首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
胡杨(Populus euphratica Oliv.)具有极强抗盐碱能力.本实验室前期胡杨微阵列芯片数据结果显示:盐胁迫下,胡杨谷胱甘肽过氧化物酶基因(PeGPX)的转录上调,暗示该基因可能对胡杨耐盐性具有一定的作用.为分析GPX对植物耐盐性的贡献,本研究以胡杨为材料,利用RT-PCR方法克隆了胡杨谷胱甘肽过氧化物酶PeGPX基因,并在烟草中过量表达该基因,以分析谷胱甘肽过氧化物酶活性与植物耐盐性的关系.研究结果显示,实验中克隆的cDNA (PeGPX)编码谷胱甘肽过氧化物酶,其ORF为693 bp,其蛋白由231个氨基酸编码.过量表达PeGPX基因的烟草与野生型烟草的耐盐性实验结果显示,野生型烟草植株在加NaCl (200 mmol/L)的MS培养基中生长15 d后,无明显的长高,且不长根;而转基因烟草在同样的加盐培养基上,生长基本没有受到抑制,植株生长状态良好,并且能够长根.光合数据显示,在盐胁迫下过量表达PeGPX基因烟草的净光合速率受到影响明显小于野生型烟草的净光合速率.酶活数据显示,转基因株系GPX酶活与野生型的相比在盐胁迫下活性有非常显著的提高.我们的研究结果说明:过表达PeGPX基因使得烟草的耐盐性得到显著提高,这对深入研究PeGPX基因在胡杨耐盐机制中的作用具有重要的意义.  相似文献   

2.
We studied microbe-plant interactions of white lupin, a cluster root-forming plant, under low P and N conditions to examine increased nutrient acquisition by plants either by a shift to a more specialized microbial community or changes in microbial enzyme production. White lupin plants were grown in rhizoboxes filled with either P- or N-deficient soil; fertilized soil was used as control. After cultivation of plants in a glasshouse for 41 d, plant growth (shoot and roots) and P and N accumulation in shoots were measured. Microbial functions were analyzed by P- and N-cycling enzymes. The microbial community structure was estimated by fingerprinting (denaturing gradient gel electrophoresis) and sequencing techniques. P deficiency induced the released citrate and acid phosphomonoesterases from cluster roots and stimulated the production of microbe-derived alkaline phosphomonoesterase in the rhizosphere. P deficiency decreased microbial diversity in the cluster root rhizosphere. Increased relative abundance of Burkholderiales in the rhizosphere of P deficient plants might be responsible for the degradation of different organic P fractions such as phytates. N deficiency induced an increase of the number of nodules and P concentration in shoot as well as roots of white lupin. We clarified that high release of citrate from cluster roots might be the preferred mechanisms to meet the P demand of nodulated plants under N deficiency. In addition, the high abundance of Rhizobiales and Rhodospirillales in the rhizosphere of cluster roots showed that the importance of N-fixing microorganisms under N deficiency. The contribution of rhizosphere microorganisms due to similar activities of N-cycling enzymes under the two different N treatments is less important for N nutrition of plants. Further understanding of the regulation of cluster roots under N-deficiency will provide new information on the interactions between P and N nutrition.  相似文献   

3.
It is desirable to know the distribution of phosphorus (P) fractions in soil so that plants may use P efficiently. Here we report the dynamics of inorganic and organic P in P-deficient black and rice soil cropped by soybean, white lupin, and maize supplied with nitrogen (N) inputs by N fixation and urea fertilizer. Inorganic P fractions of the three cropped soils could be ranked as O-P (organic phosphorus) > Al-P (aluminum phosphorus) > Fe-P (iron phosphorus) > Ca10-P (calcium-10 phosphorus) > Ca8-P (calcium-8 phosphorus) > Ca2-P (calcium-2 phosphorus), irrespective of soil type. The potential of various inorganic P fractions to plant nutrition differed between soybean and white lupin. The percentage of total P present as inorganic P was affected by crop, soil type, and N source. In black soil, the change of organic P fraction induced by N fixation was larger than by urea application. The moderately labile organic P (MLOP) concentration was not affected significantly by soil type and crop species, and it was probably the main P source to the inorganic P fraction because the correlation between the two pools was high (r = 0.945; P < 0.05). Crop species differed in their uptake of inorganic and organic P from soil. Though P fraction concentrations varied between black soil and rice soil, their response to crop species and N source was similar. The amounts of P removed from soil were affected by N source. The right choice of crop species and the application a suitable N source may increase crop yield and P uptake by plant in P-deficient soils.  相似文献   

