首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
农业轮式机器人机械多体系统朝柔性机器人方向发展,自由度越来越多,对应的结构也变得更加复杂,自动化和智能化水平越来越高,其动力学建模和实时控制难度增大。为提高机器人动力学建模效率,以通用性较强的具有6自由度机械臂的AMR果蔬收获机器人数学模型为研究对象,利用空间算子代数理论建立了轮式机器人O(n)阶效率的运动学和广义动力学模型。同时,利用Elman神经网络求解了机器人逆运动学问题,结合广义动力学模型和逆运动学模型,根据农业轮式机器人的特点,利用神经网络控制理论、PID鲁棒理论和Lyapunov稳定性理论,设计了一种6自由度机械臂的RBF-PI鲁棒-滑模控制算法,对机械臂末端进行心形轨迹实时追踪。最后,通过试验仿真,验证了本文提出的逆运动学理论、广义动力学模型和控制方法的合理性,为农业轮式机器人的研究提供了参考数据。  相似文献   

2.
针对作业空间较小的大棚果蔬采摘环境,研制了串联式4自由度关节型果蔬采摘机械臂。采用SolidWorks建立了机械臂的3维模型,在拉格朗日法建立动力学分析模型的基础上,利用ANSYS和ADAMS分析软件,对机械臂进行静态结构分析和运动学、动力学仿真分析。静力学仿真结果表明,机械臂的最大应力为8.181 8 MPa,最大形变为0.000 329 11 m,结构设计合理,强度符合要求;运动学仿真结果表明,机械臂可以精确到达目标位置,运动过程平稳;动力学仿真结果表明,各关节的最大力矩均在安全合理的范围。为进一步验证设计的合理性,对研制的果蔬采摘机械臂进行了性能测试,结果表明机械臂定位精度最大误差±2.5 mm,平均误差±1.1 mm,带载能力3 kg,机械臂运动平稳,可以满足果蔬采摘作业要求。   相似文献   

3.
张志红 《南方农机》2023,(10):19-21
【目的】农业采摘机器人是一种集机械、电子、传感、计算机于一体的多功能农业机械设备,被广泛应用于水果、蔬菜采摘领域。但其在对果实的识别和抓取方面仍存在很大的不足。【方法】机械臂是农业采摘机器人重要的组成部分之一,也是其主要执行机构。笔者根据机械臂结构特点与功能需求,设计了一种六自由度、关节运动灵活且可更换的采摘机器人机械臂,该机械臂通过控制系统调节3个平动关节在工作空间中的位置和角度,从而获得末端执行器能够完成采摘任务所需的最小工作空间,通过六自由度变换得出6个关节在工作空间中坐标系之间运动轨迹关系。该机械臂由视觉模块、驱动模块及控制模块构成。基于D-H参数法对采摘机器人机械臂进行运动学分析,并进行仿真验证。【结果】该机械臂具有较好的定位精度,能够满足农业采摘机器人对果实的抓取要求。  相似文献   

4.
六自由度采摘机械臂系统设计   总被引:1,自引:0,他引:1  
刘忠超  熊雷  翟天嵩 《农机化研究》2015,(8):112-114,119
以Atmel公司的Atmega1280芯片为核心控制器,以六自由度关节型果蔬采摘机械臂为研究对象,设计了采摘机械臂的软硬件系统。运用D-H法对六自由度机械臂进行数学建模,并通过Mat Lab构建运动仿真模型,验证了其设计的可行性;通过软件编程实现了采摘机械臂单自由度运动、多自由度协调运动和运动规划等功能模式;同时完成了Labview上位机监控界面的设计;最后通过系统调试,实现了采摘机械臂的单自由度、多自由度及基本的运动规划功能。系统整体运动灵活,协调性较好,在精度和性能上都得到了很大的提高。  相似文献   

5.
农业生产中果蔬采摘是其中的重要环节,且依赖于大量劳动力的参与,采摘机器人的发展与应用将会极大地改善采摘作业的劳动力依赖问题。采摘机械臂是采摘机器人的关键部分,是采摘机器人研究的一大重点。以采摘机械臂自由度进行分类,梳理总结国内外采摘机械臂研究的发展过程和研究现状。针对相同栽培模式下同一果蔬,在采摘机械臂的自由度和构型的选择上缺少标准化方案的问题,提出采摘机械臂研究与农艺的深度结合是未来解决问题的关键。同时,对于刚性本体难适应采摘环境以及关节驱动方式单一的问题,提出采摘机械臂本体的柔性设计以及驱动方式的组合使用将是未来的发展趋势。  相似文献   

