首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Verticillium wilt, caused by the soil-borne fungus Verticillium dahliae, is one of the most important diseases of potato in North America. Soil incorporation of alfalfa residues prior to planting potato could be a nonchemical Verticillium wilt management tactic by reducing the number of viable microsclerotia in field soil. Verticillium dahliae microsclerotia were quantified in field soils where organic material from alfalfa was incorporated, and numbers of microsclerotia were compared to fields where alfalfa residue was not incorporated. In addition, bacterial metagenomics was utilized to characterize soils where organic material from alfalfa was or was not incorporated to determine if alfalfa residue incorporation facilitates the formation of soils that suppress or kill V. dahliae microsclerotia. The number of V. dahliae microsclerotia in soil was greater (P = 0.0003) in fields where crop residue was incorporated than fields without incorporation when chloropicrin was used as a fumigant. Conversely, the number of V. dahliae microsclerotia observed in potato plants did not differ (P = 0.4020) between fields where residues were or were not incorporated if chloropicrin was used. Alfalfa residue incorporation did not significantly alter the soil bacterial metagenome compared to fields not subject to residue incorporation in both years of study. Despite these conclusions, the method can be employed to analyze the effect of grower practices with the intent of linking a field practice to increasing soil bacterial diversity and decreasing Verticillium wilt severity on potato.  相似文献   

2.
Results of studies on survival of sclerotia of Sclerotinia and microsclerotia of Verticillium, demonstrated that soil flooding in western Washington is a possible alternative field rotation practice for S. sclerotiorum (white mold), but not for V. dahliae (Verticillium wilt). Cone-tainer experiments in the greenhouse showed that flooding at 16.5 °C caused S. sclerotiorium sclerotia to lose viability between 12 and 24 weeks while a growth chamber experiment revealed that flooding for 18 weeks at 11 °C or 20 °C was sufficient. V. dahliae microsclerotia appeared resistant to flooding under greenhouse and field settings; recovery ranged within 5 to 10 % of the initial soil population after 6 and 12 months. Potatoes planted into field microplots either flooded or fallowed the previous summer had similar Verticillium wilt ratings and potato yield. Lack of control of V. dahliae by flooding may be due partly to relatively low soil temperatures in a cool, marine climate.  相似文献   

3.
Nine soils collected in New Jersey and Maryland were infested with microsclerotia ofVerticillium dahliae and planted with potato cv. Superior for five successive crops in the greenhouse to induce suppressiveness to Verticillium wilt. Potatoes were harvested 9–12 wk after planting and disease incidence was determined by recovery ofV. dahliae from stem segments on selective medium. Six of the nine soils had high disease incidence during the first cropping and remained conducive to Verticillium wilt throughout the experiment. Disease incidence increased in soils 3 and 9 over time, while disease incidence decreased nonlinearly in soil 1. Viability of microsclerotia buried in soil 9 for 4 wks was reduced compared to the viability of microsclerotia buried in soils 1, 3, and 6. Addition of 50 or 100 g hydrated lime/10 kg soil to soil 9 eliminated its suppressiveness to Verticillium wilt. Repeated cropping of the same soil can induce suppressiveness to Verticillium wilt. Soils exhibiting induced suppressiveness may be a source of new antagonists againstV. dahliae.  相似文献   

4.
The detection and identification of threeVerticillium species in field soils with a polymerase chain reaction (PCR)-based assay was compared to the traditional plating assay method. The two methods were both able to detect the commonVerticillium species in soils although the PCR method detectedV. tricorpus in three soil samples that the traditional method did not. In addition, the PCR assay was rapid, efficient, and required only 1 to 2 days for positive identification whereas the traditional methods required 4 to 8 weeks. The traditional method provided a quantitative measure of pathogen propagules in the soil with population levels ranging from 0 to 21, 625 colony-forming units per gram of soil. However, it was not able to differentiate between the weakly pathogenicV. albo-atrum strain 2 and the more aggressiveV. albo-atrum strain 1, but these two were distinguished with the PCR assay. Results from this study demonstrate that when symptoms of verticillium wilt are observed in potato plants in the field, the major verticillium wilt pathogens present in field soils can be rapidly and reliably detected by the PCR assay.  相似文献   