4.
Three cereals (wheat, pearl millet, sorghum), three legumes (mung bean, moth bean, clusterbean) and three oil seed crop species (groundnut, sesame, mustard) were grown in solution culture under conditions of P deficiency and with additions of inorganic P or organic P (phytin, lecithin, glycerophosphates). The plants started secreting acid phosphatase as soon as their roots emerged (24-96 h). The activities of the secreted acid phosphatases increased with plant age and were at a maximum under P-deficient conditions. Phytin increased acid phosphatase secretion to a greater extent than lecithin and glycerophosphate. The increased activities of acid phosphatase secreted under P-deficient conditions when compared with those under P-sufficient (inorganic P) conditions ranged from 2.7 times (glycerophosphate) to 5 times (negligible P, phytin) higher. Legumes secreted the maximum amount of acid phosphatase within 2 weeks after germination, then activity decreased gradually. Acid phosphatase secretion by oilseeds started at a low level and increased with the age of the plants. Only a small increase in acid phosphatase secretion by cereals was observed during the first 3 weeks of growth. The amount of acid phosphatase secreted by legumes was 22% higher than by oilseeds and 72% higher than by cereals. The results showed that an organic P concentration of 250 mg L-1 and above, and an inorganic P concentration <50 mg L-1 provide the most suitable conditions for plants to secrete a maximum amount of acid phosphatase.  相似文献   

5.
Previous studies describe the suitability of a new type of phosphorus (P) fertilizer, called “rhizosphere‐controlled fertilizer” (RCF), to supply available P to plants while reducing soil phosphorus fixation. In order to explore the involvement of organic acid root exudation in P uptake from RCF, we investigated the relationship between shoot and root P concentrations, and the concentration of the main polycarboxylic organic acids in roots, shoots, and plant exudates. Plant species with different P‐acquisition efficiency (low: maize; medium: chickpea; high: lupin) were grown in hydroponics with three different P fertilizers: The water‐insoluble P fraction of RCF (RCF); Phospal, a slow‐release source of phosphate composed of calcium and aluminum phosphates (PH); monopotassiumphosphate (KP), and a control treatment without P (P–). RCF was as efficient as KP in supplying P to plants in the case of chickpea and lupin, and slightly less efficient than KP in maize. However, P from PH was not available for maize and less available compared to KP and RCF in chickpea and lupin. This variation reflects the different efficiencies in P acquisition for the three plant species. Except in the case of maize, plants receiving KP presented the lowest concentration of organic acids in roots and exudates, while those plants suffering severe P deficiency (P– and PH) showed the highest organic acid concentration. However, RCF had a high concentration of organic acids in roots and exudates, as well as a high P concentration in the shoot indicating that P uptake from RCF is enhanced due to root release and action of specific organic acids.  相似文献   

6.
Transgenic rice ( Oryza sativa L., a C3 plant) lines carrying a complete phospho enol pyruvate carboxylase (PEPC) gene from maize (a C4 plant) were tested for their performance in terms of organic acid synthesis and organic acid exudation into the rhizosphere under phosphorus (P)-deficient conditions. High PEPC activity increased the fraction of photosynthetically fixed carbon allocated to the organic acid pool, and P deficiency enhanced oxalate exudation from the roots of the transgenic plants. There was no evidence that the transformed PEPC was involved in internal P recycling in the plant. However, the root PEPC activity was positively correlated with the oxalate exudation and negatively correlated with the root P concentration, and a higher root PEPC activity led to a higher oxalate exudation. Thus, it is suggested that C4-PEPC transgenic rice plants had acquired the ability to exude oxalate, which enhanced their capacity to adapt to low P soil conditions.  相似文献   

