首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 205 毫秒
1.
A BVD control programme based on the identification and removal of persistently infected (PI) animals is being undertaken in an area in the Rome province, where BVD outbreaks had been previously detected. It involves 174 mainly dairy herds, from which blood samples of all bovines older than 1 year are obtained through the national brucellosis and leukosis eradication programme. Samples sufficient to detect the presence of seropositive animals at a prevalence of 5% or more are initially screened for antibodies against BVD virus (BVDV) using an immunoenzymatic assay. Upon identification of seroreagents additional blood samples are tested from the 6-12-month age category not included in the initial samples. Animals are considered immunotolerant if BVDV is demonstrated twice at a minimum 30-day interval. When no seropositive animals are detected during the first serological screening the herd is declared BVD-free if a second testing, preferably carried on the same animals previously tested, confirms the seronegative status of the herd. At present 147 farms have been tested, of which 63 (42.9%) are negative with respect to antibodies against BVDV. Of the 84 remaining herds in which one or more seropositives are detected, 13 are classified as recently infected. In eight of these recently infected herds, 22 PI animals have been identified.  相似文献   

2.
The objectives of this study were to compare the age distribution of animals persistently infected (PI) with bovine virus diarrhea virus (BVDV) in 12 herds with clinical BVD compared to ten herds without clinical BVD and to examine the incidence of PI calves born after the oldest PI animal. Blood samples from all animals were tested for bovine virus diarrhea virus and antibodies. In five herds, blood samples were obtained from calves born after the whole herd had been tested. All calves born by PI dams were also blood tested. In herds with clinical BVD the median age of PI animals was 248 days and in herds without clinical BVD the median age was 144 days. There was no significant difference between the age of PI animals in herds with clinical BVD compared to herds without clinical BVD (p = 0.48) suggesting similar epidemiology of the occurrences of PI animals in the two herd categories. Thereafter, all herds were used to study the incidence of PI animals. A total of 129 PI animals were found. In ten herds with 72 PI animals the age range of PI animals was more than six months. In these herds 26.3% of the PI animals were born within the first two months after birth of the oldest PI animal, no PI animals were born 2- less than 6 months, 52.7% were born 6- less than 14 months, 6.9% were born 14- less than 22 months and 13.9% (all born by PI dams) were born later than 22 months after the oldest PI animal.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Thirty-nine Greek dairy herds, totalling 6333 cattle, enrolled in a voluntary bovine viral diarrhoea virus (BVDV) eradication programme based on the identification and removal of persistently infected (PI) animals. The aim of this study was to estimate the prevalences of BVD antigen-positive and PI animals, and investigate the significance of the associations between the prevalence estimates and herd size. Initially, all animals were bled and examined for BVDV, using an antigen ELISA. A second sample was collected from the positive animals, after a period of at least three weeks. Animals retested positive were classified as PI. Antigen positive and PI animals were detected in all herds. The respective mean prevalences, adjusted for the test's accuracy and the herd-clustering effect, were 14% (95%CI: 11-18%) and 1.3% (0.8-1.8%), respectively. Herd size was not associated with the prevalence of antigen-positive or PI animals.  相似文献   

4.
A mathematical model for infection with bovine viral diarrhea virus (BVDV) was created comprising a series of coupled differential equations. The model architecture is a development of the traditional model framework using susceptible, infectious and removed animals (the SIR model). The model predicts 1.2% persistent infection (within the range of field estimates) and is fairly insensitive to alterations of structure or parameter values. This model allows us to draw important conclusions regarding the control of BVD, particularly with respect to the importance of persistently infected (PI) animals in maintaining BVD as an endemic entity in the herd. Herds without PI animals are likely to experience episodic reproductive losses at intervals of two to three years, unlike herds with PI animals which will not see such marked episodic manifestations of infection. Instead, these herds will experience an initial peak of disease which will settle to low-level chronic reproductive losses. The model indicates that vaccine coverage for herd immunity (to avoid episodic manifestations of disease) need be only 57% without PI animals, although 97% coverage is required when PI animals are present. Analysis of model behavior suggests, a program of detection and removal of PI animals may enhance the effectiveness of a vaccine program provided these animals are in the herd for 10 days or less. The best results would be seen with PI animals in the herd for 5 or fewer days.  相似文献   