5.
Three demonstration experiments were conducted on commercial greenhouse farms to assess the efficacy of chloropicrin (CP), applied by drip irrigation, in controlling Verticillium wilt and root rot disease complex of bell pepper, in comparison with dazomet at 40 g m−2. Chloropicrin was applied through drip irrigation system at 20, 30 and 40 g m−2 of emulsified commercial formulation. The concentration of CP in water was constant, and the required doses were obtained by delivering different amounts of the irrigation water per area unit (from 12.5 to 33 mm). The highest mean efficacy in reducing the inoculum density of Verticillium dahliae in the soil at all locations was obtained after CP application at 30 and 40 g m−2, about 85 and 86%, respectively. The number of viable microsclerotia recovered from the soil on the day of pepper planting was significantly correlated with the final incidence of Verticillium wilt disease (r = 0.962). The highest mean efficacy in controlling Verticillium wilt of pepper (86.4%) was obtained after soil treatment with CP at 40 g m−2, and ranged from 80.2 to 95.6%. The yield was stronger correlated with root rot severity (r = −0.849**) than with progression of Verticillium wilt, expressed by AUDPC (r = −0.651**). The dominant soil-borne pathogen responsible for pepper root rot was Colletotrichum coccodes. All chemical treatments provided a significant reduction in root rot severity compared to the untreated control. On-thefarm evaluation revealed that soil fumigation with drip-applied chloropicrin presents a feasible option for pepper growers.  相似文献   

6.
In three years (1994, 1995, and 1996), a total of 100 commercial potato fields in southeastern Idaho were surveyed for soil variables, severity of Verticillium wilt, soil inoculum density ofVerticillium dahliae andColletotrichum coccodes, colonization of stems, root, and tubers byV. dahliae andC. coccodes, and tuber yield, size, and quality. As a generalization, factors related to soil integrity (organic matter, organic nitrogen, and increased nutrient availability) were most closely related to wilt suppression and higher tuber yields, whereas factors related to loss of soil integrity (sodium and reduced nutrient availability) were related to increased wilt and lower tuber yields. In a multiple regression analysis, three independent variables, feeder-root infections byV. dahliae, sodium content in soil, and soil organic content, were significant predictors of tuber yield. With these three factors, this model accounted for 49%, 53%, and 62% of the field variability related to total yield in 1994, 1995, and 1996, respectively. Throughout this investigation,V. dahliae root infections had the most direct effect on tuber yield, which emphasizes the importance of quantifying root infections in epidemiological studies of Verticillium wilt. Based on these results, organic matter may be one factor that can be manipulated for suppression of Verticillium wilt without reducing soil populations of the pathogen.  相似文献   

7.
Two strawberry nursery field trials comparing soil disinfection with different fumigants (metam sodium, dazomet, chloropicrin, chloropicrin +1,3D) and a steaming system exploiting the exothermic reaction between steam and CaO (Bioflash System™) were conducted in 2010–2012 to evaluate the effect of treatments on Verticillium dahliae Kleb. inhabiting the soil, and on plant health, growth and yield of strawberry daughter plants. Chemical fumigants and the Bioflash System™ decreased the number of V. dahliae colonies in the soil, which corresponded to reduced incidence of Verticillium wilt (efficacy about 80%). The use of chemical fumigants had a positive impact on the size of the mother plants. The surface area covered by plants grown on the treated plots was 1.1–1.7 times larger than plants grown on non-fumigated control plots. The number of runners, as well as daughter plants, produced from plants grown on plots treated with all chemical fumigants was significantly higher than in the non-fumigated control or in the plots treated with the Bioflash System™. The disinfection treatments significantly increased the yield of marketable daughter plants, approximately 1.5–3 times higher in comparison to plants grown on control plots. Steam disinfection with the Bioflash System™ was the least effective treatment in this respect. The differences in marketable plants yield among the chemical fumigants significantly affected the net marginal return and the return on investment of the crop. In this respect, the steam disinfection was economically efficient only in one season. The efficacy in controlling Verticillium wilt even with low doses of metam sodium and dazomet and their influence on yield and quality of daughter plants is confirming the feasibility of these fumigants for strawberry nursery management.  相似文献   

