首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Botrytis calthae is a necrotrophic plant pathogen, closely related to the ubiquitous broad host range fungus Botrytis cinerea, but highly host specific. Botrytis isolates from lesions of Caltha palustris grown at different locations were classified with genetic markers as either B. calthae or Botrytis pseudocinerea, or less frequently as B. cinerea. A PCR‐based identification of B. calthae was developed. Seven haplotypes of B. calthae could be distinguished. Compared to B. cinerea, mycelium growth of B. calthae was similar, but conidiation less abundant, and sclerotia formation was only partially repressed by light. Conidia of B. calthae germinated more slowly, and showed a highly acidic optimum (pH 2·5) compared to B. cinerea conidia (pH 5·3). All B. calthae isolates were sensitive to common anti‐Botrytis fungicides, but showed partial resistance to the succinate dehydrogenase inhibitors boscalid, fluopyram and carboxin. Infection experiments revealed a weak capability of B. calthae to induce necrotic lesions on plants that are hosts for B. cinerea. On C. palustris leaves, B. calthae induced similar lesions to B. cinerea. These data provide a basis for comparative molecular investigation of the physiology and host specificity of B. calthae and closely related Botrytis species.  相似文献   

2.
Biological control of Botrytis spp. by the fungal antagonist Ulocladium atrum is based on their interaction in plant tissue. U. atrum is effective against B. cinerea in commercial cyclamen crops but not effective against B. elliptica in lily crops. Based on the necrotrophic nature of the Botrytis spp. and the saprophytic nature of U. atrum it is hypothesised, and experimentally confirmed, that the interaction between Botrytis spp. and U. atrum, resulting in a biocontrol effect, only takes place in necrotic plant tissue. The role of necrotic tissue in the epidemiology of B. cinerea in cyclamen and B. elliptica in lily was found to be different. Removal of symptomless senescing leaves resulted in a significant reduction of the area under the disease severity progress curve (AUDPC) for B. cinerea in cyclamen but had no effect on the disease severity in lily. U. atrum applications significantly reduced B. cinerea AUDPC values in cyclamen but were less efficient than the removal of senescing leaves. In lily, disease severity was not affected by applications of U. atrum. It is concluded that necrotic cyclamen tissue, not killed by B. cinerea, plays an important role in the onset of disease. Colonisation of this tissue by U. atrum prevents saprophytic colonisation of those leaves by B. cinerea. In contrast, conidia of B. elliptica directly infect healthy lily leaf tissue. U. atrum applications aimed at blocking the infection pathway from a saprophytic base are therefore not effective against B. elliptica. Control options based on competitive interactions in and around B. elliptica lesions resulted in a reduced production of conidia by B. elliptica but proved ineffective against disease development. The potential of U. atrum as a biocontrol agent against Botrytis spp. and possibly against other necrotrophs appears to be determined by the competitive saprophytic ability of the antagonist in mutual substrates of pathogen and antagonist and by the role of these substrates in disease epidemiology.  相似文献   

3.
In a collection of 735 Botrytis isolates sampled from Australian wine grape-growing regions, a single isolate from clade I and group I (based on Bc-hch RFLP analysis) was found. As many Botrytis species are known to live sympatrically, it was hypothesized that this isolate might be a new Botrytis species. After phenotypic and molecular assays supported this hypothesis, the species was designated B. medusae. Phylogenetic analyses using the nuclear genes G3PDH, HSP60, RPB2, NEP1 and NEP2 consistently placed B. medusae in an early-diverging clade I Botrytis spp. lineage. Botrytis medusae produced white aerial mycelium, grew faster at 30 °C and produced long-branched conidiophore extensions, compared with B. cinerea and B. pseudocinerea. Botrytis medusae was only able to infect wounded grape leaves and was significantly less virulent on wounded leaves and berries than B. cinerea. Botrytis medusae also lacked villiform appendages on the conidial surface and long conidiophores, which are defining features of B. sinoviticola and B. californica, respectively. Identification and characterization of new cryptic Botrytis species living in sympatry on grapevines could potentially provide information to assist disease management strategies for B. cinerea.  相似文献   