6.
温室3P3R机械臂系统动力学建模与分析   总被引:1,自引:0,他引:1  
针对温室等设施农业环境,设计了一种具有3P3R机械臂结构的机器人,为了分析机械臂的操作性能并实现精确运动控制,对机械臂进行了运动学和动力学分析;采用Kane方法和旋量理论分析方法建立了机器人的操作臂运动学和动力学模型,利用该模型,针对原理样机的具体结构,在Mathematica环境下研究了机械臂的操作性能,得到在一定作业任务规划下,末端执行器的位姿变化规律,以及按照该规划轨迹运动时各关节的驱动力;结果表明,结合了Kane方法和旋量理论的动力学模型具有准确、简单、有效等特点,能够满足机械臂的运动学、动力学分析的要求。  相似文献   

7.
研发了基于设施农业的果蔬采摘机械手,包括具有3个旋转关节自由度的采摘机械臂及具有力反馈功能的三指果蔬采摘末端执行器,并对其控制系统进行了开发。通过采摘模拟试验,验证了其作业性能、采摘效果。试验结果表明:采摘机械手各关节与控制系统配合良好,运行稳定;采摘末端执行器手指控制灵活,传感器响应灵敏,能够实现稳定抓取并不损伤果实,具有推广价值。  相似文献   

8.
设计了一种果实自动采摘机器人,主要包括自动导航系统、采摘系统、运动系统、控制系统及动力系统。自动导航系统主要包括激光雷达导航和GNSS定位导航,可用于建立地图和规划工作路径;采摘系统通过双目立体视觉相机进行果实识别,再通过由六自由度机械臂和两指末端执行器(机械手)组成的执行机构抓紧果梗并剪断,完成果实采摘。试验结果表明,设计开发的机器人可以通过激光雷达导航完成室内工作,剪断并抓取果梗的两指末端执行器可适用于多种果实,上位机软件可以完成图像采集、机械臂控制和机器人工作路线图建立等操作。激光雷达导航试验结果表明,在1 m/s的行驶速度下,导航绝对误差小于3. 5 cm,可满足温室果实采摘的需求。  相似文献   

9.
设计了一种果实自动采摘机器人,主要包括自动导航系统、采摘系统、运动系统、控制系统及动力系统。自动导航系统主要包括激光雷达导航和GNSS定位导航,可用于建立地图和规划工作路径;采摘系统通过双目立体视觉相机进行果实识别,再通过由六自由度机械臂和两指末端执行器(机械手)组成的执行机构抓紧果梗并剪断,完成果实采摘。试验结果表明,设计开发的机器人可以通过激光雷达导航完成室内工作,剪断并抓取果梗的两指末端执行器可适用于多种果实,上位机软件可以完成图像采集、机械臂控制和机器人工作路线图建立等操作。激光雷达导航试验结果表明,在1m/s的行驶速度下,导航绝对误差小于3.5cm,可满足温室果实采摘的需求。  相似文献   

10.
多末端苹果采摘机器人机械手运动学分析与试验   总被引:8,自引:0,他引:8  
提出了一种多末端采摘机器人机械手结构方案,设计了机械臂、末端执行器及其控制系统。机器人机械臂采用主从两级结构,从臂前端可挂接多个末端执行器。末端执行器能进行果实连续采摘,其结构紧凑、驱动简单、通用性好,可适用于苹果、柑橘、梨等球形水果的自动化收获。针对设计的采摘机械手具有多末端的特点,提出了果树分区采摘作业策略,一个采摘区内各个末端执行器同时连续采摘、果实集中回收。在此基础上建立了机器人机械手运动学模型,采用D-H法推导了运动学方程,运用Matlab Robotics Toolbox进行了运动学仿真验证。制作了机械手物理样机并在实验室环境下进行了机械手运动学及采摘试验,结果表明,机械手各从臂末端位置误差小于9 mm,采摘成功率为82.14%。  相似文献   

