determine the effect of spray-dried plasma (SDP) at 0 or 0.25% (Exp. 1 and 2) and 0 or 0.50% (Exp. 3 and 4) in lactation diets on average daily feed disappearance (FD), sum of sow BW, fetal and placental loss from d 110 gestation to weaning (SWL), litter size at weaning, litter weight at weaning, and average days from weaning to first estrus (WEI). Experiments 1, 3, and 4 were conducted during summer months, and Exp. 2 was conducted during fall to winter months. Experiment 1 used only parity 1 and parity 2 sows and Exp. 4 used only mature (>2 parities) sows, whereas Exp. 2 and 3 used all parity groups. Sows fed SDP in Exp. 1 had increased (P < 0.01) FD and a tendency for reduced (P = 0.06) SWL and WEI (P = 0.06). Sows fed SDP in Exp. 2 had a tendency for increased (P = 0.09) sow BW at weaning and reduced (P = 0.09) SWL, whereas other variables were not different between diets. Parity 1 and 2 sows fed SDP in Exp. 3 had increased (P < 0.01) FD, but mature sows fed SDP had reduced (P = 0.02) FD. Pig survival and litter size at weaning for all parity groups was not different between diets. The WEI for parity 1 sows fed SDP was reduced (P = 0.02) and tended to be reduced (P = 0.10) for mature sows fed SDP, but was not different between diets for parity 2 sows. More parity 1 sows fed SDP were detected (P = 0.01) in estrus 4 to 6 d after weaning, and fewer were detected (P < 0.01) in estrus 6 d after weaning compared with control parity 1 sows. In Exp. 4, FD was reduced (P < 0.01) for mature sows fed SDP; however, litter weight and average pig BW at weaning was increased (P < 0.01) with more (P < 0.01) marketable pigs (pig BW > 3.6 kg) weaned per litter. Relatively low dietary levels of SDP (0.25 to 0.50%) fed to parity 1 sows farrowed during summer months increased lactation FD and reduced WEI. Mature sows fed SDP during summer months consumed less lactation feed without compromising WEI, but had an increased litter weight, average pig BW, and number of marketable pigs at weaning.  相似文献   

10.
本试验旨在研究母猪饲粮添加β-羟基-β-甲基丁酸(HMB)对母猪繁殖性能及仔猪生长性能和免疫功能的影响。选取20头3~6胎次、妊娠74 d的"长×大"母猪,随机分成2组,每组10个重复,每个重复1头母猪,对照组饲喂基础饲粮,试验组在对照组基础饲粮中添加2 000 mg/kg HMB。试验从母猪妊娠第74天开始,至仔猪21日龄断奶结束。结果表明:与对照组相比,试验组仔猪初生个体重显著提高14.1%(P<0.05),仔猪7、21日龄窝重分别显著提高16.6%、11.7%(P<0.05),仔猪初生至7日龄、初生至21日龄窝增重分别显著提高28.3%和12.5%(P<0.05);与对照组相比,试验组母猪在妊娠第98天和分娩当天血清免疫球蛋白G(IgG)含量分别提高35.3%(P<0.01)、13.0%(P>0.05),免疫球蛋白M(IgM)含量分别提高34.7%(P<0.05)、12.6%(P>0.05);与对照组相比,试验组母猪初乳中IgG含量显著提高19.0%(P<0.05),分娩后第14天常乳中IgM含量显著提高21.4%(P<0.05);与对照组相比,试验组仔猪7日龄血浆IgG、IgM含量分别显著提高11.4%和40.1%(P<0.05)。上述结果提示,母猪妊娠后期及哺乳期饲粮中连续添加2 000 mg/kg HMB,可显著提高仔猪初生重和哺乳期增重,改善母猪及仔猪免疫功能。  相似文献   

