首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) is classified as one of the most harmful pest of tomato crops. Many species of predators and parasitoids including Trichogramma cacoeciae (Marchal) (Hymenoptera: Trichogrammatidae) are noted as potential candidates used for biological control of this pest. Therefore, the use of selective insecticides is critical to conserve and protect natural enemies in the field. This study assessed the side effects of insecticides on different development stages of T. cacoeciae under laboratory conditions. For this, eleven pesticides such as: Indoxacarb, spiromesifen, cyromazin, chlorfenapyr, cypermethrin, diafenthiuron, chlorantraniliprole, spinosad, azadirachtin, Bacillus thuringiensis (Bt) and virus HaNPV were tested. This study shows that indoxacarb, spiromesifen, chlorfenapyr, cypermethrin, diafenthiuron and spinosad had a negative effect on immature stages of Trichogramma. All insecticides residues on tomato leaves were found to be toxic to Trichogramma adults except azadirachtin, Bt and virus HaNPV. Therefore, the use of the tested natural products (azadirachtin, Bt and HaNPV) at the recommended doses is viable, having no negative impact on T. cacoeciae in tomato crops.  相似文献   

2.
Tomato (Solanum lycopersicum L.) ARGINASE2 (ARG2) and THREONINE DEAMINASE2 (TD2) are involved in plant defense. These enzymes act in the midgut of herbivores fed on tomato plants to degrade the essential amino acids Arg and Thr, respectively. Although it has been demonstrated that overexpression of the SlARG2 gene in tomato enhanced its resistance against M. sexta larvae, knock-down the expression of SlTD2 reduced the resistance of tomato to lepidopteran herbivores; it remains unclear whether overexpression of SlTD2 could enhance the resistance of the host plants to herbivores, or whether combined overexpression of SlARG2 and SlTD2 could lead to synergistically enhanced resistance to insects. Here, we generated transgenic Arabidopsis plants overexpressing SlARG2 (SlARG2 OE) and SlTD2 (SlTD2 OE) individually as well as in combination (SlARG2-SlTD2 OE). Overexpression of these genes did not affect Arabidopsis development, seed yield, or Arg and Thr content. Insect-feeding bioassay was performed by feeding diamondback moth (Plutella xylostella L.) larvae on detached leaves of wild-type, SlARG2 OE, SlTD2 OE, and SlARG2-SlTD2 OE plants. Larvae fed on SlARG2 OE leaves showed approximately 31% to 35% reduction in weight and 6% to 10% reduction in survival rate compared to those fed on wild-type leaves. Although larvae fed on SlTD2 OE leaves showed no reduction in survival rate, they gained less weight. Whereas larvae fed on SlARG2-SlTD2 OE leaves showed neither reduction in weight nor reduction in survival rate. We further investigated the arginase enzymatic activity of the SlARG2 OE and SlARG2-SlTD2 OE transgenic plants. The SlARG2 OE line most resistant to diamondback moth larvae displayed the highest arginase activity. Our data indicate that overexpression of SlARG2 or SlTD2 in Arabidopsis can enhance its resistance against diamondback moth, whereas combined overexpression of SlARG2 and SlTD2 did not generate synergistically increased resistance to diamondback moth.  相似文献   

