首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The analysis of irrigation and drainage management and their effects on the loading of salts is important for the control of on-site and off-site salinity effects of irrigated agriculture in semi-arid areas. We evaluated the irrigation management and performed the hydrosalinity balance in the D-XI hydrological basin of the Monegros II system (Aragón, Spain) by measuring or estimating the volume, salt concentration and salt mass in the water inputs (irrigation, precipitation and Canal seepage) and outputs (evapotranspiration and drainage) during the period June 1997–September 1998. This area is irrigated by solid-set sprinklers and center pivots, and corn and alfalfa account for 90% of the 470 ha irrigated land. The soils are low in salts (only 10% of the irrigated land is salt-affected), but shallow (<2 m) and impervious lutites high in salts (average ECe=10.8 dS m−1) and sodium (average SARe=20 (meq l−1)0.5) are present in about 30% of the study area.The global irrigation efficiency was high (Seasonal Irrigation Performance Index=92%), although the precipitation events were not sufficiently incorporated in the scheduling of irrigation and the low irrigation efficiencies (60%) obtained at the beginning of the irrigated season could be improved by minimising the large post-planting irrigation depths given to corn to promote its emergence. The salinity of the irrigation water was low (EC=0.36 dS m−1), but the drainage waters were saline (EC=7.5 dS m−1) and sodic (SAR=10.3 (meq l−1)0.5) (average values for the 1998 hydrological year) due to the dissolution and transport of the salts present in the lutites. The discharge salt loading was linearly correlated (P<0.001) with the volume of drainage. The slope of the daily mass of salts in the drainage waters versus the daily volume of drainage increased at a rate 25% higher in 1997 (7.6 kg m−3) than in 1998 (6.1 kg m−3) due to the higher precipitation in 1997 and the subsequent rising of the saline watertables in equilibrium with the saline lutites. Drainage volumes depended (P<0.001) on irrigation volumes and were very low (194 mm for the 1998 hydrological year), whereas the salt loading was moderate (13.5 Mg ha−1 for the 1998 hydrological year) taking into account the vast amount of salts stored within the lutites. We concluded that the efficient irrigation and the low salinity of the irrigation water in the study area allowed for a reasonable control of the salt loading conveyed by the irrigation return flows without compromising the salinization of the soil’s root-zone.  相似文献   

2.
Brackish water (7 dS m−1) is frequently utilized to drip-irrigate crops in the Negev desert of Israel, the practice being to use deep sandy soils (96% sand) to avoid soil salinization. When muskmelon (Cucumis melo L.), a moderately salt-sensitive crop species, was grown using brackish irrigation under these conditions, yields declined due to a significant reduction in fruit size, but fruit quality parameters improved markedly. In the present study, we tested the hypothesis that the use of fresh irrigation water during the early vegetative phase would increase canopy size and leaf area index (LAI) and hence the potential productivity of the melon plant. The application of brackish water during the reproductive phase, on the other hand, would improve fruit quality. Using multiple irrigations within a 24-h period, applied with drip irrigation, we examined the timing, the duration, and the concentration of brackish irrigation water as tools to optimize fruit yield and quality in late-summer melons. Indeed, the combination of fresh (1.2 dS m−1) and brackish (7 dS m−1) irrigation water increased the yield level to that of fresh water plants whereas it brought about the improvement of fruit quality typical to brackish water plants, thus providing an attractive approach to optimize late-summer melon production. Our results demonstrate the trade-off between fruit size and fruit quality as related to the timing and the duration of brackish irrigation water. The use of a milder (<4.5 dS m−1) salinity level of irrigation water from plant emergence until harvest may be considered as well.  相似文献   

3.
Salt-tolerant crops can be grown with saline water from tile drains and shallow wells as a practical strategy to manage salts and sustain agricultural production in the San Joaquin Valley (SJV) of California. Safflower (Carthamus tinctorius L.) was grown in previously salinized plots that varied in average electrical conductivity (ECe) from 1.8 to 7.2 dS m−1 (0–2.7 m depth) and irrigated with either high quality (ECi<1 dS m−1) or saline (ECi=6.7 dS m−1) water. One response of safflower to increasing root zone salinity was decreased water use and root growth. Plants in less saline plots recovered more water on average (515 mm) and at a greater depth than in more salinized plots (435 mm). With greater effective salinity, drainage increased with equivalent water application rates. Seed yield was not correlated with consumptive water use over the range of 400–580 mm. Total biomass and plant height at harvest were proportional to water use over the same range. Safflower tolerated greater levels of salinity than previously reported. Low temperatures and higher than average relative humidity in spring likely moderated the water use of safflower grown under saline conditions.  相似文献   

