首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Abrupt changes in the amplitude of the magnetic fluctuations, in the field strength, and in the plasma properties, were observed with Mariner V near Venus. They provide clear evidence for the presence of a bow shock around the planet, similar to, but much smaller than, that observed at Earth. The observations appear consistent with an interaction of the solar wind with the ionosphere of Venus. No planetary field could be detected, but a steady radial field and very low plasma density were found 10,000 to 20,000 kilometers behind Venus and 8,000 to 12,000 kilometers from the Sun-Venus line. These observations may be interpreted as relating to an expansion wave tending to fill the cavity produced by Venus in the solar wind. The upper limit to the magnetic dipole moment of Venus is estimated to be within a factor of 2 of 10(-3) items that of Earth.  相似文献   

2.
Magellan images reveal surface features on Venus attributed to wind processes. Sand dunes, wind-sculpted hills, and more than 5830 wind streaks have been identified. The streaks serve as local "wind vanes," representing wind direction at the time of streak formation and allowing the first global mapping of near-surface wind patterns on Venus. Wind streaks are oriented both toward the equator and toward the west. When streaks associated with local transient events, such as impact cratering, are deleted, the westward component is mostly lost but the equatorward component remains. This pattern is consistent with a Hadley circulation of the lower atmosphere.  相似文献   

3.
Initial results of observations of the solar wind interaction with Venus indicate that Venus has a well-defined, strong, standing bow shock wave. Downstream from the shock, an ionosheath is observed in which the compressed and heated postshock plasma evidently interacts directly with the Venus ionosphere. Plasma ion velocity deflections observed within the ionosheath are consistent with flow around the blunt shape of the ionopause. The ionopause boundary is observed and defined by this experiment as the location where the ionosheath ion flow is first excluded. The positions of the bow shock and ionopause are variable and appear to respond to changes in the external solar wind pressure. Near the terminator the bow shock was observed at altitudes of approximately 4600 to approximately 12,000 kilometers. The ionopause altitutde ranged fromn as low as approximately 450 to approximately 1950 kilometers. Within the Venus ionosphere low-energy ions (energy per untit charge < 30 volts) were detected and have been tentatively idtentified as nonflowing ionospheric ions incident from a direction along the spacecraft velocity vector.  相似文献   

4.
Surface height variations over the entire equatorial region on Venus have been estimated from extended series of measurements of interplanetary radar echo delays. Most notable is a mountainous section of about 3-kilometer peak height located at a longitude of 100 degrees (International Astronomical Union coordinate system). The eastern edge has an average inclination of about 0.5 degrees, which is unusually steep for a large-scale slope on Venus. The resolution of the radar measurements along the surface of Venus varied between about 200 and 400 kilometers with a repeatability in altitude determination generally between 200 and 500 meters. The mean equatorial radius was found to be 6050.0+/-0.5 kilometers.  相似文献   

5.
The Mariner 10 television camieras imaged the planet Venus in the visible and near ultraviolet for a period of 8 days at resolutions ranging from 100 meters to 130 kilometers. Tle general pattern of the atmospheric circulation in the upper tropospheric/lower stratospheric region is displayed in the pictures. Atmospheric flow is symmetrical between north and south hemispheres. The equatorial motions are zonal (east-west) at approxiimnately 100 meters per second, consistent with the previously inferred 4-day retrograde rotation. Angular velocity increases with latitude. The subsolar region, and the region downwind from it, show evidence of large-scale convection that persists in spite of the main zonal motion. Dynamical interaction between the zonal motion and the relatively stationary region of convection is evidenced by bowlike waves.  相似文献   

6.
Further results from the Venus orbiter radiometric temperature experiment (VORTEX) on the Pioneer orbiter are presented. These are used to characterize the three-dimensional temperature field, the cloud structure, and the dynamics of the 60-to 130-kilometer altitude region of the Venus atmosphere. One of the new discoveries is a "dipole" structure at high latitudes, with two hot spots rotating around the pole, surrounded by banks of cold cloud.  相似文献   

7.
利用非参数核密度方法,以5种红枣(灰枣、骏枣、金丝枣、青枣和冬枣)的批发市场价格为研究对象,比较分析不同红枣的短期价格波动形态及波动强度,并对其短期价格波动风险进行评估和比较。结果表明:从波动形态看,总体上红枣市场价格短期波动有明显谷峰和谷底,呈“春冬高、夏秋低”季节性特征,其中骏枣和灰枣的价格呈“V”型波动,金丝枣和冬枣的价格呈“M”和“W”型波动,青枣价格呈“N”型波动;从波动强度看,整体上鲜食枣价格波动强度高于干制枣,大小排序依次为冬枣青枣金丝枣骏枣灰枣;红枣市场价格波动风险分布不对称,降价风险高于涨价风险,其中冬枣降价风险最高,其次是灰枣和骏枣,金丝枣降价风险略低,只有青枣价格下跌风险与上涨跌风险发生的概率接近一致;从强警风险概率(价格波动幅度在±15%以上)分布看,鲜食枣价格出现强警的概率高于干制枣。  相似文献   