3.
Locomotory behaviour of insecticide-resistant and susceptible populations of diamondback moth, Plutella xylostella (Linnaeus), a challenging insect-pest of cruciferous vegetable crops round the globe, was studied with the help of Ethovision. Larvae from the susceptible population of P. xylostella travelled more distance on insecticide-treated or untreated surface and consequently their speed was also more as compared to those taken from the insecticide-resistant population.Whereas, the turn angle of larvae from insecticide-resistant population was significantly higher as compared to those from susceptible population. The resistant larvae travelled significantly less distance (260.68 cm/5 min) on treated-surface (with LC50 value of endosulfan, quinalphos, fenvalerate and spinosad) with more value of turn angle (231.16°) than the susceptible ones which moved faster (517.23 cm/5 min) with less value of turn angle (100.63°). Influence of varying temperatures on locomotory behaviour of larvae from the susceptible and resistant population of P. xylostella was also studied and observed that susceptible P. xylostella larvae travelled significantly greater distance as compared to the larvae from insecticide-resistant population, at different temperatures. Locomotory behaviour of larvae of P. xylostella also changes with food conditions. Resistant larvae starved for 24 h travelled significantly lesser distance (147.29 cm) as compared to unstarved ones (332.50 cm). Similar trend in behaviour was also recorded with respect to speed of larvae of P. xylostella. Larvae turn more frequently when kept without food (starved) than those fed normally; the turn angle was significantly higher (290.07°) for resistant larvae and for susceptible larvae it was lesser i.e. 151.55°, when kept at starved conditions. Hence, certain pronounced behavioural differences were registered in locomotion of insecticide-resistant P. xylostella as compared to the susceptible one and this knowledge would help to find effective management solutions to P. xylostella.  相似文献   

4.
The green lacewing Chrysopa pallens (Rambur) (Neuroptera: Chrysopidae) is a common and abundant predator in many cropping systems in palearctic realm and it’s conservation is helpful in sustainable pest management in agro-ecosystem. Prior to commercialization of Bt crops in any agro- ecosystem, it is necessary to evaluate the impact of Cry proteins upon non-target organisms especially biological control agents (BCA). In present study an artificial diet consisting of shrimp, beef, beef liver and egg yolk was developed to mass-rear C. pallens for its use as biological control agents in sustainable pest management. Moreover, an artificial diet based risk assessment protocol was developed to investigate the impact of Cry1Ac, Cry1Fa and Cry2Ab on the survival and reproductive performance of C. pallens adults. C. pallens was fed on diets incorporated with Cry proteins and without addition of Cry proteins (control). The same diet containing boric acid was served as a positive control. Temporal stability, bioactivity and intake of Cry proteins by C. pallens were confirmed using double-antibody sandwich, enzyme-linked immunosorbent assay and bioactivity verification bioassays. Survival and reproductive performance of C. pallens, e.g., pre-oviposition period, daily fecundity, total fecundity and 30-day old adults dry weights, exhibited non-significant differences (p?>?0.05) for the diets containing Cry1Ac, Cry1Fa and Cry2Ab (50 μg/g) against Control. However, significant reduction in survival and reproductive performance (p?<?0.05) was observed in positive control. Our findings reveal that artificial diet is a good source of nutritional requirement with enhanced survival and reproductive performance of C. pallens and can be used for mass rearing of predator in case of natural diet scarcity and Cry proteins are safe for adult C. pallens and Bt crops cultivation help in predators conservation in sustainable agriculture.  相似文献   

5.
Xanthomonas perforans is the causal agent of bacterial spot, one of the most devastating diseases of tomato that results in considerable yield losses worldwide. Rutin, as a polyphenolic substance, was used to induce resistance in tomato against X. perforans. Rutin at concentration of 2 mM had ability to reduce the disease severity of bacterial spot. On the other hand, 2 mM rutin had no antibacterial activity in vitro. Expression profiling of pathogenesis-related gene 5 (PR-5), Phenylalanine ammonia-lyase (PAL) and lipoxygenase (LOX) was probed during the enhanced resistance by rutin. Pretreatment with rutin (rutin/ X. perforans) led to induction of PR-5, PAL and LOX compared to controls (water/ X. perforans). Our results suggest that rutin-induced resistance against X. perforans in tomato might be mediated through stimulation of some defense genes such as PR-5, PAL and LOX.  相似文献   