11.
The effects of feeding glucose during the 5 days before parturition on litter performance and on glucose concentration in sows were studied. At day 100 of gestation, 130 multiparous sows were assigned to the treatments. Late gestating sows were fed 0 g, 150 g, 250 g, 350 g and 450 g of glucose a day, respectively. During lactation, all sows were given free access to the same lactation diet (without glucose). One day before parturition, blood samples were collected from 30 sows (6 sows per treatment) at 10 before and 20, 40, 60 and 80 min after the meal. The supply of additional dietary glucose increased piglet birth weight ( P  < 0.05). Feed intake in week 1 and week 1–4 of lactation was greatest in sows fed the 0% glucose diet, least by sows fed the 18% glucose diet, and intermediate by sows fed the 6, 10, 14% glucose diets ( P  < 0.05). Basal glucose concentration and time of maximum glucose concentration after glucose intake were not affected by dietary treatment in the last 5 days of gestation. The sows fed the 14 and 18% glucose diets had greater maximum increase in glucose concentration than sows fed diet without glucose ( P  < 0.05). In conclusion, feeding glucose to sows during 5 days before parturition increased birth weight of live-born piglet and decreased sows feed intake during lactation, but did not affect the performance of sows and piglets.  相似文献   

12.
In six trials, 158 late-term gravid sows were fed isocaloric amounts (8,500 kcal metabolizable energy/d) of a corn-soybean meal-based diet in which 20% of their daily metabolizable energy (ME) intake was supplied by either cornstarch or 1,3-butanediol (butanediol) from about d 105 of gestation to parturition. After parturition, all sows were allowed to consume a standard, corn-soybean meal-based lactation diet, ad libitum, during a 28-d lactation. Prepartum administration of butanediol, a stable, nonvolatile liquid that possesses anesthetic, antimicrobial and ketogenic properties, did not alter the voluntary feed intake or body weight changes of sows pre- or post-partum. Number of pigs born per litter, average pig birth weight and incidence of stillbirths were not influenced by the prepartum diet of the sows. However, the addition of butanediol to the prepartum diet increased (P less than .10) the number of pigs weaned per litter at 28 d by .51 pigs (8.17 vs 7.66) and improved (P less than .10) the survival rate of pigs from birth to weaning by 5.7 percentage units (84.1 vs 78.4%) compared with those of sows fed isocaloric additions of starch. Average pig weights at 28 d of age were similar for the two treatment groups (6.18 vs 6.08 kg) even though greater numbers of pigs were nursing sows fed the butanediol diet prepartum. The rate and efficiency of gain and survivability of weanling pigs during a 28-d postweaning period were not influenced by the prepartum diet of their dam.  相似文献   

13.
This experiment was conducted to investigate the effects of inulin supplementation in low‐ or high‐fat diets on both the reproductive performance of sow and the antioxidant defence capacity in sows and offspring. Sixty Landrace × Yorkshire sows were randomly allocated to four treatments with low‐fat diet (L), low‐fat diet containing 1.5% inulin (LI), high‐fat diet (H) and high‐fat diet containing 1.5% inulin (HI). Inulin‐rich diets lowered the within‐litter birth weight coefficient of variation (CV, p = 0.05) of piglets, increased the proportion of piglets weighing 1.0–1.5 kg at farrowing (p < 0.01), reduced the loss of body weight (BW) and backfat thickness (BF) during lactation (p < 0.05) and decreased the duration of farrowing as well as improved sow constipation (p < 0.05). Sows fed fat‐rich diets gained more BW during gestation (p < 0.01), farrowed a greater number of total (+1.65 pigs, p < 0.05) and alive (+1.52 pigs p < 0.05) piglets and had a heavier (+2.06 kg, p < 0.05) litter weight at birth as well as a decreased weaning‐to‐oestrous interval (WEI, p < 0.01) compared with sows fed low‐fat diets. However, it is worth noting that the H diet significantly decreased the serum activities of superoxide dismutase (T‐SOD) and glutathione peroxidase (GSH‐Px) and increased the serum malondialdehyde (MDA) levels in sows and piglets (p < 0.05). In contrast, HI diet enhanced the activities of T‐SOD and GSH‐Px and decreased the serum MDA concentrations (p < 0.05) in sows and piglets. In summary, the fat‐rich diets fed to sows during gestation had beneficial effects on reproductive performance, but aggravated the oxidative stress in sow and piglets. Inulin‐rich diets fed to sow during gestation had beneficial effects on within‐litter uniformity of piglet birthweight and enhanced the antioxidant defence capacity of sows and piglets.  相似文献   