8.
Pioneer Venus orbiter dual-frequency radio occultation measurements have produced many electron density profiles of the nightside ionosphere of Venus. Thirty-six of these profiles, measured at solar zenith angles (chi) from 90.60 degrees to 163.5 degrees , are discussed here. In the "deep" nightside ionosphere (chi > 110 degrees ), the structure and magnitude of the ionization peak are highly variable; the mean peak electron density is 16,700 +/- 7,200 (standard deviation) per cubic centimeter. In contrast, the altitude of the peak remains fairly constant with a mean of 142.2 +/- 4.1 kilometers, virtually identical to the altitude of the main peak of the dayside terminator ionosphere. The variations in the peak ionization are not directly related to contemporal variations in the solar wind speed. It is shown that electron density distributions similar to those observed in both magnitude and structure can be produced by the precipitation on the nightside of Venus of electron fluxes of about 108 per square centimeter per second with energies less than 100 electron volts. This mechanism could very likely be responsible for the maintenance of the persistent nightside ionosphere of Venus, although transport processes may also be important.  相似文献   

9.
Additional plasma measurements in the vicinity of Venus are presented which show that (i) there are three distinct plasma electron populations-solar wind electrons, ionosheath electrons, and nightside ionosphere electrons; (ii) the plasma ion flow pattern in the ionosheath is consistent with deflected flow around a blunt obstacle; (iii) the plasma ion flow velocities near the downstream wake may, at times, be consistent with the deflection of plasma into the tail, closing the solar wind cavity downstream from Venus at a relatively close distance (within 5 Venus radii) to the planet; (iv) there is a separation between the inner boundary of the downstream ionosheath and the upper boundary of the nightside ionosphere; and (v) during the first 4.5 months in orbit the measured solar wind plasma speed continued to vary, showing a number of high-speed, but generally nonrecurrent, streams.  相似文献   

10.
Pioneer Venus ultraviolet spectra from the first 5 years of operation show a decline (by more than a factor of 10) in sulfur dioxide abundance at the cloud tops and in the amount of submicron haze above the clouds. At the time of the Pioneer Venus encounter, the values for both parameters greatly exceeded earlier upper limits. However, Venus had a similar appearance in the late 1950's, implying the episodic injection of sulfur dioxide possibly caused by episodic volcanism. The amount of haze in the Venus middle atmosphere is about ten times that found in Earth's stratosphere after the most recent major volcanic eruptions, and the thermal energy required for this injection on Venus is greater by about an order of magnitude than the largest of these recent Earth eruptions and about as large as the Krakatoa eruption of 1883. The episodic behavior of sulfur dioxide implies that steady-state models of the chemistry and dynamics of cloud-top regions may be of limited use.  相似文献   

11.
Images of Venus taken at 418 (violet) and 986 [near-infrared (NIR)] nanometers show that the morphology and motions of large-scale features change with depth in the cloud deck. Poleward meridional velocities, seen in both spectral regions, are much reduced in the NIR In the south polar region the markings in the two wavelength bands are strongly anticorrelated. The images follow the changing state of the upper cloud layer downwind of the subsolar point, and the zonal flow field shows a longitudinal periodicity that may be coupled to the formation of large-scale planetary waves. No optical lightning was detected.  相似文献   

12.
Magellan radar images of 15 percent of the planet show 135 craters of probable impact origin. Craters more than 15 km across tend to contain central peaks, multiple central peaks, and peak rings. Many craters smaller than 15 km exhibit multiple floors or appear in clusters; these phenomena are attributed to atmospheric breakup of incoming meteoroids. Additionally, the atmosphere appears to have prevented the formation of primary impact craters smaller than about 3 km and produced a deficiency in the number of craters smaller than about 25 km across. Ejecta is found at greater distances than that predicted by simple ballistic emplacement, and the distal ends of some ejecta deposits are lobate. These characteristics may represent surface flows of material initially entrained in the atmosphere. Many craters are surrounded by zones of low radar albedo whose origin may have been deformation of the surface by the shock or pressure wave associated with the incoming meteoroid. Craters are absent from several large areas such as a 5 million square kilometer region around Sappho Patera, where the most likely explanation for the dearth of craters is volcanic resurfacing. There is apparently a spectrum of surface ages on Venus ranging approximately from 0 to 800 million years, and therefore Venus must be a geologically active planet.  相似文献   

13.
The line-of-sight gravity field for Venus has been mapped by tracking the Pioneer Venus spacecraft in the vicinity of periapsis for a 45 degrees swath of longitude eastward of 294 degrees . There are consistent and systematic variations in the gravity signature from orbit to orbit, attesting to the reality of observed anomalies. Orbit 93 passes over a large positive topographic feature, the "northern plateau," for which there is no corresponding gravity signature. If this region has no isostatic compensation, the gravity signal would exceed the noise level by a factor of 7. The results of simulation modeling indicate that the northern plateau must be compensated at depths of about 100 kilometers or less. The long-wavelength anomalies seen in the Venus gravity data have been Fourier-decomposed along the orbital tracks and compared to analogous spectra for Earth. The gross power in the two mean spectra is approximately, the same, but systematic variations among the harmonics suggest differences in dynamic processes or lithospheric behavior, or both, for the two planets.  相似文献   