5.
In 69 dairy and beef herds in the district of Kamenz, Saxony, with a total number of 21,783 and 89.6% of the district's cattle, a voluntary BVDV eradication protocol was implemented from 2000 to 2007. The aim was to achieve eradication as comprehensive as possible and to prepare the herds for the mandatory eradication program. Essential preconditions for the accreditation of a herd as "free of BVD virus" were the antigen test of all cattle and their offspring for 12 months including completeness check and a negative serological random sampling of young cattle. Mean eradication period of infected herds lasted 45.6 months, herd size, and the number of newly purchased cattle were found to have a significant influence. In five infected farms calf losses significantly decreased after termination of the eradication. further examination of the 126 antigen test positive animals from 15 herds resulted in 87 persistently infected (PI) and 15 transiently infected (TI) individuals, 24 animals missed the second test. Furthermore, out of the 87 PI's 30 individuals (34%) had antibodies against BVDV. Eight farms vaccinated their whole herd, seven only the young stock before first breeding, and 54 herds did not vaccinate, respectively. Concluding from this study, the epidemiological particularities of the farms should be taken in account. Testing of all cattle in a minimum of time including, official monitoring of immediate culling of PI's, immediate epidemiological research, and serological monitoring of the eradication process is necessary.  相似文献   

6.
Infections with the bovine virus diarrhoea (BVD) virus are endemic with high seroprevalence in many countries of the European Union (EU). The significant economic damage caused by BVD infections has led to a paradigm shift with respect to a possible control. In some EU Member States control programmes have been initiated mostly on a voluntary basis and some compulsory. The most important element of all control efforts is the identification and removal of persistently infected (PI) animals. The subsequent steps depend on the respective seroprevalence and cattle density. Sweden was one of the first countries to introduce a national control program (1993), that is now being used as standard procedure in other countries. The starting position for the program was comparatively favorable since the country's cattle density is low and vaccination was not allowed. BVD infected herds were screened using a bulk milk ELISA and subsequently the PI animals in positive herds were identified and removed. The goal of the control program is the cattle population's certified freedom of BVD. The Scandinavian model is not applicable for most regions of Germany, since BVD virus prevalence and cattle density are unfavorably high. Here the primary goal is to minimize the economic losses caused by BVD and to lower the infective pressure. Therefore a Federal guideline was issued and some Federal States have provided additional regulations for compensation of PI animals and additional costs, respectively. Primary goal of the guideline is the eradication of PI animals and the systematic vaccination of all female offspring in order to avoid further economic damage and the emergence of new PI animals in case of re-infection of the herd. Goal of this strategy is the BVD unsuspicious herd with a high immune status.  相似文献   

7.
Bovine viral diarrhoea (BVD) control/eradication programmes based on the test and removal of persistently infected cattle without use of vaccination were first introduced by the Scandinavian countries in the early 1990s. Within the last 10 years the programmes have proven to be very successful and have served as a blueprint for several other European regions. However, in areas with high cattle densities, intense animal trade and high BVD prevalence this control approach is risky, because there is a high probability that herds, which have been cleared of persistently infected (PI) animals and have become partly or fully susceptible to reintroduction of the virus, will come in contact with a BVD virus (BVDV) infected animal. A combination of the test and removal strategy with subsequent systematic vaccination of cattle could overcome this problem. The goals of vaccination in such a programme is protection against reintroduction of BVDV into herds free from PI cattle and foetal protection of pregnant animals accidentally exposed to the virus. Two-step vaccination is based on the use of inactivated BVDV-1 vaccine for priming followed by a live attenuated vaccine booster 4 weeks later. The immune response elicited by such a vaccination scheme has proven to be long lasting and foetal infection after challenge with BVDV-1 and BVDV-2 was prevented in pregnant animals 5 months after vaccination. These findings suggest that the implementation of a two-step vaccination in the initial phase of control programmes in addition to test and removal of PI animals in areas with high cattle densities and endemic BVD is practical and efficacious.  相似文献   