14.
A review of factors influencing litter size in Irish sows   总被引:1,自引:0,他引:1  
Many factors influence litter size. These include genetics, gilt management, lactation length, parity distribution, disease, stress and boar fertility. In the past 20 years, litter size in Irish sows has increased by only one pig. Born alive figures now average at 11.2 pigs per litter. In this regard, Ireland is falling behind our European competitors who have made significant advances over this time. Denmark, for example, has an average figure of 12.7 pigs born alive per litter and France an average of 12.5. The single area that could be improved immediately is sow feeding. It is important that sows are fed correctly throughout pregnancy. If over-fed during pregnancy, sows will have depressed appetite during lactation. If underfed in pregnancy, sows will be too thin at farrowing. The correct way to feed a pregnant sow is to match her feed allocation to her requirement for maintenance, body growth and growth of her developing foetuses. During lactation, sows should be given as much feed as they can eat to prevent excessive loss of body condition. Liquid-feed curves should be such that lactating sows are provided with a minimum mean daily feed supply of 6.2 kg. A small proportion of sows will eat more and this could be given as supplementary dry feed. Where dry feeding is practised in the farrowing house, it is difficult to hand-feed sows to match their appetite. Ideally ad libitum wet/dry feeders should be used. From weaning to service, sows should once again be fed ad libitum. If liquid feeding, this means giving at least 60 MJ DE (digestible energy) per day during this period. If dry feeding, at least 4 kg of lactation diet should be fed daily. The effort spent perfecting sow feeding management on units should yield high dividends in the form of increased pigs born alive per litter.  相似文献   

15.
Multiparous sows (n = 307) were used to evaluate the effects of added dietary L-carnitine, 100 mg/d during gestation and 50 ppm during lactation, on sow and litter performance. Treatments were arranged as a 2 (gestation or lactation) x2 (with or without L-carnitine) factorial. Control sows were fed 1.81 kg/d of a gestation diet containing .65% total lysine. Treated sows were fed 1.59 kg/d of the control diet with a .23 kg/d topdressing of the control diet that provided 100 mg/d of added L-carnitine. Lactation diets were formulated to contain 1.0% total lysine with or without 50 ppm of added L-carnitine. Sows fed 100 mg/d of added L-carnitine had increased IGF-I concentration on d 60 (71.3 vs. 38.0 ng/mL, P<.01) and 90 of gestation (33.0 vs. 25.0 ng/mL, P = .04). Sows fed added L-carnitine had increased BW gain (55.3 vs 46.3 kg; P<.01) and last rib fat depth gain (2.6 vs. 1.6 mm; P = .04) during gestation. Feeding 100 mg/d of added L-carnitine in gestation increased both total litter (15.5 vs. 14.6 kg; P = .04) and pig (1.53 vs 1.49 kg; P<.01) birth weight. No differences were observed in pig birth weight variation. Added L-carnitine fed during gestation increased litter weaning weight (45.0 vs. 41.3 kg, P = .02); however, no effect of feeding L-carnitine during lactation was observed. No differences were observed in subsequent days to estrus or farrowing rate. Compared to the control diet, feeding added L-carnitine in either gestation, lactation, or both, increased (P<.05) the subsequent number of pigs born alive, but not total born. In conclusion, feeding L-carnitine throughout gestation increased sow body weight and last rib fat depth gain and increased litter weights at birth and weaning.  相似文献   