6.
Whole genome sequencing of a copper resistant (CuR) black rot strain of Xanthomonas campestris pv. campestris (Xcc) isolated from a broccoli plant in Trinidad revealed a unique operon for copper resistance. The cop genes of strain Xcc-BrA1 were determined to be present on a 160 to 180 kb plasmid shown to be non-conjugative with other xanthomonads. While nucleotide comparison of a putative 8.0 Kbp copLABMGF gene cluster identified in Xcc-BrA1 genome did not reveal any homologous region with other known CuR Xanthomonas strains from diverse origins, the comparison of the translated amino acid sequence indicated similarity with X. citri, X. c. pv. citrumelonis and X. vesicatoria Cop proteins. Cloning of the copLAB gene cluster from Xcc-BrA1 conferred copper resistance to other copper-sensitive xanthomonads. Although Xcc-BrA1 harbors copLAB genes with similar sizes and organization and is able to grow on Cu-amended medium as other CuR xanthomonads, the phylogenetic analysis of nucleotide sequences indicates that the cop cluster in Xcc-BrA1 is unique and distantly related to other copLAB genes from Xanthomonas and Stenotrophomonas. The origin of copper resistance genes in Xcc-BrA1 is likely a result of horizontal gene acquisition from a still unknown phylloplane cohabitant. The findings of this study have implications for the management of crop diseases caused by CuR xanthomonads. Future studies could focus on and determining the distribution, overall importance and appropriate control measures for strains harbouring these unique genes.  相似文献   

7.
Four Bt cotton hybrids, each with one of four different events, viz., MRC 6301 Bt (cry1Ac gene), JKCH 1947 Bt (modified cry1Ac gene), NCEH 6R Bt (fusion cry1Ac/cry1Ab gene) and MRC 7017 Bollgard II (cry1Ac and cry2Ab genes) were compared for survival and development of Earias vittella (Fabricius) along with their isogenic non-Bt genotypes. None of the neonates were able to complete the larval period and reach pupal stage on squares of 90, 120 and 150 days old crop of all Bt hybrids. Likewise, on bolls also, zero per cent larval survival was observed in all Bt hybrids except JKCH 1947 Bt where 0.67 per cent larvae could manage to reach pre-pupal stage at 120 and 150 days old crop but failed to form cocoon and enter pupal stage. The surviving larva took more development time (3.7 to 5.4 days) as compared to larvae fed on bolls of JKCH 1947 non-Bt. The average survival period (ASP) of larvae was in order of 150 > 120 > 90 days old crop among the crop ages; JKCH 1947 Bt > MRC 6301 Bt > NCEH 6 R Bt > MRC 7017 Bollgard II among Bt hybrids; and bolls > squares between fruiting bodies. However, reverse was true for speed index of toxic effect. The concentration of Cry toxin varied significantly in squares and bolls and also among the crop ages. The amount of Cry toxin in squares and bolls had significant negative correlation with ASP of the E. vittella larvae.  相似文献   

8.
Interaction between the phytonematode Meloidogyne enterolobii and the fungus Fusarium solani has caused direct and indirect losses in the entire guava production chain and consequent extermination of guava plantations throughout Brazil. The combined action of these two pathogens is known as “guava decline”. In order to obtain and assess Psidium spp. interspecific hybrids for resistance to the nematode M. enterolobii, interspecific crosses of P. guineense (susceptible araçá) x P. cattleyanum (resistant araçá); P.guineense (susceptible araçá) x P. guajava (susceptible guava) and P. cattleyanum (resistant araçá) x P. guajava (susceptible guava) were conducted. These crosses resulted in hybrid immune, susceptible and resistant to Meloidogyne enterolobii. The chi-square test rejected the hypothesis of monogenic inheritance with incomplete dominance, which corroborates that this trait has polygenic action. Predictions of genetic values ??and parameters were obtained by the REML / BLUP procedure, at individual level. Finally, the 30 selected individuals (immune and resistant) were obtained, which will be backcrossed with guava for the recovery of the agronomic traits desired and subsequent release of a new cultivar.  相似文献   