8.
北京地区规模化奶牛场牛病毒性腹泻病血清学调查   总被引:2,自引:0,他引:2  
对北京郊区6个未进行牛病毒性腹泻病(BVD)免疫牛场的546份奶牛血清样品,使用牛病毒性腹泻抗体ELISA试剂盒进行检测,并对其中3个牛群进行牛病毒性腹泻病毒(BVDV)血清抗原筛查。共检出阳性血清514份,总阳性率94.1%,其中5个牛场的场内血清抗体阳性率在95%以上。牛病毒性腹泻持续性感染牛(PI牛)筛查的3个牛群均有阳性牛检出。结果表明,北京地区规模化奶牛场存在牛病毒性腹泻感染和接触史,应采取净化措施进行控制。  相似文献   

9.
It is not easy to exactly diagnose the etiology of the mass infections of new-born calves on large farms where considerable losses are suffered. On the basis of the complex epizootological, clinical and laboratory examination in four large calf-rearing facilities, rotaviruses, coronaviruses, the infectious bovine rhinotracheitis (IBR) virus and the bovine viral diarrhoea (BVD) virus, and in some cases also the enteropathogenic E. coli, were found to be etiologically involved in the mass rise of diarrhoea, complicated by respiratory symptoms already during the first days after birth. The clinical picture of the disease, therapeutically difficult and reminding of "pneumoenteritis", has often been observed in stocks where, in addition to rotaviruses and coronaviruses in the faeces, the IBR or BVD viruses (sometimes both at the same time) were detected and identified in the respiratory and enteral tract. The serological examination of a higher number of animals in the stocks of calves under study confirmed the considerable rate of spreading of all the four viruses in the cattle population and, at the same time, demonstrated the very unfavourable immunological profile of the herds. The high percentage of animals low in antibody titres and the serologically negative animals constitute the infection-sensitive part of population in the affected herds. With the high culling rate and with the open herd turnover it is impossible to reach the required immunity through natural disinfection. Loss-free rearing of healthy calves will be achieved on the basis of a well-oriented vaccination programme with a good combination of inoculants.  相似文献   

10.

Background

Calf output is a key element in determining the profitability of a suckler beef enterprise. Infectious agents such as Bovine Virus Diarrhoea (BVD) virus, colostrum management and parasitic challenge can all affect calf output. Prior to the national BVD eradication programme, there was little published information on either the prevalence or effect of BVD in Irish beef herds. There is little published information on colostrum management practices in Irish commercial beef herds and there have also been few studies published on the prevalence of liver fluke or rumen fluke infection in Irish beef herds. Sixteen farms participating in the Teagasc/Farmers Journal BETTER farm beef programme were used in this study. Fourteen herds were screened for the presence of BVD virus in 2010 using RT-PCR. In 13 herds, blood samples were collected from calves (2–14 days of age) in November 2011 - April 2012 to determine their passive immune status using the zinc sulphate turbidity (ZST) test, while in 12 herds, blood and faecal samples were taken in order to determine the level of exposure to gastrointestinal and hepatic helminths.

Results

The overall prevalence of BVD virus-positive cattle was 0.98% (range 0 - 3% per herd, range 0.6 - 3.0% per positive herd). Eighteen of the 82 calves (22%) sampled had ZST values less than 20 units (herd mean range 17.0 – 38.5 units) indicating a failure of passive transfer. The overall animal-level (herd-level) prevalence of liver fluke and rumen fluke infection in these herds was 40.5% (100%) and 20.8% (75%), respectively.