16.
An experiment was conducted to compare the effects of organic (Zn AA complex, ZnAA) and inorganic Zn (ZnSO4) sources on sows and their progeny during gestation and lactation and on the pigs during the nursery period. The dietary treatments were 1) a corn-soybean meal diet with 100 ppm Zn from ZnSO4 (control); 2) diet 1 + 100 ppm additional Zn from ZnSO4; and 3) diet 1 + 100 ppm additional Zn from ZnAA. Dietary additions were on an as-fed basis. Thirty-one primaparous and multiparous sows were allotted to the treatment diet beginning on d 15 of gestation and continuing through lactation. At weaning (d 17 of age), 202 pigs (63, 55, and 84 pigs for treatments 1 to 3, respectively) were allotted to the same dietary treatment as their dam. The pigs were fed a 3-phase diet regimen during the nursery period: d 0 to 7 (phase I); d 7 to 21 (phase II); and d 21 to 28 (phase III). At weaning and at the end of phase III, 1 gilt per replicate was killed, and the left front foot, liver, pancreas, and entire small intestine were removed. Diet had no effect (P > 0.10) on any response during gestation. During lactation, there was an increase (P < 0.10) in litter birth weight in sows fed ZnAA compared with those fed the control or ZnSO4 diets. The sows fed ZnAA nursed more pigs (P < 0.10) than sows fed the ZnSO4 diet, and they weaned more pigs (P < 0.05) than sows fed the control diet. Jejunal villus height of the weaned pigs from sows fed ZnSO4 was increased (P < 0.05) compared with those from the sows fed the control diet. During the nursery period, growth performance was not affected (P > 0.10) by diet. Pigs fed ZnSO4 had greater duodenal villus width (P < 0.05) than those fed ZnAA, and pigs fed ZnSO4 or the control diet had greater ileal villus width (P < 0.05) than those fed ZnAA. Pigs fed ZnSO4 or ZnAA had more (P < 0.05) bone Zn than those fed the control diet. Liver Zn concentration was greatest in pigs fed ZnSO4, followed by those fed ZnAA, and then by those fed the control diet (P < 0.05). Pancreas Zn was increased (P < 0.05) in pigs fed ZnSO4 compared with those fed the control diet. These results suggest that 100 ppm Zn in trace mineral premixes provides adequate Zn for optimal growth performance of nursery pigs, but that 100 ppm additional Zn from ZnAA in sow diets may increase pigs born and weaned per litter.  相似文献   

17.
The objective of this study was to determine the effects of dietary Trp supplementation on mixing-induced aggression and the associated stress, and on reproductive performance in gestating sows. After weaning, sows were mixed in pens with electronic sow feeders on concrete-slatted floors. Each pen housed 21 ± 2.8 sows, with approximately 2.7 ± 0.43 m(2)/sow of floor space allowance. Multiparous sows (n = 168) from 8 breeding groups were used, with 4 groups assigned to a control diet and 4 groups assigned to a high-Trp diet. Control sows received corn- and soybean meal-based diets throughout gestation (0.15% Trp) and lactation (0.21% Trp). Three days before and after mixing, sows assigned to the high-Trp treatment received approximately 2.3 times the dietary Trp (0.35% in the gestation diet and 0.48% in the lactation diet) fed to control sows. Six focal sows (2 sows from each of parity 1, 2, and 3 or greater) in each pen were designated and videotaped for 72 h after mixing to determine the type and number of aggressive interactions among sows. Before and 48 h after mixing, saliva samples were collected from focal sows, and scratches were assessed on all sows. Data were analyzed using the FREQ and GLIMMIX procedures (SAS Inst. Inc., Cary, NC). Aggression among sows was intense during the initial 6 h and decreased between 6 and 72 h after mixing. The initial aggression caused scratches and increased cortisol concentrations (P < 0.05). Mature sows tended to fight for longer periods (112 vs. 52 s/h per sow, SE = 23.8; P < 0.10) but had fewer scratches caused by aggression (injury score = 4.3 vs. 6.5, SE = 1.13; P < 0.01) than parity-1 sows. Supplementation of dietary Trp reduced the total duration of head-to-head knocking (P < 0.05) but did not affect other aggressive behaviors. There was no difference between dietary treatments in injury scores or saliva cortisol concentrations. Sows in the high-Trp treatment had more total piglets born (12.5 vs. 10.5 pigs/litter, SE = 0.55; P < 0.05) and more stillborn piglets (1.5 vs. 0.8 pigs/litter, SE = 0.20; P < 0.05), but had no significant change (P = 0.12) in piglets born alive (10.8 vs. 9.7 pigs/litter, SE = 0.42) compared with control sows. The results indicate that the initial aggression after mixing caused more injuries in young sows than in mature sows. Supplementation of dietary Trp at 2.3 times the control amount for a short period did not effectively reduce aggression and the associated stress in sows at mixing.  相似文献   