9.
Blackleg disease, caused by the hemibiotrophic fungal pathogen Leptosphaeria maculans, is one of the most devastating disease of Brassica species worldwide. To date, a total of 20 race-specific blackleg resistance (R) genes have been reported and all of those loci are located in either the A or B genomes of various Brassica species. The B. oleracea genome (CC) shares a high ancestral synteny with the A genome of B. rapa, suggesting the presence of qualitative (race specific) resistance to blackleg disease is also possible in B. oleracea germplasm. In the present study the C genome of Korean B. oleracea germplasm was screened for the presence of blackleg R genes. Thirty-two inbred cabbage lines with unknown resistance profiles, along with five control B. napus lines with well-characterised race-specific R genes, were assessed for cotyledon resistance against two L. maculans isolates with known and highly-contrasting avirulence gene (Avr) profiles. Two cabbage accessions were identified which produced a strong resistance when challenged with either isolate, demonstrating the presence of effective blackleg R genes in the cabbage C genome. Additionally, 16 microsatellite markers linked to seven different R genes of the B. napus A genome were converted into markers for their homologous regions on the B. oleracea C genome. These markers were used to screen all B. oleracea lines to assess if the novel C genome R genes were syntenous to known R gene-homologous regions of the A genome. The resistant cabbage lines offer C genome R genes for the protection of B. oleracea varieties against incursion of blackleg disease, as well as novel additional resistance sources for introgression into B. napus and B. carinata breeding material.  相似文献   

10.
Potato virus Y (PVY) is the type-species of the genus Potyvirus, family Potyviridae, being reported as a major tomato (Solanum lycopersicum L.) pathogen in several regions of the world. Pepper yellow mosaic virus (PepYMV) was originally described as a resistance-breaking Potato virus Y (PVY) isolate on Capsicum annuum L. cultivars, and afterwards it was also reported infecting tomatoes in Brazil. In the present work, a search for sources of resistance to both PepYMV and PVY was conducted in a collection of 119 accessions belonging to seven Solanum (section Lycopersicon) species. This germplasm was initially evaluated to PepYMV reaction by mechanical inoculation followed by symptom observations and ELISA. Potential PepYMV resistance sources were identified for the first time in S. habrochaites, S. peruvianum, S. corneliomuelleri, S. chilense, S. pimpinellifolium, and one accession derived from an interspecific cross (S. lycopersicum x S. peruvianum). A sub-group of 24 accessions with negative serology for PepYMV was also challenged with a PVY isolate, followed by serological and molecular detection with universal primers. Solanum habrochaites ‘L.03683’ and ‘L.03684’ were the only accessions found with stable resistance to both viruses. These results confirm S. habrochaites as the most important source of multiple resistance factor(s) to distinct Potyvirus species.  相似文献   

11.
Arabidopsis thaliana exhibits a durable resistance called nonhost resistance against nonadapted fungal pathogens. A. thaliana activates preinvasive resistance and terminates entry attempts by nonadapted fungi belonging to the genus Colletotrichum, which cause anthracnose disease in many plants. In the interaction between A. thaliana and nonadapted C. tropicale, the preinvasive resistance involves the PENETRATION 2-related antifungal secondary metabolite pathway and the ENHANCED DISEASE RESISTANCE 1-dependent antifungal peptide pathway. The development of invasive hyphae by C. tropicale owing to the reduction of preinvasive resistance then triggers the blockage of further hyphal expansion via the activation of the second layer of resistance, i.e., postinvasive resistance, which guarantees the robustness of the nonhost resistance of A. thaliana against Colletotrichum pathogens. Both the tryptophan-derived metabolic pathway and glutathione synthesis play critical roles in the postinvasive resistance against C. tropicale, although the molecular mechanism of postinvasive resistance remains to be elucidated. In this review, we describe the current understanding of the molecular background of the Arabidopsis nonhost resistance against Colletotrichum fungi and discuss perspectives for future research on this durable resistance.  相似文献   