4.
5.
Botrytis spot or ghost spot on tomato fruits occurs after penetration of germ tubes ofB. cinerea into epidermal cells. A few days after the penetration a halo appears around the infected necrotic cells. These symptoms can be reproduced by inoculating young fruits with a few dry conidia. When many conidia alight on the epidermis of the fruit, scab-like symptoms develop, while under conditions of high humidity, blisters can be formed on the fruit surface before the fungus spreads through the fruit parenchyma. Under conditions of low humidity, necrotic areas are formed.In the necrotic cells, developed after inoculation with many or with a few conidia, no mycelium could be found by the histological methods so far used. However,B. cinera can be reisolated, implying that theBotrytis spot is a latent infection by the fungus. No renewed growth takes place when the fruit is fully ripe.Samenvatting Botrytis-stip op tomatevruchten ontstaat na binnendringen van kiembuizen vanB. cinerea in epidermiscellen van een jonge vrucht. Enkele dagen na de infectie treden celdelingen op in het onderliggende parenchymweefsel. De geïnfecteerde cel en enkele aangrenzende cellen sterven af, terwijl rondom dit necrotische plekje een zilverwit gekleurde ring ontstaat. Worden veel conidiën bijeen op een vruchtwand gebracht, dan krijgt de epidermis binnen 24 uur een schurftig uiterlijk. Blijft de luchtvochtigheid na de inoculatie hoog, dan kunnen daarentegen kleinere en grotere blaasjes in de vruchtwand ontstaan. Deze barsten na enkele dagen open, terwojl mycelium zich door de vrucht verbreidt. Daalt de luchtvochtigheid circa 16 uur na de inoculatie, dan blijft de aantasting beperkt tot de epidermis. Hoewel in het necrotische weefsel geen mycelium vanB. cinerea kon worden aangetoond, blijkt herisolatie van de schimmel gemakkelijk te zijn. Ook uitBotrytis-stippen van uit de praktijk afkomstige vruchten kanB. cinerea geïsoleerd worden. Dit betekent, dat het hier om een latente infectie gaat, waarbij evenwel geen hernieuwde groei plaats vindt als de vrucht geheel rijp is.  相似文献   

6.
The effect of vapour pressure deficit, temperature and radiation on the postharvest susceptibility of gerbera flowers toB. cinerea, on the water relations of gerbera flowers and on the lesion formation after conidial infection ofB. cinerea was studied. The temperature range in whichB. cinerea could germinate and growin vitro is 5–30 °C. In climate chamber experiments flowers had more lesions ofB. cinerea at temperatures of 20 and 25 °C than at 10 and 15°C. At 15, 20 and 25°C the infectivity ofB. cinerea conidia was negatively affected during a storage-period of 7 days. At a vapour pressure deficit (VPD) of 200 Pa significantly more conidia ofB. cinerea were infective than at 800 Pa. At a VPD of 800 Pa the susceptibility of gerbera flowers forB. cinerea was not significantly different than at 200 Pa. High radiation levels in glasshouses in spring and summer negatively influenced the infectivity of conidia ofB. cinerea on the flower surface, but did not affect the susceptibility of gerbera flowers forB. cinerea. In spring and early summer conidia lost their infectivity at high radiation levels, high temperatures and high levels of VPD. In summer gerbera flowers could be more susceptible toB. cinerea because of high temperatures in glasshouses, but the negative effect of radiation on the conidia ofB. cinerea seemed to overrule the temperature effect. Thus, the numbers of lesions in spring and summer can be low compared with the numbers in other seasons, although the numbers ofB. cinerea colonies on spore traps can be high. The effect of temperature on the susceptibility of gerbera flowers can probably be explained by changes of water status in the petals. At higher temperatures the number of lesions and the turgor (=water potential—osmotic potential) in the petals increased. Temperatures <10°C during lesion formation (RH>95% and VPD<50 Pa) had a temporary negative effect on the number of lesions. After 3 days of incubation the numbers of lesions were about equal (30 lesions/cm2) from 5 to 20°C. At 30°C no lesion formation was observed even after 3 days.  相似文献   