18.
Sows of differing parities and genetics were used at different locations to determine the effects of feeding added L-carnitine during lactation on sow and litter performance. In Exp. 1, sows (n = 50 PIC C15) were fed a lactation diet (1.0% total lysine, .9% Ca, and .8% P) with or without 50 ppm of added L-carnitine from d 108 of gestation until weaning (d 21). No differences in litter weaning weight, survivability, sow ADFI, or sow weight and last rib fat depth change were observed. Number of pigs born alive in the subsequent farrowing were not different (P>.10). In Exp. 2, parity-three and -four sows (n = 115 Large White cross) were used to determine the effect of feeding 0, 50, 100, or 200 ppm of added L-carnitine during lactation (diet containing .9% total lysine, 1.0% Ca, and .8% P) on sow and litter performance. No improvements in the number of pigs or litter weights at weaning were observed (P>.10). Sows fed added L-carnitine had increased weight loss (linear; P<.04), but no differences (P>.10) were observed in last rib fat depth change or subsequent reproductive performance. In Exp. 3, first-parity sows (n = 107 PIC C15) were fed a diet with or without 50 ppm of added L-carnitine during lactation (diet containing 1.0% total lysine). Sows fed added L-carnitine tended (P<.10) to have fewer stillborn and mummified pigs than controls (.42 vs .81 pigs). No differences were observed for litter weaning weight, survivability, or subsequent farrowing performance. Feeding 50 to 200 ppm of added L-carnitine during lactation had little effect on sow and litter performance.  相似文献   

19.
An experiment was conducted to evaluate feather meal as a source of Val in lactating sow diets. Sows (five farrowing groups; mean parity = 2.34) were allotted to one of two dietary treatments on the basis of ancestry, parity, and weight and date of d 110 of gestation. The treatment diets included 1) corn-soybean meal lactation diet (n = 40) or 2) corn-soybean meal lactation diet with 2.5% feather meal (n = 39). The diets were formulated on an equal Lys basis. All litters were adjusted to 10 pigs within 24 h after farrowing, and all sows weaned at least nine pigs. Sows were bled at 110 d of gestation and at weaning, and serum urea N was determined. Backfat thickness was determined ultrasonically at 110 d of gestation and at weaning. Serum urea N and backfat thickness at d 110 of gestation were used as covariates for serum urea N and backfat thickness at weaning, respectively. The litter response criteria (weaning weight, litter weight gain, and percentage survival) were not affected (P > .10) by feather meal. The sow response criteria (weaning weight, weight loss per day, weaning backfat thickness, change in backfat thickness, ADFI, and days to estrus) were not affected (P > .10) by feather meal. Sows fed feather meal had increased (P < .01) serum urea N and tended (P = .15) to have decreased sow weaning weight. Following the initial analysis of the data, the data set was split into two groups: 1) sows with litters gaining less than 2.17 kg/d (n = 19 and 20 for control and feather meal diets, respectively) and 2) sows with litters gaining more than 2.17 kg/d (n = 21 and 19 for control and feather meal diets, respectively). These two groups were analyzed separately. In sows with litters gaining less than 2.17 kg/d, the litter and sow criteria were not affected (P > .10) by treatment. In sows with litters gaining more than 2.17 kg/d, sow weaning weight was decreased (P < .04) and sow weight loss (P < .02) and serum urea N (P < .01) were increased in sows fed feather meal. Feather meal (as a source of Val) did not improve litter weight gain, but it increased serum urea N.  相似文献   

20.
Effects of dextrose plus lactose in sow’s feed were tested on subsequent reproductive performance and within litter birth weight variation. During the last week of gestation and lactation, sows were either fed a commercial lactation diet (Control: C), or an isocaloric diet containing 25 g/kg dextrose plus 25 g/kg lactose (Treatment: T). In the subsequent weaning‐to‐oestrus interval (WEI), all sows received the same amount of a commercial feed, but T sows were supplemented with 150 g dextrose plus 150 g lactose per day. Weight and backfat changes were recorded as well as litter characteristics during the treatment period and the subsequent parity. No significant effect of treatment was found on the subsequent reproductive performance, including the number of piglets born, although the number of live born piglets was 0.51 larger (p = 0.31) and weight of the live born piglets was 84 g higher in the T sows (p = 0.07) than in the C sows. When sows were categorized in sows with 12 or less and more than 12 total born piglets in the previous litter, treatment of sows with dextrose plus lactose resulted for the group with 12 or less piglets in a strong increase in subsequent total born piglets (13.97), whereas in the untreated sows the subsequent litter size was 11.89. In the group with more than 12 total born piglets, no effect of treatment was found (interaction between previous litter size and treatment p = 0.03). The within litter variation in birth weight in the subsequent litter was numerically lower in the T sows. We concluded that the use of dextrose and lactose during lactation and WEI seems to enhance litter size in sows with low previous litter size and seems to have the potential to reduce the within litter variation in birth weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号