4.
Field experiments were conducted in moderately saline and saline soils during the 1996 dry and wet seasons and the 1997 dry season to document salt dynamics and establish their relationship with local hydrology. Topsoil (0–15 cm) salinity in the dry season varied from 4.0 to 9.0 dS m−1 in moderately saline soils at Mirzapur and from 5.0 to 12.0 dS m−1 in saline soils at Barodanga. In wet season, the corresponding figures were from 1.5 to 2.5 dS m−1 and from 2.0 to 3.0 dS m−1, respectively. Dry season cropping significantly reduced topsoil salinity at both the research sites. Overall peak salinity in non-plowed cropped lands was 25–38% lower than that of fallow lands, and in plowed cropped lands it was about 30–40% less than the non-plowed cropped lands.Multiple linear and non-linear regression models were developed to predict topsoil salinity of the fallow land for both moderately saline and saline soils by using daily rainfall and evaporation as independent variables. The prediction level was not significantly improved when a non-linear model was employed in place of linear model. Therefore, a linear model may be used to predict topsoil salinity of the coastal ricelands of Bangladesh.  相似文献   

5.
The need for salinity tolerant turfgrasses is increasing because of the increased use of effluent or other low quality waters for turfgrass irrigation. Greenhouse container and hydroponic experiments were conducted to determine the relative salinity tolerance and growth responses of ‘Challenger’ Kentucky bluegrass (Poa pratensis L.) (KBG), ‘Arid’ tall fescue (Festuca arundinacea Schreb) (TF), ‘Fults’ alkaligrass (Puccinellia distans (L.) Parl.) (AG), and a saltgrass (Distichlis spicata (Torr.) Beetle) collection (SG). In the container experiments, irrigation waters of different salinity levels were applied to experimental plants grown in plastic pots filled with a mix of sand and Isolite. The results indicated that KBG, TF, AG, and SG experienced a 50% shoot growth reduction at 4.9, 10.0, 20.0, and 34.9 dS m−1, respectively, and a 50% root growth reduction at 5.8, 19.6, 24.9 and 41.0 dS m−1, respectively. In the hydroponic experiment, grasses were grown in saline solution at 2.0, 4.7, 9.4, 14.1, 18.8, and 23.5 dS m−1. Kentucky bluegrass, TF, AG, and SG experienced a 50% shoot growth reduction at 5.5, 14.2, 23.0, and 34.5 dS m−1, respectively, and a 50% root growth reduction at 7.9, 21.5, 30.4 and 40.8 dS m−1, respectively. Root to shoot ratio of KBG remained constant, whereas those of TF, AG, and SG increased at all salinity levels. Salinity caused root cortex cells to collapse, in KBG at 14.1 dS m−1 and in TF at 23.5 dS m−1. Alkaligrass and SG only had a few cell collapses even at 23.5 dS m−1. Bi-cellular salt glands were observed only on leaves of SG. The ranking for salinity tolerance of selected grasses was: SG>AG>TF>KBG. Salt glands present in SG, root growth stimulation of SG and AG, and maintenance of relatively high root to shoot ratio in TF are apparent adaptive mechanisms exhibited by these grasses for salinity tolerance.  相似文献   

6.
7.
A validated agro-hydrological model soil water atmosphere plant (SWAP) was applied to formulate guidelines for irrigation planning in cotton–wheat crop rotation using saline ground water as such and in alternation with canal water for sustainable crop production. Six ground water qualities (4, 6, 8, 10, 12 and 14 dS/m), four irrigation schedules with different irrigation depths (4, 6, 8 and 10  cm) and two soil types (sandy loam and loamy sand) were considered for each simulation. The impact of the each irrigation scenario on crop performance, and salinization/desalinisation processes occurring in the soil profile (0–2 m) was evaluated through Water Management Response Indicators (WMRIs). The criterion adopted for sustainable crop production was a minimum of pre-specified values of ETrel (≥0.75 and ≥0.65 for wheat and cotton, respectively) at the end of the 5th year of simulation corresponding to minimum deep percolation loss of applied water. The extended simulation study revealed that it was possible to use the saline water upto 14 dS/m alternatively with canal water for cotton–wheat rotation in both sandy loam and loamy sand soils. In all situations pre-sown irrigation must be accomplished with canal water (0.3–0.4 dS/m). Also when the quality of ground water deteriorates beyond 10 dS/m, it was suggested to use groundwater for post-sown irrigations alternately with canal water. Generally, percolation losses increased with the increase in level of salinity of ground water to account for leaching and thus maintain a favourable salt balance in the root zone to achieve pre-specified values of ETrel.  相似文献   