7.
  • 1 The dependence of the morphology of the maize (Zea mays L.) seminal root system on physical, chemical and biotic parameters was investigated with pot cultures in quartz sand and in a natural loamy sand soil. Low O2-supply to the soil resulted in a substantially smaller root biomass despite a relative increase in total root length. Reduced N-supply also stimulated root length growth, but also enhanced the formation of laterals. The presence of soil microorganisms, in comparison to sterile cultures, resulted in a reduced length of the main roots, and the production of slender laterals with a decreased root hair density. Generally, the structural variability of laterals in response to different growth conditions was much more pronounced than that of the main roots.
  • 2 A major part of the work reported here was dedicated to a detailed study of phosphate (P) acquisition by the maize root system under field conditions. Radioactive labelling of the roots and radioautography of soil cores revealed the in situ distribution pattern of the maize root system. Controlled labelling of the soil with radioactive phosphate allowed the documentation of the development and replenishment of the phosphate depletion zone around roots. Finally, the longevity and phosphate uptake activity of the different parts and tissues of the primary root system of maize was examined by electron microscopy and tracer studies including pulse chase experiments. From these studies the phosphate-acquiring strategy of the maize root system appears as follows: The capability of P uptake decreases in the order: root hairs, 1st order laterals, 2nd order laterals, main root. The life-spans of the components of the maize root system increase by the sequence: root hairs, laterals, main root. Inorganic P uptake, therefore, mainly occurs during the first weeks of root development. Dying back of the root occurs in an ordered manner resulting in a relocation of stored P predominantly into the main root cortex. Furthermore, it could be shown that competition for P between roots of the same or of adjacent maize and/or lupin plants virtually does not occur in situ.
  • 3 The utilization of phytate-P was studied with 14C/32P-labelled Camyo-inositol-hexaphosphate supplied to maize plants grown in sterile quartz sand or in hydroponic cultures. The ratio of P- and C-uptake as well as the incidence of phytate hydrolysis products in the rooting medium indicated the capability of maize roots to acquire P from phytate by enzymatic hydrolysis. This was confirmed by enzyme studies of the root tissues. A specific hydrolyzing enzyme (phytase; molecular weight 51 kD) could be detected in the cell wall of the root, especially in the root tip, which initiates phytate dephosphorylation. Further breakdown is presumably accomplished by monophosphoric phosphohydrolases.
  相似文献   

8.
The behaviour of phytase after addition to three soil types with different sorption capacities was investigated. Phytase was collected from the roots of transgenic Arabidopsis thaliana that express a phytase gene from Aspergillus niger. Phytase activity in solution and on the solid phase of the soil was monitored over time. Phytase added to the solution phase of a soil suspension (1:20, w/v) was almost completely lost within 10 min in all soil types, while phytase in non-soil controls remained active in solution. Phytase activity lost from solution was recovered on the soil solid phase, suggesting rapid adsorption of the enzyme. Adsorption of phytase was less in soil taken from the rhizosphere of transgenic plants expressing phyA, indicating that the rhizosphere environment may help maintain phytase activity in solution. The activity of adsorbed phytase declined with time at a rate 2-4 times slower than that in the absence of soil. Adsorption of phytase in soils was highest at pH 4.5, which is below the reported isoelectric point (pI) of the Aspergillus phytase. As soil pH increased, adsorption decreased until, at pH 7.5, all phytase was in solution. Where phytase remained in solution, activity was maintained for at least 8 d. In contrast, the activity of adsorbed phytase was increasingly inhibited with time, particularly at low pH. By increasing the pH in soil suspensions, phytase that had remained active on the soil solid phase for 28 d was almost totally desorbed. Rapid immobilisation of phytase in soil may limit its capacity to interact with phytate, and this may compromise the ability of transgenic plants which exude phytase from their roots to acquire P from endogenous soil phytate.  相似文献   