7.
Control of grey mould, caused by Botrytis spp., is a major challenge in open field strawberry production. Botrytis was isolated from plant parts collected from 19 perennial strawberry fields with suspected fungicide resistance in the Agder region of Norway in 2016. Resistance to boscalid, pyraclostrobin and fenhexamid was high and found in 89.1%, 86.0% and 65.4% of conidia samples, respectively. Multiple fungicide resistance was common; 69.6% of conidia samples exhibited resistance to three or more fungicides. Botrytis group S and B. cinerea sensu stricto isolates were obtained from 19 and 16 fields, respectively. The sdhB, cytb, erg27 and mrr1 genes of a selection of isolates were examined for the presence of mutations known to confer fungicide resistance to boscalid, pyraclostrobin, fenhexamid and pyrimethanil plus fludioxonil, respectively. Allele-specific PCR assays were developed for efficient detection of resistance-conferring mutations in cytb. Among B. cinerea isolates, 84.7%, 86.3% and 61.3% had resistance-conferring mutations in sdhB, cytb and erg27, respectively. A triplet deletion in mrr1, resulting in ΔL497, commonly associated with the multidrug resistance phenotype MDR1h, was detected in 29.2% of Botrytis group S isolates. High frequencies of resistance to several fungicides were also detected in Botrytis from both imported and domestically produced strawberry transplants. Fungicide resistance frequencies were not different among fields grouped by level of grey mould problem assessed by growers, indicating factors other than fungicide resistance contributed to control failure, a fact that has important implications for future management of grey mould.  相似文献   

8.
The effects of carbendazim on carbendazim-sensitive (wild-type) and -resistant strains of Fusarium graminearum and Botrytis cinerea were compared. When treated with carbendazim, conidia and germlings of wild-type F. graminearum and B. cinerea germinated and grew to produce stunted, distorted, and abnormally branched germlings; in addition, distinct nuclei were replaced by irregularly distributed chromosome masses, and normal nuclear division was not observed. The CMI (chromosome mitosis index) values of wild-type strains rapidly increased within 60 min of treatment with carbendazim and then rapidly declined. Whereas the wild-type strains of the two fungi responded similarly, the carbendazim-resistant strains of F. graminearum and B. cinerea responded differently to carbendazim. The resistant strain of F. graminearum showed normal mitosis but produced significantly more branches and higher CMI values when treated with carbendazim than when untreated. In contrast, the carbendazim-resistant strain of B. cinerea exhibited normal morphology and mitosis after carbendazim treatment. The results suggest that the mechanism for carbendazim resistance in F. graminearum differs from that in B. cinerea and other fungi.  相似文献   

9.
Experiments are presented which show that Botrytis cinerea, the cause of grey mould disease, is often present in symptomless lettuce plants as a systemic, endophytic, infection which may arise from seed. The fungus was isolated on selective media from surface-sterilised sections of roots, stem pieces and leaf discs from symptomless plants grown in a conventional glasshouse and in a spore-free air-flow provided by an isolation propagator. The presence of B. cinerea was confirmed by immuno-labelling the tissues with the Botrytis-specific monoclonal antibody BC-12.CA4. As plants grew, infection spread from the roots to stems and leaves. Surface-sterilisation of seeds reduced the number of infected symptomless plants. Artificial infection of seedlings with dry conidia increased the rate of infection in some experiments. Selected isolates were genetically finger-printed using microsatellite loci. This confirmed systemic spread of the inoculating isolates but showed that other isolates were also present and that single plants hosted multiple isolates. This shows that B. cinerea commonly grows in lettuce plants as an endophyte, as has already been shown for Primula. If true for other hosts, the endophytic phase may be as important a component of the species population as the aggressive necrotrophic phase.  相似文献   