8.
A field study was conducted in northwestern Negev to determine the effect of the amount of water and its salinity level on the yield of Pima cotton (cv. S5). Irrigations were applied by means of a double line-source sprinkler system using two parallel lines, each supplied with water of a different salinity. The water salinity ranged from 2 to 7.5 dS m−1 and the seasonal water application ranged from 30.0 to 68.0 cm. With water amounts of up to 50.0 cm (42% of Class A evaporation), an increase in water salinity caused a reduction in the seed cotton yield and the salinity threshold increased with an increasing amount of water. The maximum yield of seed cotton (about 5000 kg ha−1) was obtained with a water application of 50 cm and a water salinity between 4 to 5 dS m−1. With seasonal water applications exceeding 50 cm, an increase in salinity increased the yield. This is attributed to a depression of excessive vegetative growth in the presence of large amounts of water.  相似文献   

9.
A 3-year project compared the operation of a subsurface drip irrigation (SDI) and a furrow irrigation system in the presence of shallow saline ground water. We evaluated five types of drip irrigation tubing installed at a depth of 0.4 m with lateral spacings of 1.6 and 2 m on 2.4 ha plots of both cotton and tomato. Approximately 40% of the cotton water requirement and 10% of the tomato water requirement were obtained from shallow (<2 m) saline (5 dS/m) ground water. Yields of the drip-irrigated cotton improved during the 3-year study, while that of the furrow-irrigated cotton remained constant. Tomato yields were greater under drip than under furrow in both the years in which tomatoes were grown. Salt accumulation in the soil profile was managed through rainfall and pre-plant irrigation. Both drip tape and hard hose drip tubing are suitable for use in our subsurface drip system. Maximum shallow ground water use for cotton was obtained when the crop was irrigated only after a leaf water potential (LWP) of −1.4 MPa was reached. Drip irrigation was controlled automatically with a maximum application frequency of twice daily. Furrow irrigation was controlled by the calendar.  相似文献   

10.
Depth of standing water in rice paddy fields is an important agronomic parameter in the management of irrigation-related salinity problems. It was hypothesized that reductions in the yield of rice under salinity stress can be ameliorated by adjusting the water depth. This study was designed to determine the interactive effects of salinity and water depth on seedling establishment and grain yield in rice. Plants were grown in a greenhouse and irrigated with nutrient solutions amended with NaCl and CaCl2 (5:1 molar concentrations). Treatments were three salt levels with electrical conductivities at 0.9, 3.3 and 6.0 dS m−1 and six water depths at 4, 7, 10, 13, 16 and 20 cm. The effects of both salinity and water depth were significant on plant growth and yield. However, there was no interaction between the effects of salinity and water depth. Reductions in seedling establishment and grain yield with increases of salinity and water depth resulted from a simple combination of the two different stresses on plants. Highly significant negative correlations were identified between water depth and seedling establishment and also between water depth and grain yield when data were combined across salt levels. Generally, plants performed better with respect to seedling establishment and grain yield in shallow water (i.e. <10 cm) than in deep water (i.e. >10 cm). Under salt stress, the effect of water depth was significant for panicle number, but not significant for panicle weight. The loss of grain yield under salt stress with the increases of water depth was mainly due to reduction in fertile tiller number. We suggest that water depth be lowered during the initiation and growth of productive tillers. However, the practice by lowering water depth must be incorporated with appropriate field management such as the increase of irrigation frequency, precision leveling, and effective weed control methods.  相似文献   