8.
Teff (Eragrostis tef) is a fine stemmed annual grass and gluten free small grain that is of interest as a forage, cover, or a rotation crop. Little is known about the susceptibility of teff to many diseases. Teff could be grown in rotation with potato in the northwestern United States provided teff cultivation is economical and does not increase soil populations for pathogens affecting rotation crops such as Verticillium dahliae. Verticillium dahliae infects a wide range of dicotyledonous plants, making it one of the most important fungal pathogens of crop plants in North America, including potato. The objective of this study was to quantify the susceptibility of teff to eight V. dahliae isolates and compare the susceptibility of teff to eggplant. Teff was confirmed as a host for V. dahliae, as indicated by the presence of microsclerotia in teff stems and roots after artificial inoculation in two years of greenhouse studies. The number of microsclerotia produced in teff did not differ between mint and potato pathotypes of V. dahliae. No V. dahliae isolate produced significantly greater numbers of microsclerotia than any of the seven other isolates tested in a two-year study. Microsclerotia production of V. dahliae in teff was consistently less than in susceptible eggplant cv. Night shadow in both greenhouse experiments (P?<?0.02). It is unlikely that teff infected by V. dahliae will proliferate microsclerotia of mint or potato-aggressive pathotypes, especially when compared to susceptible eggplant cultivars.  相似文献   

9.
The effect of plowing and deep-rip tillage, in combination with chemigation or shank injection of metam sodium, onVerticillium dahliae populations and disease development was assessed in two fields with differing soil types and potato rotations. Soil samples were collected on a geo-referenced basis at depths of 0 to 10 cm and 10 to 20 cm before tillage, after tillage, after chemical application, and before planting and assayed for the presence of the pathogen. Propagules ofV. dahliae were detected at 140 of 141 sites sampled prior to tillage. Most (74.4% in heavy, sandy loam; 63.1% in light, loamy sand) were concentrated in upper 10 cm of the soil profile. Plowing redistributed inoculum vertically while deep-rip tillage did not. In the non-chemical treated areas of both fields, theVerticillium population reached a maximum between 25 July and 8 August before declining to near pre-tillage levels. Overall, the population generally was lower in the field with heavy soil, higher organic matter content, and a 3-year crop rotation. Metam sodium appeared to be most effective when shank injected, as the levels of inoculum in both fields declined by 60% to 80% following this application method. Chemigation was ineffective in the lighter soil, but the inoculum density in the deep-rip tillage area of the field with the heavier soil declined by nearly 20% in the upper and 60% in the lower strata following this treatment. The number ofV. dahliae propagules at the 10- to 20-cm depth in the plowed area of the same field was reduced by 25% following chemigation, but remained unchanged in the upper strata. Wilt was reduced in both fields by as much as 50% with shank injection of metam sodium with concomitant increases in total yield, marketable yield and gross income. Increases in total yield were significant (P<0.05) for the main effect of chemical, in the plowed area of the field with the heavier soil type following shank injection. These data suggest that growers might benefit from altering their tillage and chemical application practices as part of an integrated approach to managing Verticillium wilt.  相似文献   

10.
In 1994 and 1995, the effect of Verticillium wilt, caused byVerticillium dahliae andV. albo-atrum, on tuber yields, number and weight of U.S. No. 1 and B size tubers, and specific gravity was studied in northern Maine, an area with a short growing season. Seven clones (four resistant and three susceptible) were evaluated in a split-plot design with three replications. Clones were the whole-plot factor, and seed pieces in sub-plots were either uninoculated or inoculated with 50 ml of 4 × 104 cfu/mlVerticillium spp. at planting. Individual plants were scored for Verticillium wilt symptoms before harvest on a 1= <3% wilt to 10= >97% wilt. Differences among clones for wilting and specific gravity were significant. The inoculation treatment had no effect on any of the tuber traits measured. However, there were significant clone x inoculation interactions for most tuber traits. Reductions in yield, weight and number of U.S. No. 1 potatoes, and specific gravity were greater in the Verticillium wilt susceptible clones than in the resistant clones. These results suggest that breeding clones with resistance toVerticillium spp. will reduce yield losses, while maintaining tuber size and specific gravity under disease pressure.  相似文献   