9.
Abstract

The distribution of secretory acid phosphatase and organic acids enhanced by phosphorus deficiency in lupin rhizosphere was investigated using a rhizobox system which separated the rhizosphere soil into 0.5 mm fractions. In the soil fraction closest to the root surface, the lupin exudates displayed an acid phosphatase activity of 0.73 u g?1 dry soil and citrate concentration of 85.2 μmol g?1 dry soil, respectively. The increase of the acid phosphatase activity-induced an appreciable depletion of organic P in the rhizosphere, indicating that lupin efficiently utilized the organic P from soil through the enzyme activitye The sterile treatments demonstrated that the acid phosphatase in the rhizosphere was mainly derived from lupin root secretions. The secretory organic acids enhanced considerably the solubility of the inorganic P in three types of soil and a sludge. However, the secretory acid phosphatase and organic acids from lupin roots were only detected in a considerable amount in 0-2.5 mm soil fractions from root surface.  相似文献   

10.
Exudation of organic acids by the roots of three rice cultivars grown in three soils of different phosphorus (P) statuses, and their impacts on the rhizospheric P dynamics and P uptake by the rice plants, were investigated. Quantum root exudates from all the rice cultivars were significantly greater at 21 days after transplantation than at panicle initiation or flowering stages. Malic acid was the most predominant organic acid present in the rice root exudates (10.3 to 89.5 μmol plant?1 d?1), followed by tartaric, citric, and acetic acids. Greater exudation of organic acids from rice grown in P-deficient soil by all the rice cultivars suggested response of rice plant to P stress. Results indicate that the release of organic acids in the root exudates of rice plants can extract P from strongly adsorbed soil P fraction, thereby increasing native soil P utilization efficiency and ensuring adequate P nutrition for the growing rice plants.  相似文献   

11.
A pot experiment was conducted to determine the effects of chickpea/wheat intercropping and two phosphorus (P) sources on soil acidification and to explore a new way of ameliorating soil acidification. Wheat and chickpea roots were grown in compartments separated either by a solid barrier to prevent any root interactions or by a nylon mesh (30 μm) to permit partial root interactions, or with no separation between the compartments. Two P sources were applied at 60 mg P kg?1 soil either as sodium phytate or ferrous phosphate (FePO4). The decline of soil pH after growing plants for 42 days was alleviated by supplying organic P or intercropping while receiving organic P. The ameliorating of soil acidification resulted mainly from a decrease in excess cations over anion uptake of both wheat and chickpea under phytate supply, compared to FePO4 supply. The excess cation uptake of chickpea was reduced by root interactions.  相似文献   

12.
【目的】菌根共生是提高植物磷(P)营养高效利用的重要机制之一。近年来大气氮(N)沉降的增加,导致森林土壤有效氮含量增加、 N/P比发生改变,将影响菌根共生植物的生长和磷效率。【方法】以马尾松优良家系作为试验材料,NH4NO3作为外加氮源,设置模拟氮沉降与同质低磷(介质表层与深层均缺磷)、 异质低磷 (介质表层磷丰富、 深层缺磷)耦合条件下马尾松外生菌根共生的盆栽实验,系统研究模拟氮沉降对低磷胁迫下马尾松家系菌根化苗生长和磷效率的影响。【结果】 1)模拟氮沉降对马尾松菌根共生的影响与土壤磷素环境有关。在表层和深层磷素均极为匮乏的同质低磷条件下,氮沉降降低了苗木菌根侵染率和侵染程度,然而提高了菌根共生对马尾松生长和磷效率作用的有效性,马尾松的生长量和生物量均显著增加。在表层磷丰富、 深层缺磷的异质低磷条件下,菌根共生对马尾松苗木生长有抑制作用,然而氮沉降降低了其抑制程度,高氮较低氮处理对菌根侵染苗木和菌根化苗生物量积累的抑制程度小; 2)同质低磷下,模拟氮沉降显著降低了菌根化苗的根系生长,但增加了根系APase活性和有机酸分泌量,尤其是有机酸分泌量增加了近3倍。相关性分析表明,有机酸分泌对菌根化苗生长的贡献显著高于APase,这是氮沉降促进马尾松生长的主要原因之一。异质低磷下,模拟氮沉降处理后苗木深层菌根的生长发育程度较表层好,深层根的根尖数显著增加。有机酸分泌的增加提高了苗木的磷效率,促进了菌根化苗木的生长; 3)不同低磷环境下,氮沉降的增加均降低了土壤磷的相对有效性,菌根通过增加马尾松苗木对土壤磷的吸收和利用, 从而改善磷素营养促进马尾松生长发育。两种磷素环境下,马尾松菌根化苗生长对模拟氮沉降均较敏感; 4)马尾松菌根化苗生长对模拟氮沉降的响应存在显著的家系差异。【结论】大气氮沉降可改善马尾松的氮素营养,增加菌根作用的有效性,从而促进马尾松对磷的吸收,进而促进了林木的生长。不同马尾松品种对氮沉降的反应有差异,筛选高氮-低磷环境下菌根共生能力强的马尾松基因型,将成为提高土壤磷素生物学利用效率的重要途径。  相似文献   