Conclusions

The potential costs associated with the presence of animals persistently infected with BVD virus through the increased use of antibiotics; the rate of failure of passive transfer of colostral immunoglobulins and the high prevalence of liver fluke infection in these herds highlight that some Irish suckler beef farms may not be realizing their economic potential due to a range of herd health issues. The use of farm-specific herd health plans should be further encouraged on Irish suckler beef farms.  相似文献   

11.
Antibodies against non-structural protein 3 (NS3, p80) of bovine viral diarrhoea virus (BVDV) were determined in milk from cows vaccinated with an inactivated BVDV vaccine and compared to serum antibody levels. Animals in one herd were vaccinated with an inactivated BVDV vaccine according to the standard protocol and animals from a second herd with an intensive schedule. Serum and milk samples were tested for BVDV NS3 antibodies using five commercial ELISAs. With a few exceptions, vaccination according to the standard schedule did not induce BVDV NS3-specific antibodies in serum or milk. However, after vaccination according to the intensive schedule, anti-NS3 antibodies were detected for a short time in serum and, to a lesser extent, in milk. Bulk milk was a suitable substrate for BVDV monitoring of herds vaccinated with the inactivated BVD vaccine.  相似文献   

12.
ABSTRACT

Aims: To investigate the seroprevalence of infection with bovine viral diarrhoea (BVD) virus among 75 beef herds and seroconversion in cattle during early pregnancy, and to determine the practices and opinions of farmers towards BVD control and their association with real and perceived herd serological status.

Methods: Blood samples were collected before mating in 75 beef herds across New Zealand from 15 unvaccinated heifers that had delivered their first calf that season. Serum samples were tested for BVD antibodies using ELISA individually, and after pooling samples for each farm. Animals that were antibody-negative were retested at either pregnancy diagnosis or weaning. Farmers were asked to complete a detailed survey about herd demographics, BVD testing and vaccination practices, and opinions towards national BVD control.

Results: Based on the pooled serum antibody ELISA results, there were 28/75 (37%) negative herds, 15/75 (20%) suspect herds, and 32/75 (43%) positive herds. Of 1,117 animals sampled 729 (65.3%) tested negative for BVD virus antibodies; when retested, 47/589 (8.0%) animals from 13/55 (24%) herds had seroconverted. Among 71 famers providing survey responses 11 (15%) believed their herd was infected with BVD, 24 (34%) were unsure and 36 (51%) did not think their herd was infected. Only 19/71 (18%) farmers had performed any BVD testing within the past 5 years and 50/70 (71%) had not vaccinated any cattle for BVD. Support for national BVD eradication programme was strong in 51/71 (56%) respondents, but the biggest challenge to BVD control was considered to be famer compliance. Compared to farmers who did not think their herd was infected, more farmers who thought BVD was present in their herds had previously tested for BVD, would consider testing all replacement calves, and would support establishing a national BVD database; fewer would consider purchasing BVD tested or vaccinated cattle only.

Conclusions and clinical relevance: Only 15% of the beef farmers in this study believed their herds were infected with BVD virus and few of them had undertaken BVD screening. Nevertheless many were supportive of implementing a national BVD control programme. It is likely that the lack of farmer awareness around BVD and the failure of farmers to recognise the potential impacts in their herds are hindering progress in controlling the disease in New Zealand. There are opportunities for New Zealand veterinarians to be more proactive in helping beef farmers explore BVD management options.  相似文献   

13.

Background

Bovine viral diarrhoea (BVD) is an infectious disease of cattle with a worldwide distribution. Herd-level prevalence varies among European Union (EU) member states, and prevalence information facilitates decision-making and monitoring of progress in control and eradication programmes. The primary objective of the present study was to address significant knowledge gaps regarding herd BVD seroprevalence (based on pooled sera) and control on Irish farms, including vaccine usage.