10.
Species‐ and population‐specific differences in fungicide resistance and aggressiveness within Botrytis makes basic data on genetic diversity important for understanding disease caused by this fungus. Genetic diversity of Botrytis was surveyed between 2008 and 2012 from grapes from five New Zealand wine‐growing regions. A total of 1226 isolates were gathered from symptomless flower buds at the start of the growing season and 1331 isolates from diseased fruit at harvest. Two species were found, B. cinerea and B. pseudocinerea. Botrytis pseudocinerea was common in both Auckland vineyards sampled, and infrequent elsewhere. However, even in Auckland, it was rarely isolated from diseased fruit. The presence of the Boty and Flipper transposons was assessed. Isolates with all four transposon states (Boty only, Flipper only, both Boty and Flipper, no transposons) were found for both species. Both vineyards in the Auckland region had high numbers of Flipper‐only isolates at flowering; both vineyards from the Waipara region had high numbers of Boty‐only isolates at flowering. Most isolates from diseased fruit at harvest contained both transposons. These observations suggest that B. pseudocinerea, and isolates with one or both of the transposons missing, may be less aggressive than B. cinerea, or than isolates with both transposons present. Two clades were resolved within B. pseudocinerea, only one of which has been reported from European vineyards. Phylogenetic diversity within B. cinerea in New Zealand was similar to that known from Europe, including isolates that appear to match Botrytis ‘Group S’. The taxonomic implications of this genetic diversity are discussed.  相似文献   

11.
Sixty isolates of saprophytic microorganisms were screened for their ability to reduce the severity of grey mould (Botrytis cinerea) infection and sporulation. Isolates of the bacteriaXanthomonas maltophilia, Bacillus pumilus, Lactobacillus sp., andPseudomonas sp. and the fungusGliocladium catenulatum reduced germination of conidia of the pathogen and controlled disease on bean and tomato plants. Their activity under growth room conditions was good, consistent, and similar to the activity of the known biocontrol agent,Trichoderma harzianum T39 (non-formulated). Although the tested isolates may for nutrients with the germinating conidia ofB. cinerea, resistance induced in the host by live or dead cells were also found to be involved. Inhibitory compounds were not detected on treated leaves. Sporulation ofB. cinerea after its establishment on leaves was also reduced by the above mentioned isolates and byPenicillium sp.,Arthrinium montagnei, Ar. phaeospermum, Sesquicillium candelabrum, Chaetomium globosum, Alternaria alternata, Ulocladium atrum, andT. viride. These sporulation-inhibiting fungi did not reduce the infection of leaves byB. cinerea. Most of these selected fungi and bacteria were capable of reducing lesion expansion.  相似文献   

12.
Botrytis cinerea is an ubiquitous pathogen which causes severe losses in many fruit, vegetable and ornamental crops. The pathogen infects leaves, stems, flowers and fruits. The complexity of diseases caused by B. cinerea in greenhouses makes this pathogen one of the most important diseases of vegetable crops in greenhouse in many countries. In general, epidemics occur in cool and humid conditions, which favour infection and may also predispose the host to become susceptible. High relative humidity in the greenhouse and free moisture on plant surfaces are considered the most important environmental factors which influence infection by B. cinerea. In this review we specify the factors affecting the development of diseases incited by B. cinerea and discuss different approaches for its suppression. Chemical and non-chemical controls are outlined and their integration is discussed. Finally, achievements, gaps in knowledge, and future needs are indicated. The most common means for disease management is by application of chemical fungicides. Both spraying of fungicides and application of fungicides directly to sporulating wounds is practiced. However, high activity of several fungicides is being lost, at least in part, due to the development of resistance. As fungicides still remain an important tool for control of epidemics caused by B. cinerea, it is important to monitor populations of the pathogen for their resistance towards potential fungicides. Cultural measures can be a powerful means to suppress plant diseases in greenhouses where the value of crops is high and the farmers make considerable efforts during long cropping seasons. Such measures are usually aimed at altering the microclimate in the canopy and around susceptible plant organs, prevention of inoculum entrance into the greenhouse and its build up, and, rendering the host plants less susceptible to diseases. Calcium loading of plant tissues and alteration of nitrogen fertilization reduce susceptibility to Botrytis. Cultivars resistant to B. cinerea are not available. Another alternative methods to control B. cinerea is by means of biological control agents. At least one preparation is already available in the market and in many cases it was as effective as the conventional fungicides. A decision support system was recently developed for integration of chemical and biological controls. Adaquate suppression of B. cinerea diseases in greenhouse crops is an attainable goal. In our opinion this goal can be reached by considering the ecology of the pathosystem in its broader sense and by integration of all possible control measures. This implies optimization of plant nutrition, microlimate and control (cultural, biological, physiological and, if necessary, chemical) measures. Moreover, Botrytis management must be incorporated in a more holistic system that is compatible with insect control, crop production systems and profitability of the crop.  相似文献   