13.
Phosphorus nutrition of spring wheat (Triticum aestivum L.) in mixed culture with white lupin (Lupinus albus L.). Spring wheat (Triticum aestivum L. ?Schirokko”?) and white lupin (Lupinus albus L.) were grown in mixed culture in Mitscherlich pots with 20 kg of soil in a green house. The soil used was a Bt of a Parabraunerde-Pseudogley from loess low in available P and limed from pH 4.6 to pH 6.5. Phosphorus was added as phosphate rock. In half of the pots cylinders of stainless steel screen prevented intertwining of the roots of the plant species. Independent of P addition, white lupin had higher dry matter production and P uptake than wheat, even although wheat had thinner roots and higher root densities than lupin, factors which favour the utilization of soil and fertilizer P. The higher P efficiency of white lupin was due to higher P uptake rates per unit root length mainly through mobilization of P especially in the rhizosphere of the proteoid roots. When the roots of the two species were allowed to intertwine, shoot dry matter production of wheat was nearly double because of improved tillering. Higher P concentrations and a more than 2-fold higher P uptake indicated that the increase in dry matter production of wheat was due to improved P nutrition. Nitrogen concentrations, however, remained unaffected at sufficient levels. An increased P uptake rate per unit root length was responsible for the better utilization of P by wheat, rather than the increase in total root length, due to the extended root volume. White lupin was able to mobilize P in the rhizosphere in excess of its own requirements. Thus mobilized P may be available to less P-efficient plants grown in mixed culture.  相似文献   

14.
甘蓝型油菜幼苗体内磷组分差异与磷高效关系的研究   总被引:2,自引:1,他引:1  
利用盆栽土培和营养液培养的方法,研究了甘蓝型油菜磷高效品种97081和磷低效品种97009在正常磷和低磷胁迫下幼苗植株生长、磷的吸收累积、植物磷组分以及酸性磷酸酶活性的差异。结果表明,缺磷条件下,97081品种的干物质重和磷累积量分别比97009高85.7%和50.0%,并且单位磷含量可以生产较多的干物质,具有较强的磷的吸收和利用效率。两品种中不可溶性有机磷、可溶性有机磷和无机磷含量都随着营养液磷水平的增加而提高。低磷胁迫时,根部不可溶性有机磷含量97009显著下降。两品种可溶性有机磷占总磷的比例均表现为下部叶>上部叶;97081根和下部叶可溶性有机磷含量及其比例均高于97009。97081根部无机磷含量高于97009,但其所占全磷比例却较低。缺磷处理,上部叶酸性磷酸酶(APase)活性两品种无显著差异;但根中和下部叶APase活性97081显著高于97009。这与甘蓝型油菜高效品种具有较强的磷吸收和再利用能力密切相关。  相似文献   