12.
The maize armyworm, Mythimna separata is a polyphagous insect pest of sporadic occurrence. Thiamethoxam is a neonicotinoid insecticide used for the management of many pests in many parts of the world. To develop a resistance management strategy, selection for resistance, the larval fitness parameters and the biochemical mechanisms of resistance to thiamethoxam were studied for thiamethoxam-selected and susceptible M. separata strains based on laboratory observations. The results of our bioassay showed that the thiamethoxam-selected strain was 17.03-fold more resistant than the susceptible strain. The thiamethoxam-selected strain had prolonged larval durations, lower pre-pupal weight of males, and a longer development time from egg to adult than the susceptible strain. The biochemical analyses showed that the GST, CarE and cytochrome P450 enzymes are associated with the development of thiamethoxam resistance in the thiamethoxam-selected strain of M. separata. In this study, the occurrence of resistance may cost developmental fitness for the thiamethoxam-selected strain and provide useful information for designing management strategies to delay resistance.  相似文献   

13.
The purpose of this study was to determine if exogenous cholesterol availability influenced Pythiaceae resistance to antibiosis. Characterisation of an isolate of Phytophthora erythroseptica and Pythium ultimum for tolerance to antibacterial compounds found that 0.05 g.l?1 chloramphenicol inhibited mycelial growth by 96.6 % and 23.5 % respectively. However, the addition of cholesterol (0.01 g l?1) to potato dextrose agar (PDA) containing 0.05 g l?1 chloramphenicol was found to increase mycelial growth of P. erythroseptica, indicating a role for cholesterol in tolerance to inhibitory antibacterial compounds. To determine if this property extended to suppressive effects of a potential biocontrol agent, P. erythroseptica and P. ultimum were then tested against a cell-free filtrate of diffusible metabolites produced by a suppressive Trichoderma harzianum isolate in the presence and absence of cholesterol in PDA. In the absence of cholesterol, diffusible metabolites of the T. harzianum isolate were found to inhibit mycelial growth of P. erythroseptica and P. ultimum on PDA by 98 % and 63.6 % respectively (P?<?0.0001). However, the inhibitory effect of the metabolites was mitigated when 0.005 g l?1 of cholesterol was present in PDA, with mycelial growth of P. ultimum and P. erythroseptica reduced by only 60.4 % and 41.8 %, respectively (P?<?0.0001), much less inhibition than was observed in the absence of cholesterol. These results demonstrated that access to exogenous cholesterol can influence the sensitivity of Pythiaceae species to antibiosis by positively influencing mycelial growth.  相似文献   

14.
To study inheritance of Malus sieboldii-derived apple proliferation resistance, 14 cross combinations were performed with the tetraploid apomictic M. sieboldii and first and second generation parental lines as donor of resistance and Malus x domestica scion cultivars and apple rootstocks as donor of pomological traits. In the progeny examined mainly three classes were present consisting of mother-like plants with the allele composition of the maternal apomict (ML), hybrids based on fertilization of an unreduced egg cell (hybrid I), and fully recombinant plants (hybrid II). Two-year screening of inoculated plants in the nursery revealed that progeny classes ML and H I responded similarly to infection and that about half of the progeny showed satisfactory resistance. No appropriate resistance was identified in progeny class H II. This might be due to the fact that in fully recombinant offspring M. sieboldii haplotypes have been reduced from 4n to 1-2n or were entirely lost. Following nursery-growing, promising trees were evaluated for six more years in the orchard. Nearly all of them showed satisfactory resistance but were mostly less productive and more vigorous than trees on clonal standard rootstock M9. However, mainly among the offspring of progeny 4608 × M9, resistant genotypes were identified showing pomological properties similar to M9.  相似文献   