13.
Hydrophobins are small secreted proteins unique to filamentous fungi. In this study, we cloned and characterized the class I hydrophobin gene BcHpb1 in the necrotrophic pathogen Botrytis cinerea. The BcHpb1 protein consisted of 117 amino acids. Similar to class I hydrophobins from other fungi, BcHpb1 contains eight conserved cysteine residues. The hydropathy plot of the BcHpb1 amino acid sequence was characteristic of a class I hydrophobin. These results indicated that the BcHpb1 gene encodes a class I hydrophobin. Vegetative growth of ΔBcHpb1 strains, null mutants of BcHpb1, was similar to that of the wild-type strain as were the conidiophores, conidia, appressoria and virulence on host plants. However, adherence of ΔBcHpb1 strains to hydrophobic surfaces was greatly reduced, implying that BcHpb1 is important for the hydrophobicity of conidia and that BcHpb1 may be required to adhere to plant surfaces under certain environmental conditions.  相似文献   

14.
植物内生枯草芽孢杆菌Em7菌株对葡萄灰霉病菌的抑菌活性   总被引:2,自引:0,他引:2  
通过室内皿内对峙抑菌试验、分生孢子萌发抑制试验、离体果实接种试验以及电镜技术,研究测定了分离自小麦根部的植物内生枯草芽孢杆菌Em7菌液对葡萄灰霉病菌Botrytiscinerea Pers.的抑制作用及抑菌机理。结果表明:用Em7菌液处理葡萄灰霉病菌后,在PDA培养基上形成了明显的抑菌圈,直径达2.81 cm;菌液对分生孢子萌发的抑制率达到88.65%;经Em7菌液处理后,离体果实病情指数明显低于空白对照,相对防治效果达到78.92%。电镜观察发现,处理组菌丝生长异常,体表凹凸不平,局部膨大成结或缢缩,分枝变多,菌丝体内液泡增多,细胞壁增厚,细胞膜透性发生变化。表明植物内生枯草芽孢杆菌Em7菌株对葡萄灰霉病菌有良好的抑制作用,并且可以有效控制葡萄灰霉病的发生。  相似文献   

15.
Mechanisms involved in the biological suppression of infection and inoculum potential ofBotrytis cinerea are numerous and variable and the involvement of two or more mechanisms has been demonstrated in several systems. Reported combinations include antibiosis with enzyme degradation ofB. cinerea cell walls; competition for nutrients followed by interference with pathogenicity enzymes of the pathogen or with induced resistance; and alteration of plant surface wettability combined with antibiosis. Since germinatingB. cinerea conidia are dependent on the presence of nutrients, competition for nutrients is regarded as important in systems where biocontrol is involved. Conidial viability and germination capacity are also potentially affected by the presence of antibiotics produced by biocontrol agents and present in the phyllosphere. Slower in action are mechanisms involving induced resistance in the host plant and production of hydrolytic enzymes that degradeB. cinerea cell walls. The latter has been demonstrated much more convincinglyin vitro than in the phyllosphere. Biocontrol in established lesions and reduction of sporulation on necrotic plant tissues is a means to minimize the pathogen inoculum.Abbreviations BCA bio-control agent - Bc Botrytis cinerea - PG polygalacturonase - PL Pectin lyase - PME Pectin methyl esterase - PR pathogenesis related - VPD vapour pressure deficit  相似文献   