15.
We used neutron radiography (NR), a non-invasive and in situ technique, to study living plant roots in soil. Plant roots have a larger water content than their unsaturated surrounding media. As water strongly attenuates a neutron-beam, NR can identify root structures in detail. We investigated the use of NR to visualize the root growth of lupin in quartz sand and in a loamy sand field soil. Further experiments elucidated the root growth of lupin in the loamy sand heterogeneously contaminated with 10 and 20 mg kg−1 boron (B) and 100 mg kg−1 zinc (Zn). We obtained high-quality images of root growth dynamics in both media with a resolution range of 110–270 μm. The images with quartz sand revealed fine structures such as proteoid roots that are difficult to locate in situ by other methods without destruction of the soil. Though quartz sand provided excellent visibility of roots, it proved to be a poor medium for growing plants, probably because of its bulk density (1.8 Mg m−3). The images with field soil showed normal root growth with slightly less contrast than the quartz sand. The poorer contrast was due to the greater neutron interaction with soil water and soil organic matter. In the heterogeneously contaminated soil, root growth was significantly reduced in the contaminated part of the soil in all B and Zn treatments. This study shows that NR has potential as a non-invasive method to investigate root growth over time as well as the response of roots to various abiotic stress factors.  相似文献   

16.
Limited fertilization adapted to plant demand is of high economical and ecological relevance. This requires a reliable analysis of plant available P, based on knowledge of phosphorus dynamics in soils and P mobilization by plants. On chernozem-like soils, as well as under dry conditions, the double-lactate (DL) phosphate extraction methods apparently do not adequately reflect the P uptake ability of plants. This paper summarizes rhizosphere processes that affect P availability partly by reference of selected own experiments. Root exudates increased the double-lactate (DL) extractable P amount of soils in sterile and non sterile cultures. Microbial colonisation increased both the exudate amount and the specific ability of exudates to solubilize P. In spite of rapid exudate turnover, DL-P solubility was increased. Sugars released from P-deficient plants increased the P solubilizing ability of a bacterial strain (Enterobacter radicincitans), perhaps by changing bacterial acid production. Root exudates solubilized more P from soil than lactate extracts did. An investigation of physiological processes in the rhizosphere could contribute to a better understanding of nutrient availability and perhaps lead to the development of extraction methods that better reflect the availability of soil phosphorus to plants. Connecting field experiments with basic studies offers the opportunity to better understand plant nutritional processes to realize an effective and sustainable agriculture.  相似文献   

17.
We evaluated the ability of Brassica napus L. (oilseed rape), Helianthus annus L. (sunflower), and Glycine max L. (soybean) plants grown inoculated with or without bacteria to utilize organic P sources. Plants were supplied with inorganic (dibasic sodium phosphate) and organic P sources (phytate and glucose phosphate) at three concentrations and grown for 40 d under sterile conditions. Three inoculation treatments were compared: control (non‐inoculated plants), inoculation with Bacillus amyloliquefaciens BNM340, and inoculation with Pseudomonas fluorescens BNM296 (two bacteria with proven phytase activity). Oilseed rape, sunflower and soybean could utilize organic P sources. For example, when phytate (0.5 mM) P was used as the external P source, the increase factors over the no‐P treatments were 4.5, 1.4, and 1.4 for oilseed rape, sunflower, and soybean P uptake, respectively. When glucose 1‐phosphate disodium salt (G1P, 0.5 mM) was the P source, the increase factors were 8.8, 1.7, and 1.9 respectively. Positive responses to the organic P sources were found for the biomass accumulation of oilseed rape and soybean but not for sunflower. The inoculation with bacteria did not exert a promoting effect on P uptake. We demonstrate that the three species can effectively use organic P sources. The existence of crop plants that are more efficient in the utilization of different soil P sources would be particularly beneficial to improve P recycling and use of P fertilizers in agriculture.  相似文献   