11.
Potato early dying (PED) is characterized by a loss of plant vigor during mid to late summer followed by senescence and death of the crop a few weeks prior to normal maturity. This disease is of serious importance in areas of long-term or intensive potato production and is largely uncontrolled. Symptoms of PED, which are difficult to distinguish from normal senescence, especially in early-maturing cultivars, are uneven chlorosis and necrosis of vines and tan discoloration of vascular tissues. The basic cause of PED is the soil fungusVerticillium. Two species are involved—V. alboatrum predominating in cooler areas andV. dahliae in warmer areas. Both fungi commonly occur in cultivated soils and persist as melanized hyphae or microsclerotia, respectively. Infection occurs through roots followed by colonization of the vascular system. Contamination of uninfested fields can occur by wind or mechanical movement of soil-borne propagules or introduction of infested seed stock. AlthoughVerticillium is the primary pathogen in potato early dying, other soil organisms are involved, resulting in a “disease complex.” Research is under way in many areas to further our understanding of these pathogenic interactions and to exploit this knowledge for use in new systems of prediction and control.  相似文献   

12.
Verticillium dahliae Kleb. is a soilborne fungal pathogen of many crops. In potato, it is the major causal agent of Early Dying. In Manitoba, potato fields planted with cv. Russet Burbank are infested with highly pathogenic V. dahliae isolates, which can produce up to 90 % disease severity. The objective of the study was to evaluate selected compost, green manure, and seed-meal treatments, in comparison with the soil fumigant Vapam, for their ability to reduce propagule density of V. dahliae in soil and decrease disease, and to enhance potato yield. Select green manure crops (oriental and white mustard, Canada milk vetch, sorghum-sudangrass, rye, alfalfa, oat/pea mixture), organic amendments (composted cattle manure and mustard seed-meal), and Vapam, and crop sequences that contribute to the suppression of Verticillium, or the improvement of potato yield were used in a 3-year field study initiated in 2006. Survival in soil of microsclerotia was evaluated as a measure of treatments’ success in potentially reducing Early Dying. Compost and seed-meal treatments, compared to an untreated control, reduced incidence to 30 and 40 %, respectively, but only seed-meal reduced V. dahliae propagule density. Overall, green manures over 1 or 2-years were ineffective in reducing propagule density or improving potato yield. Vapam was partially effective in reducing the propagule density only at the beginning of the potato season, but it did not reduce disease incidence compared to the control. Compost and seed-meal are promising as alternative control of V. dahliae. Only compost reduced disease and increased potato yield, which was associated with improved nutrient availability (phosphorus and sulfate) in soil.  相似文献   

13.
A three-year field study was conducted during 1984–1986 to determine the interactive effects of nitrogen and phosphorus fertilization on Verticillium wilt, and yield and quality of continuously-cropped Russet Burbank potato. The experiment was conducted on a calcareous, silt loam soil with low initial levels of NO3-N (0.9 mg/kg), P (3.5 mg/kg), andVerticillium dahliae (9 cfu/g of soil). The experimental design consisted of a factorial combination of three N treatments (unfertilized check, preplant N or split N) and three P treatments (0,120, or 240 kg P/ha) applied to the same plots during the three-year study. Nitrogen was applied at 0 or 300 kg N/ha in 1984 and 0 or 240 kg N/ha in 1985 and 1986. By the spring of 1986, soil P concentrations for the 0,120, and 240 kg P/ha treatments had increased to 7, 25, and 50 mg/kg and no additional P was applied. In addition to suppressing Verticillium wilt by as much as 95%, N & P treatments also reduced the rate of increase of soilborne inoculum ofV. dahliae. After one season of cropping, the N treatment providing the most efficient N fertilization (300 kg N/ha, split-application) resulted in significantly (p=0.01) lowerV. dahliae counts in soil than the other N treatments. After two seasons of continuous cropping, applying 120 to 240 kg P/ha produced lower populations ofV. dahliae in soil compared to the treatment with no added P. Generally, as N and P treatments approached the highest levels, both wilt incidence andV. dahliae colonization values were reduced. There was a progressive reduction in total yield in nearly all treatments during each year of continuous cropping. Reduction of yield and increased Verticillium wilt incidence was generally greater with N or P deficient plants than with optimally fertilized plants. The highest total and U.S. No. 1 yields and least Verticillium wilt were obtained each year by applying split N and 240 kg P/ha. Results show that optimal N and P can minimize both Verticillium wilt and yield losses that normally occur with intensive potato cropping.  相似文献   