16.
BACKGROUND: Fenhexamid, a sterol biosynthesis inhibitor effective against Botrytis, inhibits the 3‐ketoreductase (Erg27) involved in C‐4 demethylation. Several fenhexamid‐resistant phenotypes have been detected in Botrytis cinerea populations from French vineyards. The field isolates with the highest resistance levels display amino acid changes in Erg27 (F412S, F412I or F412V). RESULTS: Fenhexamid‐resistant mutants were generated by site‐directed mutagenesis of the erg27 gene in a sensitive recipient strain to overcome the impact of different genetic backgrounds. The wild‐type erg27 allele was replaced by the three mutated alleles (erg27F412S/I/V) by homologous recombination. These isogenic strains were shown to be fenhexamid‐resistant and were used to quantify the impact of F412 mutations on fungal fitness. Several parameters, including radial growth, the production of sclerotia and conidia, freezing resistance and aggressiveness, were quantified in laboratory conditions. Analysis of variance demonstrated significant differences between the mutant and parental strains for some characters. In particular, the mutants grew more slowly than the wild‐type strain and displayed variations in the production of sclerotia and conidia with temperature and susceptibility to freezing. CONCLUSIONS: The results highlight a moderate but significant impact of F412 mutations on the survival capacity of B. cinerea strains displaying high levels of resistance to fenhexamid in laboratory conditions, potentially limiting their dispersal and persistence, particularly in terms of overwintering, in field conditions. Copyright © 2011 Society of Chemical Industry  相似文献   

17.
In recent years, spotting of ray florets of gerbera flowers has become an important problem. This type of small necrotic lesions may occur before, but especially shortly after harvesting the flowers.Botrytis cinerea was easily isolated from such lesions. Inoculation withB. cinerea only gave typical necrotic lesions, when dry conidia were dusted on the flowers with a short period of high rh after inoculation. At 18–25 °C a high rh for at least 5 hours was necessary. Rotting of ray florets and receptacles byB. cinerea occurred when inoculated flowers were kept wet for a few days. Spots consist of one to several necrotic, usually epidermal cells. A single conidium could give rise to a necrotic lesion after germination. Germination of conidia and lesion formation occurred between 4 and 25 °C; at 30 °C, germination and lesion formation did not occur. Between 18 and 25 °C, many lesions became visible within 1 day after inoculation; at 4 °C it took 2 to 3 days before lesions could be seen. If kept dry, conidia ofB. cinerea remained ungerminated on ray florets of gerbera flowers and could be removed from the ray florets. Within 1 day at high rh, germination occurred and lesions were produced. Conidia ofB. cinerea, stored dry, were able to survive much longer than the lifetime of a gerbera flower. Even after storage at room temperature for up to 14 months, some conidia were able to germinate in vitro and on ray florets and induce the formation of lesions. Addition of gerbera pollen diffusate stimulated germination and lesion formation.  相似文献   

18.
Application of o-hydroxyethylorutin restricted the development of Botrytis cinerea in tomato leaves. Superoxide anion and hydrogen peroxide generation rates and changes in superoxide dismutase, peroxidase and catalase activities were studied in uninfected tomato plants, in plants infected with B. cinerea, and in plants treated with o-hydroxyethylorutin and infected with pathogen. About two times higher hydrogen peroxide concentration were found in plants treated with o-hydroxyethylorutin and infected with the pathogen at the early infection stages compared with untreated infected plants. In vitro tests showed that germination of B. cinerea conidia was significantly inhibited by H2O2. Higher H2O2 concentrations were needed to inhibit mycelial growth. The results indicate that o-hydroxyethylorutin triggers hydrogen peroxide production in tomato plants and suggest that enhanced levels of H2O2 are involved in restricted B. cinerea infection development.  相似文献   