18.
Phosphorus (P) deficiency is a major limitation to agricultural production in many parts of the world. It is therefore desirable to identify plants with enhanced abilities to utilize P more efficiently. Exudation of phosphatase from roots may improve P availability, yet there is little direct evidence for this. Here we report the dynamics of organic P in the rhizosphere of plants that have enhanced rhizosphere phosphatase activity. Agroforestry species and transgenic subterranean clover (engineered to produce phytase) were compared with crop and wild‐type plant controls, respectively. Depletion of organic P was measured in pools defined by chemical extraction, solution 31P NMR spectroscopy, and microbial immobilization of radio‐isotopic P. Plants that had greater extracellular phosphatase activity depleted more organic P from P‐deficient Oxisols than control plants. Depleted organic P forms were primarily phosphate monoesters. Plants with enhanced extracellular phosphatase activity also had access to a pool of soil P that was less isotopically exchangeable. Transgenic subterranean clover that expresses a microbial phytase gene appeared to have greater access to recently immobilized P, whereas plants expressing endogenous phosphatases utilized the unlabelled portion of soil organic P to a greater extent. Collectively, these results indicate that the enhancement of phosphatase activity in the rhizosphere of plants is implicated in the depletion of organic P forms from soils, most notably orthophosphate monoesters, whilst also suggesting that there is some exclusivity to the pools of organic P utilized by plants and microorganisms.  相似文献   

19.
While genetically modified plants that secrete histidine acid phosphatases (HAPs), β-propeller phytases (BPPs) and purple acid phosphatases (PAPs) have been shown to assimilate soluble phytate, little is known about whether these plants have the ability to hydrolyze precipitated phytate. In this study, the ability of representative members of these three classes of phytases to hydrolyze metal-phytate salts and to hydrolyze phytate adsorbed to aluminum precipitates was compared. All three phytases were able to hydrolyze Ca2+-, Mg2+-, and Mn2+-phytates, but were unable to hydrolyze Al3+-, Fe2+-, Fe3+-, Cu2+-, and Zn2+-phytates. When these ions were present, the hydrolysis of Ca2+-phytate was prevented. Citrate was more potent than malate and oxalate in solubilizing some of these phytate salts for enzyme hydrolysis. Phytate adsorbed to aluminum precipitates was resistant to all three enzymes, except when organic acids were added (citrate>oxalate>malate). While increasing concentrations of organic acids were inhibitory to enzyme activity (oxalate >citrate>malate), PAP was more resistant to citrate than HAP. As desorption of phytate from a solid surface by organic acids is essential for phytase activity, the genetic engineering of plants that enhances the secretion of both citrate and phytases from the root may be a feasible approach to improving soil phytate assimilation.  相似文献   

20.
Root exudation of organic acids could be an important strategy for plant acquisition of phosphorus (P) from P-deficient soils in tropical rain forests. However, the efficacy of organic acids on P mobilization in the rhizosphere could be reduced due to their rapid biodegradation by rhizosphere microorganisms. To assess the dynamics and function of organic acids in the rhizosphere soils in tropical rain forests, we examined the concentrations of oxalate, citrate, and malate in soil solution and the mineralization kinetics of 14C-radiolabelled oxalate and citrate in the rhizosphere and bulk soil fractions. We compared two tropical montane rain forests from Mt. Kinabalu, Borneo that share similar parent material (i.e., sedimentary rocks) and climate but differ in terms of soil age. The older soil (Tertiary age materials) was affected by podzolization and had less inorganic labile P compared to the younger soil (Quaternary colluvial deposits). In the P-deficient older soil, the rhizosphere soil solution contained markedly higher concentrations of oxalate, citrate, and malate than did the bulk soil, whereas in the P-rich younger soil, the levels of organic acids in the rhizosphere were lower. The higher levels of organic acids in the rhizosphere of P-deficient soils are caused by greater root exudation and the lower sorption capacity for organic acids. The results of mineralization kinetics showed that oxalate and citrate in soil solution were rapidly mineralized in both rhizosphere and bulk fractions of both P-rich and P-deficient soils, having short mean residence times (2.3–13.1 h for oxalate and 0.8–1.6 h for citrate). The mineralization rates of oxalate and citrate were highest in the rhizosphere fraction of the P-deficient soil, where the pool of organic acids was largest and rapidly replenished by root exudation. Our data indicate that consumption as well as production of organic acids in the rhizosphere could be enhanced in P-deficient soil. The efficacy of organic acids on P mobilization in the rhizosphere in tropical montane rain forests appears to vary depending on the level of soil P availability and the anion sorption capacity, attributable to soil aging with podzolization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号