Methods

Preliminary validation of an indirect BVD antibody ELISA test (Svanova, Biotech AB, Uppsala, Sweden) using pooled sera was a novel and important aspect of the present study. Serum pools were constructed from serum samples of known seropositivity and pools were analysed using the same test in laboratory replicates. The output from this indirect ELISA was expressed as a percentage positivity (PP) value. Results were used to guide selection of a proposed cut-off (PCO) PP. This indirect ELISA was applied to randomly constructed within-herd serum pools, in a cross-sectional study of a stratified random sample of 1,171 Irish dairy and beef cow herds in 2009, for which vaccination status was determined by telephone survey. The herd-level prevalence of BVD in Ireland (percentage positive herds) was estimated in non-vaccinating herds, where herds were classified positive when herd pool result exceeded PCO PP. Vaccinated herds were excluded because of the potential impact of vaccination on herd classification status. Comparison of herd-level classification was conducted in a subset of 111 non-vaccinating dairy herds using the same ELISA on bulk milk tank (BMT) samples. Associations between possible risk factors (herd size (quartiles)) and herd-level prevalence were determined using chi-squared analysis.

Results

Receiver Operating Characteristics Analysis of replicate results in the preliminary validation study yielded an optimal cut-off PP (Proposed Cut-off percentage positivity - PCO PP) of 7.58%. This PCO PP gave a relative sensitivity (Se) and specificity (Sp) of 98.57% and 100% respectively, relative to the use of the ELISA on individual sera, and was chosen as the optimal cut-off since it resulted in maximization of the prevalence independent Youden’s Index.The herd-level BVD prevalence in non-vaccinating herds was 98.7% (95% CI - 98.3-99.5%) in the cross-sectional study with no significant difference between dairy and beef herds (98.3% vs 98.8%, respectively, p = 0.595).An agreement of 95.4% was found on Kappa analysis of herd serological classification when bulk milk and serum pool results were compared in non-vaccinating herds. 19.2 percent of farmers used BVDV vaccine; 81% of vaccinated herds were dairy. A significant association was found between seroprevalence (quartiles) and herd size (quartiles) (p < 0.01), though no association was found between herd size (quartiles) and herd-level classification based on PCO (p = 0.548).

Conclusions

The results from this study indicate that the true herd-level seroprevalence to Bovine Virus Diarrhoea (BVD) virus in Ireland is approaching 100%. The results of the present study will assist with national policy development, particularly with respect to the national BVD eradication programme which commenced recently.  相似文献   

14.
Between 1 May 1998 and 22 February 1999, it was compulsory for Dutch cattle farmers to take measures against bovine herpesvirus 1 (BHV1). Cattle on farms that were not certified as infectious bovine rhinotracheitis (IBR)-free had to be vaccinated twice a year. During the vaccination programme, both farmers and veterinarians reported side-effects of the vaccine. These reports were collected by the Stichting IBR/BVD Schade (SIS; Foundation for IBR/BVD Damage) in order to draw up a damage report. In 1999 in total 6977 cattle farmers lodged complaints which they considered to be related to the vaccination against BHV1. On these farms, 15,150 herd vaccinations had been performed, 10,269 of which were associated with one or more symptoms. During the compulsory vaccination period, 13% of the herd vaccinations led to symptoms and complaints. In March 1999, a number of vaccine batches were found to be contaminated with bovine virus diarrhoea (BVD) virus. For the purposes of this analysis, a 'known contaminated' herd vaccination was defined as one in which at least one 'known contaminated' batch or lot of vaccine was used. In total, 987 of 1007 herds vaccinated with 'known contaminated' vaccines developed one or more symptoms compatible with acute BVD. There were no commonly seen combinations of symptoms. For this reason, and because the start and end dates were not reported for 55% of the symptoms, it was not possible to detect a symptom pattern. Therefore there were no 'suspect' batches of vaccine which, although not contaminated with BVD virus, gave rise to symptoms. The number of BVD symptoms was determined for those herds with vaccination-related symptoms. There was no difference in the distribution frequency between batch numbers or between 'known contaminated' batches and 'non-suspect' batches. The farmers' definition of chronic wasting was used in this investigation, with the inevitable large differences in definition. The symptom chronic 'wasting' was reported for 3209 of the 10,269 herds with vaccination-related symptoms. On 161 farms (164 herd vaccinations) 'chronic wasting' accounted for more than 20% of the symptoms. As expected, other symptoms were reported in addition to wasting. The symptom 'chronic wasting' was reported more often on forms where a 'known contaminated' vaccine was used. Inactivated vaccine was used for 154 herd vaccinations. In 34 cases, one or more symptoms of acute BVD were reported. The frequency was the same as that for live vaccines. The frequency of reported symptoms tended to be lower with the inactivated vaccine. On the basis of the SIS data, no relationship was found between vaccine batch and reported symptoms. This may be because (i) the classification of a vaccine as 'known contaminated', 'non-suspect', and 'not known' may not have been in keeping with the real status of the vaccine, (ii) farmers may have reported symptoms selectively, and (iii) there is no relationship with vaccination against BHV1.  相似文献   