11.
以6自由度机器人及2自由度变位机为研究对象,运用机器人微分变换理论建立存在误差情况下的运动学方程。针对机器人在切削加工中动、静态误差存在耦合的情况,通过分析切削加工系统的特点,运用摄动法建立了相邻两连杆间的动、静态误差的传递关系,并由此推导出机器人末端执行器与各关节轴动、静态误差的关系,对机器人及变位机各运动副间的误差进行了解耦,建立了切削加工机器人系统的误差补偿模型,并验证了其有效性,为进一步研究机器人末端执行器与各关节及臂杆间的误差关系打下了理论基础。  相似文献   

12.
八自由度机械臂位置运动学模型解析解   总被引:1,自引:0,他引:1  
采用D-H法建立了八自由度农业机器人机械臂连杆坐标系,得到以关节变量为输入的正运动学方程。在正运动学方程的基础上,根据农业机器人实际工况以及机械臂自身的结构特点,设定了约束条件,进行了逆运动学分析,得到了各关节变量的解析表达式,并对正运动学与逆运动学计算结果进行了相互验证。采用ADAMS仿真软件建立了机械臂的仿真模型,进行了运动学仿真,仿真结果与理论计算相符。搭建实验平台,实验验证了正运动学与逆运动学求解结果的正确性。  相似文献   

13.
为研究采摘机器人的数控技术,构建了欠驱动采摘机器人模型。基于农业采摘机器人成本、耗能及实地作业需求,构建的模型为后轮驱动模式,结构简单。实际工作过程中,通过车轮移动,机械手通过智能控制到达指定位置进行果蔬采摘。同时,从采摘精度角度出发对机器人的驱动及末端执行装置进行参数设计,通过PID控制实现对采摘机器人的自动采摘过程,构建出末端执行装置运动学矩阵方程,并在此基础上构建系统数控系统,实现其自动采摘等多元化功能,为后续相关研究提供参考。  相似文献   

14.
果蔬采摘机器人系统的应用与发展   总被引:1,自引:0,他引:1  
尽管果蔬采摘机器人技术发展迅速,但果蔬采摘机器人商业化的程度不高,很多仍然处于研发阶段.本文针对现有的果蔬采摘机器人系统进行了介绍,并分别从采摘机械臂、末端执行器、移动机构、视觉系统和算法等方面对国内外采摘机器人的发展现状进行论述,分析和讨论了果蔬采摘机器人现阶段面临的挑战和潜在的发展趋势.  相似文献   

15.
鲜食果蔬收获是难以实现机械化作业的生产环节,高效低损采摘也是农业机器人研发领域中的难题,导致目前市场化的自动化果蔬采摘装备生产应用几乎空白。针对鲜食果蔬采摘需求,为改善人工采摘费时费力、效率低下、自动化程度低的问题,近30年来,国内外学者设计了一系列自动化采摘设备,推动了农业机器人技术的发展。在研发鲜食果蔬采摘设备时,首先要确定采收对象和采收场景,针对作物的生长位置、形状和重量、场景的复杂程度、所需自动化程度,通过复杂度预估、力学特性分析、姿态建模等方式,明确农业机器人的设计需求。其次,作为整个采摘动作的核心执行者,采摘机器人的末端执行器设计尤为重要。本文对采摘机器人末端执行器的结构进行了分类,总结了末端执行器的设计流程与方法,阐述了常见的末端执行器驱动方式、切割方案,并对果实收集机构进行了概括。再次,本文概述了采摘机器人的总体控制方案、识别定位方法、避障方法及自适应控制方案、品质分类方法以及人机交互、多机协作方案。为了总体评价采摘机器人的性能,本文还提出了平均采摘效率、长期采摘效率、采收质量、损伤率和漏采率指标。最后,本文对自动化采摘机械的总体发展趋势进行了展望,指明了采摘机器手系统将向着采摘目标场景通用化、结构形式多样化、全自动化、智能化、集群化方向发展的趋势。  相似文献   