11.
A field lysimeter study was conducted to investigate the effect of initial soil salinity and salinity level of brackish subirrigation water on tuber weight and tuber size of three potato (Solanum tuberosum L.) cultivars (Kennebec, Norland and Russet Burbank) under simulated arid conditions. Both saline and non-saline initial soil conditions were simulated in a total of 36 lysimeters. Eighteen lysimeters were flushed with fresh water (0.2 dS/m), while the remaining 18 lysimeters were flushed with brackish water (2 dS/m). For each soil condition, two subirrigation water concentrations, 1 and 9 dS/m, were used in nine lysimeters each. For each subirrigation water treatment, three potato cultivars were grown. In all lysimeters, water table was maintained at 0.4 m from the soil surface. Arid conditions were simulated by covering the lysimeter top with plastic mulch, allowing the potato shoots to grow through a cut in the mulch. The average root zone salinities (ECw) were found to be 1.2 and 1.5 dS/m in non-saline lysimeters subirrigated with 1 and 9 dS/m waters, respectively. The corresponding salinities were 3.2 and 3.7 dS/m in the saline lysimeters. Across cultivars, there was no significant effect of either initial soil salinity or subirrigation water salinity on total tuber weight. However, the weight of Grade A tubers was higher in non-saline soil than in saline soil. Kennebec and Russet Burbank Grade A tuber weights were not affected by the initial soil salinity. On the contrary, a significant reduction in Grade A and total tuber weight under initially saline soil was evident for the Norland cultivar.  相似文献   

12.
Drainage water salinity data from 71 public deep tubewells and 79 pipe drainage units near Faisalabad, Pakistan, were studied. Drainage water salinity of the tubewells and the pipe drains remained approximately constant with time. This was attributed to the deep, highly conductive, unconfined aquifer underlying the area, which facilitates lateral groundwater inflow into the drained areas. Tubewells alongside surface drains showed average electrical conductivity, sodium adsorption ratio, and residual sodium carbonate values of 3.2 dS m−1, 17.2 (meq l−1)0.5, and 6.4 meq l−1, respectively. For pipe drains, which are situated in areas with comparable conditions, the corresponding values were 2.5 dS m−1, 12.2 (meq l−1)0.5, and 3.7 meq l−1, respectively. Tubewells have an inferior drainage water quality because they attract water from greater depths, where the water is more saline.  相似文献   

13.
Optimizing irrigation scheduling for winter wheat in the North China Plain   总被引:1,自引:0,他引:1  
In the North China Plain (NCP), more than 70% of irrigation water resources are used for winter wheat (Triticum aestivum L.). A crucial target of groundwater conservation and sustainable crop production is to develop water-saving agriculture, particularly for winter wheat. The purpose of this study was to optimize irrigation scheduling for high wheat yield and water use efficiency (WUE). Field experiments were conducted for three growing seasons at the Wuqiao Experiment Station of China Agriculture University. Eleven, four and six irrigation treatments, consisting of frequency of irrigation (zero to four times) and timing (at raising, jointing, booting, flowering and milking stage), were employed for 1994/95, 1995/96 and 1996/97 seasons, respectively. Available water content (AWC), rain events, soil water use (SWU), evapotranspiration (ET) and grain yield were recorded, and water use efficiency (WUE) and irrigation water use efficiency (IWUE) were calculated.The results showed that after a 75-mm pre-sowing irrigation, soil water content and AWC in the root zone of a 2-m soil profile during sowing were 31.1% (or 90.7% of field capacity) and 16.1%, respectively. Rainfall events were variable and showed a limited impact on AWC. The AWC decreased significantly with the growth of wheat. At the jointing stage no water deficits occurred for all treatments, at the flowering stage water deficits were found only in the rain-fed treatment, and at harvest all treatments had moderate to severe soil water deficits. The SWU in the 2-m soil profile was negatively related to the irrigation water volume, i.e. applying 75 mm irrigation reduced SWU by 28.2 mm. Regression analyses showed that relationships between ET and grain yield or WUE could be described by quadratic functions. Grain yield and WUE reached their maximum values of 7423 kg/ha and 1.645 kg/m3 at the ET rate of 509 and 382 mm, respectively. IWUE was negatively correlated with irrigated water volume. From the above results, three irrigation schedules: (1) pre-sowing irrigation only, (2) pre-sowing irrigation + irrigation at jointing or booting stage, and (3) pre-sowing irrigation + irrigations at jointing and flowering stages were identified and recommended for practical winter wheat production in the NCP.  相似文献   