15.
A modelling approach to calculate the success of a paratuberculosis control programme in dairy herds is presented. The essential parameters of the model are the prevalence at the beginning of the programme, diagnostic sensitivity and specificity of the tests used, discipline in culling test-positive animals, turnover in the herd, percentage of replacement with own stock and paratuberculosis prevalence in animals bought into the herd from outside, and a general hygiene-based factor. Diagnostic measures and time schedule used in the modelling approach are given by the paratuberculosis-control-programme of the local board for infectious disease control in food animals in the state of Lower Saxony. It was found by the model-calculations that in case of a high initial prevalence the anticipated six-year duration of the control programme is justified in order to ensure a lasting improvement of herd health. If hygienic measures are strictly obeyed and all test positive animals are culled a clear reduction on paratuberculosis prevalence can be achieved within the first year. According to the model in the second and third year the prevalence will increase again despite ongoing diagnostic measures in order to decrease again continuously with the beginning of the fourth year. Given an initial prevalence of 10%, 20% or 30% the prevalence after six years is calculated to be at 3%, 5% or 8% when all measures are followed as given in the control programme. The presented programme seems to be appropriate to predict prevalence development in paratuberculosis infected dairy herds if the herds are managed according to the guidelines of the "Tierseuchenkasse Niedersachsen", the local board for infectious disease control in food animals in the state of Lower Saxony, Germany. It becomes apparent that within six years a high decrease of the prevalence in the herds, but not a complete eradication of disease can be achieved by consistently complying with the rules given in these guidelines.  相似文献   

16.
Based on 2 previous surveys on the occurrence of infection with bovine virus diarrhoea virus (BVDV) in Danish and Michigan dairy herds, the prevalence and incidence of the infection were compared. The presence of certain possible risk factors for the occurrence of infection in the 2 areas were summarized and it was investigated if any of these risk factors had significant effect on the presence of animals persistently infected (PI) with BVDV in the dairy herds. Information on the cattle population density in the 2 areas was obtained from statistical yearbooks. Further information for the individual farms on age distribution, housing of animals, herd size, pasturing and purchasing policy was gathered. The prevalence of PI animals was more than 10 times higher in Denmark as compared to Michigan. In herds without PI animals, the annual incidence of seroconversion as calculated from the age specific prevalence of antibody carriers varied in most age groups between 20–25% in Denmark and between 5–10% in Michigan. All investigated risk factors except for herd size were in favour of a lower prevalence of infection in Michigan. The use of having animals on pasture and at the same time having purchased more than 40 animals within recent 31/2–4 years were significantly associated with presence of PI animals in the dairy herds (p = 0.01) when tested by the Mantel-Haenszel χ2. Using mul-tivariable logistic regression, the occurrence of PI animals was found to be significantly related to the study area (Michigan and Denmark) as well as to herd size and purchase intensity.  相似文献   