15.
Wheat leaf rust caused by Puccinia triticina (Pt) is one of the most severe fungal diseases threatening the global wheat production. The use of leaf rust resistance (Lr) genes in wheat breeding programs is the major solution to solve this issue. Wheat isogenic line carrying the Lr39/41 gene has shown a moderate to high resistance to most of the Pt pathotypes detected in China. In the present study, a typical hypersensitive response (HR) was observed using microscopy in leaves of the Lr39/41 isogenic line inoculated with the avirulent Pt pathotype THTT from 48 h-post inoculation. Two Lr39/41 resistance-associated suppression subtractive hybridization (SSH) libraries with a total of 6000 clones were established. Microarray hybridizations were performed on all obtained SSH clones using RNAs extracted from leaves of the Pt-inoculated and non-inoculated Lr39/41 isogenic lines, and leaves of the Pt-inoculated and non-inoculated Thatcher susceptible lines. Differentially expressed clones were analyzed by significance analysis of microarrays (SAM), followed by further sequencing. A total of 36 Lr39/41-resistance-related differentially expressed genes (DEGs) were identified, many of which had been previously reported to be involved in the plant defense response. The expression levels of eight selected DEGs during different stages of the Lr39/41-mediated resistance were further quantified by a qRT-PCR assay. Several pathogenesis-related (PR) and HR-related genes seem to be crucial for the Lr39/41-mediated resistance. In general, a brief profile of DEGs associated with the Lr39/41-mediated wheat resistance to Pt was drafted.  相似文献   

16.
The oomycete Phytophthora infestans is the causal agent of potato late blight, one of the most destructive and historically significant pathogens in agricultural production. A virus-induced gene silencing-based screening of the solanaceous model plant N. benthamiana resulted in revealing a wide range of resistance mechanisms of solanaceous plants against this pathogen. In this article, we present an overview of the various pathways involved in the N. benthamianaP. infestans pathosystem, including some of the follow-up work that was triggered by these findings. The purpose of this review is to assemble these findings and integrate them into our current understanding of plant pathogen defense mechanisms and discuss their potential application for the development of potato resistance to P. infestans.  相似文献   

17.
Pinewood nematode (PWN), Bursaphelenchus xylophilus, the causal agent of pine wilt disease (PWD), was detected in Spain in 2008. This gives rise to serious concern, as the disease has caused severe environmental and economic losses in Portugal and in Asian countries. We studied interspecific variation in susceptibility to pine wilt disease and differences in constitutive chemical compounds in the xylem tissue of the seven pine species -P. canariensis, P. halepensis, P. pinaster, P. pinea, P. sylvestris, P. radiata and P. taeda. Two-year-old trees were inoculated with B. xylophilus. Water potential and nematode densities were measured for each species on specific dates; whereas, wilting symptoms were recorded weekly until the end of the assay. Chemical compounds in the xylem were determined prior to inoculation. Three different resistance groups can be established in terms of the pine species susceptibility to PWN: non- to slightly-susceptible (P. canariensis, P. halepensis, P. taeda and P. pinea), susceptible (P. pinaster and P. radiata), and highly-susceptible (P. sylvestris). Nematodes migrated downward to the roots in all seven species. Constitutive xylem nitrogen, total polyphenols, and marginally phosphorus were negatively correlated with mortality caused by PWN. The most susceptible species, Pinus sylvestris, presented high levels of constitutive lipid-soluble substances and low levels of manganese, pointing to a possible relation between these components and PWN susceptibility. The results suggest P. sylvestris, P. pinaster and P. radiata forests could be severely damaged by PWN in Spain and highlight how constitutive chemical compounds such as nitrogen might play a role in resistance mechanisms against PWN.  相似文献   