19.
The impact of ozone in predisposingPhaseolus vulgaris toBotrytis cinerea has been investigated. One day after 8 h exposures to 0, 120, 180 and 270 g ozone m–3, primary and trifoliate leaves of four bean cultivars were detached and inoculated with conidia suspended in water or in an inorganic phosphate (Pi) solution. Visible ozone injury increased with increasing ozone concentrations in all cultivars. Primary leaves were more sensitive than trifoliate leaves. Conidia suspended in Pi solution caused lesions on healthy leaves, whereas conidia in water did not. Ozone-injured leaves of all cultivars showed lesions byB. cinerea after inoculations in water. The number of lesions was significantly correlated with ozone injury for primary leaves. After Pi inoculations, the number of lesions on the ozone-sensitive cultivars also increased with increasing ozone concentrations. However, the ozone-tolerant cultivar Groffy showed first a decrease in the Pistimulated infection at the lowest ozone dosages. The trifoliate leaves of all cultivars were less predisposed to the fungus than the primary leaves. The results indicate that realistic concentrations of ozone enhance the predisposition of bean leaves toB. cinerea. The rate of enhancement depends on the level of ozone-induced injury which was influenced by cultivar, leaf and ozone concentrations.Samenvatting De invloed van ozon op de vatbaarheid van boon voorBotrytis cinerea werd onderzocht. Een dag na de blootstelling van vier bonecultivars gedurende 8 uur aan 0, 120, 180 en 260 g ozon m–3, werden primaire en drietallige bladeren geïnoculeerd met conidiën in water of in een anorganische fosfaatoplossing (Pi). Zichtbare beschadiging door ozon nam met de concentratie toe in alle cultivars. De primaire bladeren waren gevoeliger dan de drietallige. In tegenstelling tot conidiën in water, verooraakten conidiën in de Pi-oplossing lesies op gezonde bladeren. Bij ozonbeschadiging vertoonden bladeren van alle cultivars lesies doorB. cinerea na inoculatie in water. Voor primaire bladeren was het aantal lesies significant gecorreleard met de bladbeschadiging. Na Pi-inoculatie nam bij de ozongevoelige cultivars het aantal lesies ook toe met de concentratie ozon. Echter, de ozontolerante cultivar Groffy vertoonde eerst een afname in de door Pi gestimuleerde infectie bij de laagste ozonconcentratie. De door ozon verhoogde vatbaarheid van drietallige bladeren was minder dan die van primaire bladeren. De resultaten tonen aan dat realistische concentraties van ozon boon vatbaarder maken voorB. cinerea. Deze stijging in vatbaarheid is afhankelijk van het niveau van de ozonbeschadiging die wordt beïnvloed door cultivar, soort blad en ozonconcentratie.  相似文献   

20.
The horizontal and vertical distribution of airborne conidia ofBotrytis cinerea in a gerbera crop in two glasshouses (100 m2 and 350 m2) was studied during 18 months in 1988 and 1989. Conidia ofB. cinerea were caught in simple spore traps consisting of agar in Petri dishes placed in a regular pattern at three different heights in the glasshouse and counted as colonies, after incubation. Lesions due to conidial infection were counted on gerbera petals. The horizontal and vertical distribution of conidia ofB. cinerea in a gerbera crop grown under glass was fairly uniform in both distinct glass-houses. Conidia ofB. cinerea trapped in a glasshouse can originate from sources inside and outside the glasshouse. No significant interaction was found between location and time for the colony counts and for the log transformed (ln(N+1)) lesion counts. The results of this study suggest that spore trapping at one height and at a limited number of locations and dates is sufficient for efficient monitoring ofB. cinerea in a glasshouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号