17.
Rikula U  Nuotio L  Aaltonen T  Ruoho O 《Preventive veterinary medicine》2005,72(1-2):139-42; discussion 215-9
The bovine viral diarrhoea virus (BVDV) situation among dairy herds and suckler-cow herds was monitored annually from 1998 to 2004. Bulk-tank milk (BTM) samples from all dairy herds and serum samples from beef animals at slaughter were examined for BVDV antibodies using a commercial indirect ELISA test. New BTM antibody-positive herds and herds with a history of BTM antibodies, but previously untested were sampled individually and tested for evidence of BVDV. The reason for the antibody-positivity or the source of infection was investigated. The percentage of BTM antibody-positive herds ranged from 0.45% in 2000 to 0.15% in 2003. The number of herds with persistently infected (PI) animals ranged from 10 in 2001 to 0 in 2003. The most common cause for a herd to become BTM antibody-positive was the purchase of a seropositive animal or a PI animal or a dam carrying a PI fetus. The new BVD decree of 2004 will be described in brief.  相似文献   

18.
A stochastic spreadsheet model was developed to obtain estimates of the costs of whole herd testing on dairy farms for Mycobacterium avium subsp. paratuberculosis (Map) with pooled fecal samples. The optimal pool size was investigated for 2 scenarios, prevalence (a low-prevalence herd [< or = 5%] and a high-prevalence herd [> 5%]) and for different herd sizes (100-, 250-, 500- and 1,000-cow herds). All adult animals in the herd were sampled, and the samples of the individuals were divided into equal sized pools. When a pool tested positive, the manure samples of the animals in the pool were tested individually. The individual samples from a negative pool were assumed negative and not tested individually. Distributions were used to model the uncertainty about the sensitivity of the fecal culture at farm level and Map prevalence. The model randomly allocated a disease status to the cows (not shedding, low Map shedder, moderate Map shedder, and heavy Map shedder) on the basis of the expected prevalence in the herd. Pooling was not efficient in 100-cow and 250-cow herds with low prevalence because the probability to detect a map infection in these herds became poor (53% and 88%) when samples were pooled. When samples were pooled in larger herds, the probability to detect at least 1 (moderate to heavy) shedder was > 90%. The cost reduction as a result of pooling varied from 43% in a 100-cow herd with a high prevalence to 71% in a 1,000-cow herd with a low prevalence. The optimal pool size increased with increasing herd size and varied from 3 for a 500-cow herd with a low prevalence to 5 for a 1,000-cow herd with a high prevalence.  相似文献   

19.
Bulk milk samples from every herd supplying milk to dairies in Finland were examined for the presence of antibodies to BVD virus (BVDV) annually during 1993-1997. The highest prevalence, 0.99% in 1994, declined to 0.37% in 1996; however, this favourable trend appeared to discontinue in 1997, where the prevalence remained at 0.41%. In 1993, sera of all individual animals from bulk milk antibody-positive herds were examined for the presence of these antibodies. Since 1994, only sera of animals from herds with a bulk milk absorbance reading greater than 0.250 in the EIA test were examined individually. Three geographic foci of BVDV antibody-positive dairy herds were resolved in 1994, one in the north-western, another in the eastern and a diffuse third in the southern part of Finland. A distinct limiting of the spread was apparent in 1997. Beef cattle were also studied during 1993-1997; in 1993 breeding units, in 1994 mainly beef suckler herds and in 1995-1997 serum samples of beef animals at slaughter were examined for the presence of antibodies to BVDV. The prevalence of seropositive herds in 1993 and 1994 was 30.2% and 3.2%, respectively, while the prevalence among slaughter animals ranged 0.8-1.6%. Seronegative animals in herds with > 50% of seropositive animals were examined for the presence of BVD-virus. A total of 40 dairy herds and two beef herds with viraemic (persistently infected, PI) animals was encountered during 1993-1997. A comprehensive control programme and a more specific, cooperatively funded eradication programme for dairy cattle were launched in 1994. These programmes most probably contributed to the decline in prevalence during 1994-1996.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号