14.
Eight-year-old Murcott orange trees grown in greenhouse lysimeters filled with sandy soil were subjected to irrigation with saline water to investigate the influence of salinity on daily evapotranspiration (ET). The study was conducted in Japan from 1 August to 15 September 2000. The study duration was divided into three periods of about 2 weeks each. In period I, all lysimeters planted with a tree were irrigated with 60 mm of non-saline water at the water content of 70% of field capacity (FC). Salinity treatments for period II started on 14 August. The treatments during period II were as follows: Lysimeter 1 (L1) had 32 mm non-saline water with an electrical conductivity (ECI) of 1.0 dS/m applied. At the same time Lysimeter 2 (L2) had 32 mm of saline water with an ECI of 8.6 dS/m applied when the water content decreased to 70% of FC. Lysimeter 3 (L3) had 16 mm saline water (ECI=8.6 dS/m) applied at 85% of FC. The irrigation amounts during period II were equal to those corresponding to 1.2 times of water required to reach FC. Treatments in period III were the same as in period I.Daily ET was similar for all weighing lysimeters during period I. The average relative ET for L2 and L3 with respect to L1 (L2/L1 and L3/L1) were similar during this period, with a mean value of 0.99. During period II, ET from L1 was consistently higher than that from L2 and L3. In addition, L3 with a higher irrigation frequency because of irrigation at higher soil water content resulted in higher ET than L2. The average relative ET of period II was 0.71 and 0.88 for both L2 and L3. During the last half of period III, reductions occurred in the ET differences between the saline treatments (L2 and L3) and non-saline control (L1).Evaporation rates from soil did not exceed 0.7 mm per day. Transpiration rates from L1, L2 and L3 during period II varied between 6.3 and 3.1 mm per day, 4.5 and 2.2 mm per day, and 5.8 and 3.0 mm per day, respectively. The results reflected a tangible difference of water extraction by roots from individual soil layers. Maximum water uptake by these trees was observed at layer of 30–60 cm. Nevertheless, no clear differences in water extraction pattern between trees were observed.Approximately, 95% of drainage occurred during the first 2 days following irrigation. The electrical conductivity of soil water (ECS) and the electrical conductivity of drainage water (ECD) for the saline water treatments (L2 and L3), compared to the control (L1) were significantly different during period II. ECS values were 2–5 times higher in saline treatments compared to the control treatment. After irrigating trees with saline water, ECS increased from 5 to 14 and 16 dS/m in L2 and L3, respectively. Similarly, in both saline treatments, ECD values were greatly increased after irrigation. During period III, ECD values increased from 5 to 8 dS/m in L2, and from 3 to 11 dS/m in L3. By contrast, ECS declined from 14 to 5 dS/m in L2, and from 16 to 3 dS/m in L3 over the same period.  相似文献   

15.
In West Asia and North Africa (WANA) including northwest (NW) Iran irrigation is becoming increasingly available and investigation of the effect of limited irrigation (LI) is a research need. Only a few seasons of successful experimentation exist with LI effects. Thus, the objective of this simulation study was to examine potential long-term benefits of limited irrigation in NW Iran in terms of grain yield. To do this, a simple, mechanistic chickpea (Cicer arietinum L.) model and 16 years of weather data of Maragheh (NW Iran) were used. Three LI systems with one, two and three irrigations and each with three plant population densities (25, 38 and 50 plants m−2) were simulated. Results showed chickpea crop experiences terminal drought stress that is started at a time between flowering and beginning seed growth (BSG). This terminal drought stress severely reduces grain yield by 67%, from 2766 kg ha−1 under full-irrigated conditions to 909 kg ha−1 under rainfed conditions. Grain yield was significantly increased with LI compared to rainfed conditions. Grain yields were reached to 60, 75 and 90% of grain yield simulated under full-irrigated (generally requires five irrigations) conditions. In LI with one irrigation its application at BSG, and in LI with two and three irrigations, application of first irrigation at flowering and application of one or two other irrigations when fraction of transpirable soil water dropped to 0.5 in the root zone resulted in higher grain yield. Water use efficiency was, also, increased with LI by 28, 39 and 52% for one, two and three irrigations, respectively. In LI systems with two and three irrigations it was required to a higher plant density (38 or 50 plants m−2) to capture and to use applied water more efficiently.  相似文献   