14.
Sinapis alba subsp. mairei (H. Lindb. fil.) Maire, a wild subspecies of S. alba L., which is distributed throughout the Mediterranean basin, has been recently introduced in southern Spain as a winter cover crop in olive groves. The reason behind using this cover crop is for the reduction of Verticillium dahliae inoculum. The effectiveness of this cover crop for weed control has not been assessed to date, despite weed flora in olive groves being highly diverse and competitive, especially in spring and summer, when rainfall is low, temperature is high and crop water needs are at their maximum. The objective of this work is to assess the ability and optimum management of S. alba subsp. mairei cover crop residues for controlling summer weeds. This work offers a more detailed study of the influence of this cover crop on the seedling emergence of Amaranthus blitoides (prostrate pigweed) and Chenopodium album (common lambsquarters) in rainfed field conditions. A factorial design was conducted during the 2002 and 2003 seasons. The studied factors were the following: (1) S. alba subsp. mairei cover crops versus bare soil; (2) two different S. alba residue management techniques after mowing and chopping (incorporation into the soil with shallow tillage versus leaving the residues as a mulch); and (3) the effect on two artificially sown-out summer weeds (prostrate pigweed versus common lambsquarters). The S. alba subsp. mairei cover crop residues reduced the weed infestation by 50 and 60%, and it delayed weed appearance by 3 and 4 weeks the first and second years, respectively, compared with bare soil. The optimum cover crop residue management for weed control was to leave mulch. This management was especially efficient for controlling prostrate pigweed, whether no differences were found for common lambsquarters control when the residues were incorporated into the soil with tillage. These results indicate the great ability of S. alba subsp. mairei cover crop residues to provide summer weed control in rainfed field conditions. Its use, therefore, can contribute to the reduction of the number of herbicide treatments in olive groves.  相似文献   

15.
Verticillium wilt (VW), caused by Verticillium dahliae Kleb., has become one of the most serious problems in cotton (Gossypium hirsutum L.). The use of resistant cultivars has long been considered the most practical and effective means of control. The objective of this work was to study the quantitative genetic basis of fiber traits under Verticillium conditions in upland cotton by using five genotypes and their possible crosses without reciprocals, selecting simultaneously for quality fiber, resistance, and agronomic characteristics. Five cotton cultivars and 10 F1s from half diallel crosses were analyzed for quality fiber under VW conditions. The fiber length, uniformity, strength, elongation, and micronaire were measured during two crop seasons at two different sites each year, consistently in plots with soil naturally infested with Verticillium. Genetic components of variance were analyzed using the Hayman model. Analysis of variance for all traits showed significant differences between genotypes, with the genotype–site interaction in most of the studied traits except for fiber length and micronaire. Both the additive genetic variance component (D) and dominance genetic variance components (H1 and H2) were present in all traits. D was the most important component for uniformity, strength, elongation, and micronaire. Elongation was the trait most correlated with seed-cotton yield. Strength and micronaire were the traits most correlated with VWI. Broad-sense heritability was high for all the traits studied. Narrow-sense heritability was high for uniformity, strength and elongation, and moderate for length and micronaire.  相似文献   