18.
The present study was undertaken to assess the insecticide resistance developed in various field collected population of S. litura and to induce susceptibility by using the synergists. Third-instar larvae collected from three different locations of Kerala viz., Thiruvananthapuram (TVM), Pathanamthitta (PTA) and Alappuzha (ALP) were exposed to conventional insecticides like chlorpyriphos, quinalphos, lambda-cyhalothrin and cypermethrin by leaf dip bioassay and resistance ratios were calculated by using the baseline data generated for respective insecticides using susceptible strain. Resistance ratios recorded were 1965, 840 and 320 against chlorpyriphos, 605, 255 and 59 against quinalphos, 926, 250 and 108 against lambda-cyahlothrin and 2566, 534 and 396 against cypermethrin respectively for TVM, PTA and ALP populations. The effect of selected synergists viz., piperonyl butoxide (PBO), diethyl maleate (DEM) and triphenyl phosphate (TPP) was studied in combination with respective test insecticides against the highly resistant population of S.litura collected from TVM of Kerala. The population was tested with insecticide in combination of the above synergists at different ratios. When PBO, TPP and DEM at ratio of 1:4 were used the synergistic ratio was 8.47, 7.26 and 3.98 for chlorpyriphos, 6.09, 5.26 and 3.05 for quinalphos, 13.37, 4.53 and 7.39 for lambda cyhalothrin and 4.77, 3.36 and 3.40 for cypermethrin respectively. PBO showed highest synergistic activity against both the organophosphates tested followed by DEM and TPP. Highest synergistic activity against synthetic pyrethroids also was shown by PBO, followed by TPP and DEM. The results obtained from the present study revealed that PBO at 1:4 ratio showed higher synergism with the test insecticides against the resistant populations of S.litura and proved to be an effective molecule alternate for breaking the resistance against conventional organophosphates and synthetic pyrethroids.  相似文献   

19.
Verticillium wilt is a devastating disease caused by the soil-borne fungus Verticillium dahliae that causes severe wilt symptoms in more than 400 plant species, including economically important cotton. However, the molecular mechanism of plant resistance to Verticillium remains unclear. In this study, we identified an Arabidopsis mutant, vsad1 (verticillium sensitive and anthocyanin deficient 1), which showed more serious disease symptoms such as discoloration and chlorosis than wild-type Arabidopsis. vsad1 is a previously identified allele of the transparent testa 4 gene (tt4), which encodes chalcone synthase (CHS), a key enzyme involved in the biosynthesis of flavonoids. Our results showed that VSAD1 expression was induced in response to Verticillium dahliae infection. Overexpression of VSAD1 partially recovered the anthocyanin accumulation phenotype of the vsad1–1 mutant. The concentration of V. dahliae increased and ROS accumulation decreased in the vsad1 mutant after infection with V. dahliae. Knockdown of the homologous gene GhCHS in cotton plants increased their susceptibility to V. dahliae infection. Thus, we conclude that VSAD1 is involved in the regulation of plant resistance to Verticillium wilt.  相似文献   

20.
The receptor-like cytoplasmic kinases (RLCK family VII) are required for plant defense against various pathogens. Previously, OsPBL1 (ORYZA SATIVA ARABIDOPSIS PBS1-LIKE 1) was isolated from rice as a potential RSV (rice stripe virus) resistant factor, but its physiological roles in plant defense are yet to be investigated. In this study, we demonstrated that OsPBL1increased defense against P. syringae in transgenic Arabidopsis. To ascertain the role of OsPBL1 gene in plant defense, OsPBL1 tagged with HA (i.e. Hemagglutinin) was overexpressed in Arabidopsis and examined for the resistance against Pseudomonas syringae pv. tomato DC3000 (i.e. Pst DC3000). At 3 dpi of Pst DC3000, transgenic Arabidopsis lines exhibited the reduced chlorotic lesion and propagation of P. syringae, compared to wild type. Elevated pathogen resistance of transgenic lines was correlated with increased H2O2 accumulation and callose deposition on the infected leaves. It was also revealed that expression levels of salicylic acid dependent genes such as PR1, PR2, and PR5, were induced higher in transgenic lines than wild type. Taken together, our data suggested that OsPBL1 exerted the role in defense against pathogen attacks in plant via mainly facilitating salicylic acid dependent pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号