14.
A summary is presented of the scientific results obtained during the first 120 days of the Pioneer Venus orbiter mission and produced by analysis of multiprobe data as of about 1 April 1979. The summary is essentially a guide to the material presented in the reports devoted to Pioneer Venus results in this issue of Science.  相似文献   

15.
During the Galileo flyby of Venus the plasma wave instrument was used to search for impulsive radio signals from lightning and to investigate locally generated plasma waves. A total of nine events were detected in the frequency range from 100 kilohertz to 5.6 megahertz. Although the signals are weak, lightning is the only known source of these signals. Near the bow shock two types of locally generated plasma waves were observed, low-frequency electromagnetic waves from about 5 to 50 hertz and electron plasma oscillation at about 45 kilohertz. The plasma oscillations have considerable fine structure, possibly because of the formation of soliton-like wave packets.  相似文献   

16.
Net radiation measurements in the atmosphere of Venus indicate that the bulk of the atmosphere is radiatively cooling at high latitudes and heating at low latitudes. Similarity of features observed by all three probes indicate planetwide stratification. Flux variations within the clouds provide evidence of significant differences in cloud structure. A feature of unusually large opacity found near 60 kilometers at the north probe site is probably related to the unique circulation regime revealed by ultraviolet and infrared imagery. A stable layer between the cloud bottoms and about 35 kilometers contains several features in the flux profiles probably resulting from large-scale compositional stratifications rather than clouds. In the layer below 35 kilometers unexpectedly large fluxes were observed.  相似文献   

17.
Annular moats and outer rises around large Venus coronae such as Artemis, Latona, and Eithinoha are similar in arcuate planform and topography to the trenches and outer rises of terrestrial subduction zones. On Earth, trenches and outer rises are modeled as the flexural response of a thin elastic lithosphere to the bending moment of the subducted slab; this lithospheric flexure model also accounts for the trenches and outer rises outboard of the major coronae on Venus. Accordingly, it is proposed that retrograde lithospheric subduction may be occurring on the margins of the large Venus coronae while compensating back-arc extension is occurring in the expanding coronae interiors. Similar processes may be taking place at other deep arcuate trenches or chasmata on Venus such as those in the Dali-Diana chasmata area of eastern Aphrodite Terra.  相似文献   

18.
Recent radar images of the surface of Venus reveal a complex and varied terrain. By applying a set of simplifying assumptions about the nature of the surfaces returning the radar signal, it is possible to make a number of plausible interpretations. In one region on Venus, several circular features have the gross morphology of degraded impact craters. If they are indeed of impact origin, these features suggest that there exist on Venus areas which are ancient and where erosion or resurfacing has not been as intense or as pervasive as on the earth. In other regions there are intriguing features that may evidence active internal processes. One is a large trough-like depression (0 degrees , 76 degrees W; measuring 1400 by 150 by 2 kilometers) planimetrically suggestive of both the Valles Marineris on Mars and the East African Rift on the earth. Another feature, about 250 kilometers in diameter and of positive relief, includes an 80-kilometer-diameter circular depression at its summit, suggestive of a large volcanic construct. A third region, near 0 degrees , 10 degrees E, contains roughly parallel ranges of mountains separated by valley-like features, with relief varying from small isolated hills several hundred meters high to low ranges on the order of 1000 meters to large mountains approaching 2 kilometers in height. If Venus has a mobile crust similar to the earth's, these mountains may have been produced by compressional tectonics. These interpretations of the radar data indicate that Venus has been a geologically active planet which has developed diverse landforms and therefore is an exciting candidate for future exploration.  相似文献   

19.
A recently assembled data set of inner core-sensitive free oscillation splitting measurements and body wave differential travel times provides constraints on the patterns of anisotropy in the Earth's inner core. Applying a formalism that allows departures from radial symmetry and cylindrical anisotropy results in models with P-wave velocity distributions whose strength and pattern are incompatible with frozen-in anisotropy, but rather suggest a simple large-scale convection regime in the inner core.  相似文献   

20.
Combination of two types of radar data shows the orbital plane and equator of Venus to be included by less than 2 degrees, and the sidereal rotation period to be 243.09 +/- 0.18 days (retrograde)-remarkably close to the 243.16-day period for which the spin would be in resonance with the relative orbital motions of Earth and Venus. In this resonance, Venus would make, on average, four axial rotations as seen by an Earth observer between successive close approaches of the two planets. Estimates of the instantaneous spin period, accurate within about 0.01 day, would provide important information on the difference of Venus's equatorial moments of inertia, on their orientation, and on the magnitude of the tidal torque exerted on Venus by the sun.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号