16.
Verticillium wilt, caused by Verticillium dahliae Kleb., is a primary component of the early dying complex of potato (Solanum tuberosum L.) in the United States. Although genetic resistance to V. dahliae exists and has been incorporated into several potato cultivars, the commercial potato industry is still dominated by cultivars susceptible to the pathogen. As a result, soil fumigation with metam sodium remains an important means by which Verticillium wilt is controlled, despite its expense and potentially negative environmental impact. Recent restrictions on metam sodium use by the Environmental Protection Agency directed at reducing exposure to vapor emissions have increased the need to improve shank injection of the soil fumigant. In studies reported here, the application of metam sodium reduced the severity of Verticillium wilt, however, soil temperature at the time of injection, metam sodium injection depth, and application rate had little overall effect. In 2011, temperature at the time of metam sodium injection did not result in significant differences in any parameter evaluated. However, in 2012, soil populations of V. dahliae, wilt severity and host colonization were significantly reduced when metam sodium was applied at 4 °C compared to 13 or 15 °C. No significant differences were observed between a single or two metam sodium injection depths in any parameter evaluated across the 2 years the study was conducted. While all rates of metam sodium significantly reduced soil populations of V. dahliae compared to the non-treated control, significant differences across rates were rarely observed. Improved control of Verticillium wilt and increased yield can be achieved as a result of these studies. The effective control of Verticillium wilt can be obtained by using metam sodium at a comparatively low rate of 373 l/ha, particularly when applied at a relatively cold soil temperature of 4 °C using a single injection depth of 25 cm. The potential impact of these application modifications of metam sodium in reducing emissions and non-target exposure is discussed.  相似文献   

17.
由大丽轮枝孢菌侵染引起的向日葵黄萎病是一种重要的土传病害,微菌核是该病害主要的初侵染来源。目前,土壤中大丽轮枝孢菌微菌核的定量检测方法多操作步骤复杂繁琐,如利用PCR方法进行检测,对仪器设备和操作人员的素质都有较高的要求,而常规的土壤梯度稀释湿筛法的实验周期长且检测效率低,因此,建立一种快速定量检测土壤中大丽轮枝孢菌微菌核的方法,对于向日葵黄萎病的预报预测和防控非常重要。为了能够快速的定量检测土壤中微菌核的数量,以期探明不同耕作方式地块中土壤微菌核数量的差异,本实验建立了一套操作相对简单,实验周期较短的微菌核快速分离和定量检测的方法,即采样器—干筛法。该方法将微生物采样器和选择性培养基相结合,基于微生物采样器的撞击法原理,使土壤微生物粒子加速撞击到选择性培养基的培养皿表面,经培养后可见单菌落形成。利用该方法对内蒙古巴彦淖尔市不同的向日葵黄萎病发病地块中采集到的土壤样本中微菌核进行了定量检测,结果表明:两年向日葵连作地(样地1)土壤中微菌核的数量最多,平均每克土样中含有微菌核32.80个;与非寄主作物玉米轮作地块(样地2)土样中微菌核的数量最少,平均每克土样中含有微菌核11.80个,与寄主作物打籽葫芦轮作地块(样地3)微菌核数量介于二者之间。利用该方法能够明显区分不同地块土壤中微菌核的数量。通过和荧光定量PCR检测的结果进行相关性分析发现,该方法能够准确检测土壤中大丽轮枝孢菌微菌核的数量。  相似文献   