16.
采摘机械的末端执行器作为果蔬收获类机器人的重要组成部分,其采摘机械手的设计是收获机器人研发的重要环节。为此,分析了当前采摘机械手在国内外的发展现状,结合番茄果实的生物学特征,以保护番茄果实不受损伤为设计目标,利用NX12.0三维制图软件设计出了一种将作用力施加于番茄桔梗生长节点的番茄采摘机械手。同时,通过三维软件的仿真模块对机械手的关键零件进行有限元分析,进而对整体机构进行模拟仿真,仿真结果验证采摘机械手的设计合理性,旨在为下一步番茄采摘机械手的研发奠定基础。  相似文献   

17.
【目的】保证农业采摘设备能够稳固地抓取不规则农作物,提高农业机械化收获效率和质量,促使农业生产向信息化、智能化、高效化的方向不断发展。【方法】设计了一种先进、新型的农业采摘机多自由度机械臂。从机械臂的运行原理入手,分别设计了加固板、加强板、限位板、滑动装置、稳定槽、挡板等组成部分,完成了对机械臂结构的科学化设计,最后仿真验证了机械臂的抓取精度。【结果】该机械臂与移动平台所对应的抓取误差被控制在0.01 mm以下,该机械臂可以实现对目标物体的精确采摘。【结论】该机械臂具有定位精确度高、抓取自由灵活等特点,能够满足农业采摘机对水果、蔬菜等农作物的抓取需求,应用前景广阔。希望本研究能为农业生产人员和农机科研人员提供有益的借鉴和参考。  相似文献   

18.
为适应现代农业装备向精细化、智能化方向,更为准确地掌握采摘机器人作业过程中的实时运动轨迹,不断提升采摘机器人的作业效率,以6自由度的采摘机器人机械臂为研究对象,在全面理解采摘机器人结构组成及作业原理的基础上,运用运动学与动力学相结合的理论模型,通过对其进行三维实体建模,优化整体臂体结构及控制系统的软硬件组成、臂体运动学求解算法及关键参数控制要求等。同时,利用CAM/CAE分析工具进行模拟仿真验证,结果表明:通过不断调整运动部件与作业环境间的相互关系,实现了采摘机器人臂体的运动轨迹跟踪控制,臂体的各个执行部件运动位置误差范围控制在10%之内,达到了机器人自主采摘的控制要求。这一控制研究可为采摘机器人其他相关部件研究与改进提供参考。  相似文献   

19.
选择性收获机器人技术研究进展与分析   总被引:6,自引:0,他引:6  
鲜食果蔬成熟度不一致,需依据着色、尺寸等指标有选择地收获,是人工消耗最大、影响产业发展的瓶颈环节。选择性收获技术是农业机器人的重要研究领域,能降低人工成本并提高果蔬利润,已成为国际上果蔬收获技术发展的重要方向。近年来,以白芦笋为代表等地下部和苹果、草莓、番茄等为代表地上部的鲜食果蔬选择性收获技术进展加快,成为农业机器人的研究热点。本文阐述了近年具有市场化前景的选择性收获技术发展与应用情况,梳理出技术研发的实现路径、应用对象和发展脉络。着重分析了末端执行器与收获机构、收获目标识别与定位技术、选择性收获协同控制技术的共性关键问题,归纳了该领域技术研究的开放性问题。最后,总结了我国选择性收获技术面临的挑战和机遇,针对少人化或无人化果蔬生产的应用场景,指出了产业未来发展与技术产品化需考虑的平衡点。  相似文献   

20.
汪应  罗元成 《农机化研究》2017,(12):210-214
为了实现采摘机器人机械手臂运动虚拟仿真过程的交互性,基于Java3D和VRML虚拟现实技术,提出了一种机械臂交互式三维场景生成及运动仿真系统。为了验证系统的可行性,以采摘机器人机械臂为研究对象,设计了基于采摘机器人机械臂运动仿真系统,并基于网络的特征,通过接口导入机械臂关节的造型文件,实现了采摘机器人机械臂仿真三维虚拟场景创建。对仿真系统进行了实验,结果表明:开发的采摘机器人机械臂三维运动仿真系统可以对采摘路径进行合理的规划,得到和实验基本吻合的轨迹,能够实时地显示关键力矩的变化,为关节结构的优化提供了数据参考。将仿真目标位置和预设位置进行对比发现,最大位置偏差不超过1 mm,从而验证了运动模型和算法的可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号