18.
Management practices for the suppression of Verticillium wilt of Russet Burbank potato include sanitation, use of optimum sprinkler-irrigation practices, soil solarization, and an adequate soil fertility program. Among all cultural factors considered, nitrogen (N) deficiency in potato tissue was most commonly associated with the severity of Verticiilium wilt in Russet Burbank potato. Field studies have shown that increased N availability suppresses Verticiilium incidence on cv Russet Burbank while having no effect on cv Norgold Russet. Studies from both greenhouse and field show that the colonization ofV dahliae in potato stem tissue is suppressed in cv Russet Burbank when the availability of Phosphorous (P) is increased to the optimum. Following one season of cropping with Russet Burbank potato, the treatment providing the optimal N availability also suppressed the increases ofV dahliae populations in the soil during the following year of consecutive cropping. Similarly, after two seasons of continuous potato cropping, treatments with optimal P had lower soil populations ofV. dahliae in soil. Results show the suppression of Verticiilium wilt with optimal fertility. Verticiilium wilt [caused by eitherVerticiilium dahliae Kleb, (microsclerotial form) orVerticiilium albo- atrum Reinke and Berthold (dark mycelial form)] is one of the most severe diseases of potato in the United States. Potato yields, tuber size, and specific gravity may be substantially reduced by this disease, depending on severity, time of occurrence, and growing season. In Idaho and other arid growing regions of the United States, Verticiilium wilt is caused byVerticillium dahliae Kleb. Idaho field studies involving cropping practices, soil fumigation treatments, solarization, and Verticillium-resistant potato clones all support the importance ofV dahliae upon potato yield. Data from these studies show that yield losses due toV. dahliae commonly approximate 5 to 12 metric T/ha (5, 6). Table 1 illustrates the effect of several cropping practices upon relativeV dahliae populations in soil with the effects upon both disease severity and potato yield. With continuous cropping of Russet Burbank,V dahliae populations in soil increased, and yields were reduced by 18 to 19 metric Tlha when compared to locations that had been allowed to remain either weed-free and fallow or where corn had been previously cropped. It was estimated thatV dahliae was influencing yield by about 10 to 12 metric Tlha based on a regression analysis of yield as a function ofV dahliae populations in soil. Similarly, whenV dahliae was suppressed by fumigation treatments involving mixtures of dichloropropene and picfume, yields more significantly increased by 6.5 to 12 metric T/ha (5). Although many factors may influence yields, clones with higher Verticillium resistance than Russet Burbank generally out-yield Russet Burbank. Figure 1 demonstrates the effect of solarization (a technique involving the laying of clear plastic on soil for the purpose of elevating soil temperatures to killV dahliae). When Verticillium was controlled in this manner (lo), there was no significant yield difference between the Russet Burbank potato and the highly resistant A68113-4 clone. The A68113-4 clone grown in non-solarized soil out-yielded the Russet Burbank in non-solarized soil by 31 percent while the solarization treatment significantly increased yield for the Russet Burbank and A68113-4 clones by 46 and 18 percent, respectively. These yield responses were observed in a field where inoculum levels ofV dahliae were relatively low (2.10 cfulgrn of soil). With these losses, the need to develop control procedures is great and to achieve this control the need also exists to accurately evaluate the effect of treatments uponV dahliae. Our Idaho studies have routinely utilized such a procedure (9) in combination with comparisons of both disease severity and yield.  相似文献   

19.
Verticillium dahliae cannot be reached by many fungicides during its parasitic phase inside the plants and few fungicides are available to cure plants once they are infected by this pathogen. A hydroxytyrosol-rich (29.27% weight/dry weight) olive mill wastewater (HROMW) and a hydroxytyrosol-rich (52.67% weight/dry weight) extract (HRE) were prepared from fresh olive mill wastewater (FOMW) using hydrolysis and post-hydrolysis purification processes, and were tested as bio-fungicides. The HROMW and HRE showed strong fungicidal activity in vitro against V. dahliae with minimal fungicidal concentrations (MFCs) of 28–56 mg L−1 (dry weight). The HROMW and HRE at 15 g L−1 (dry weight) resulted in a reduction in the viability of V. dahliae by >4 log units after 30 min of contact time according to European Standard EN 1275 (1997) standard method. In tomato pot growth experiments incorporation of HROMW and HRE into the soil reduced significantly Verticillium wilt disease incidence by 86 and 83% and wilt severity by 86 and 84.5%, respectively, compared to untreated plants.  相似文献   

20.
《Crop Protection》1988,7(5):327-331
The effects of solarization, metham-sodium (12·5 or 25 ml/m2) and combined action of the two treatments (soil solarization plus metham-sodium) on the viability of Verticillium dahliae (VD) and Fusarium oxysporum f. sp. vasinfectum (FOV) added to field soil were compared in two successive field experiments. In both experiments solarization combined with metham-sodium was more effective in destroying both pathogens as compared with solarization or metham-sodium alone. In the earlier experiment, when soil temperatures were higher, soil solarization and combined treatments were more effective in controlling VD and FOV than in the later experiment. The effect of metham-sodium on V. dahliae microsclerotia was studied in open and sealed containers incubated at 25° and 35°C. The fumigant dose required to kill 50% of the microsclerotia at 25°C was four times higher at 25°C than at 35°C. Toxicity of the chemical was similar in open and sealed containers. This and field experiment results suggest that the higher toxicity observed under plastic cover in the field is due to synergistic interaction between solarization and metham-sodium. Combined solarization and metham-sodium killed more propagules more quickly than solarization alone; these results suggested that the period over which effective solarization can be used is longer than previously thought and that the time needed to solarize the soil for control of these pathogens is less.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号