16.
Vast rainfed rice area (12 million ha) of eastern India remains fallow after rainy season rice due to lack of appropriate water and crop management strategies inspite of having favourable natural resources, human labourers and good market prospects. In this study, a short duration crop, maize, was tried as test crop with different levels of irrigation during winter season after rainy season rice to increase productivity and cropping intensity of rainfed rice area of the region. Maize hybrid of 120 days duration was grown with phenology based irrigation scheduling viz., one irrigation at early vegetative stage, one irrigation at tassel initiation, two irrigation at tassel initiation + grain filling, three irrigation at early vegetative + tassel initiation + grain filling and four irrigation at early vegetative + tassel initiation + silking + grain-filling stages. Study revealed that one irrigation at tassel initiation stage was more beneficial than that of at early vegetative stage. Upto three irrigation, water use efficiency (WUE) was increased linearly with increased number of irrigation. With four irrigations, the yield was higher, but WUE was lower than that of three irrigations, which might be due to increased water application resulted in increase crop water use without a corresponding increase of yield for the crop with four irrigations. The crop coefficients (Kc) at different stages of the crop were derived after computing actual water use using field water balance approach. The crop coefficients of 0.42–0.47, 0.90–0.97, 1.25–1.33, and 0.58–0.61 were derived at initial, development, mid and late season, respectively with three to four irrigation. Study showed that leaf area index (LAI) was significantly correlated with Kc values with the R2 values of 0.93. When LAI exceeded 3.0, the Kc value was 1. Study revealed that the Kc values for the development and mid season stage were slightly higher to that obtained by the procedure proposed by FAO, which might be due to local advection.  相似文献   

17.
Two varieties of chickpea (Cicer arietinum L.) and faba bean (Vicia faba), differing in drought tolerance according to the classification of the International Center for Agronomic Research in Dry Areas (ICARDA), were irrigated with waters of three different salinity levels in a lysimeter experiment to analyse their salt tolerance.The drought-sensitive varieties are more salt tolerant than the drought-tolerant varieties. Under saline conditions, the drought-sensitive varieties show a much higher yield up to a salinity threshold, corresponding with an electrical conductivity (ECe) between 2.5 and 3 dS/m for chickpea and between 5.5 and 6 dS/m for faba bean.The drought-sensitive varieties are able to improve or maintain the water-use efficiency when irrigated with saline water. This ability can be ascribed to
  • •the larger biomass production owing to the later senescence, which allows a better utilization of the irrigation water;
  • •the late flowering of chickpea.
  相似文献   

18.
Soil salinisation is very often due to excessive irrigation. However, irrigation is absolutely essential for obtaining reliable crop yields, particularly under predicted global warming conditions. A simple methodology for assessing the salinisation risk for any water management situation and under predicted global warming conditions is presented. The methodology is illustrated by the assessment of irrigation effects on soil salinity at San Antonio del Sur Valley, in the southeast of Cuba. Irrigation from a new dam will support agriculture in the Valley, but at the same time soil salinity is expected to increase. Soil electrical conductivity at several depths and topographical altitudes were used to create raster layers in a Geographic Information System (GIS), thus, determining the border of the saline-affected zones by a GIS analysis. Water-table depth at the border of the saline zones was assumed to be 2 m. The physically based SWAP model was used to predict future water-table depths after irrigation begins and under global warming conditions. Future temperature and precipitation daily values were calculated from a linear increase/decrease of the daily values corresponding to a typical year, according to a global-change forecast for the zone. Soil hydraulic properties were estimated from pedotransfer function and published soil data. Simulated results predict a fast water-table raise of 1 m, due to the increase of irrigation water. Borders of the new saline zones under these conditions (i.e. the places where the water-table is at a 2 m depth) were calculated using a digital terrain model, assuming that the water-table rose 1 m over the whole valley. According to the simulation results, the original saline zones of the valley will be enlarged from 31.4 to 96.8 ha 15 years after the scheduled start of irrigation. The methodology could be used by farmers and decision-makers to select the most suitable water management solution considering both economical and environmental criteria.  相似文献   

19.
Two chickpea varieties, differing in drought tolerance, were grown in lysimeters filled with clay, and were irrigated with waters of three different salinity levels. Under non-saline conditions, both varieties, slightly differing in pre-dawn leaf water potential during the growth period, gave almost the same yield.Salinity had a slight effect on the leaf water potential and the osmotic adjustment. Both were slightly higher for the drought tolerant variety, but much lower in comparison with sugar beet, tomato and lentil. The drought tolerant variety showed an earlier senescence in leaf and dry matter development and flowering which were accelerated by salinity. The drought sensitive variety, however, showed under slightly saline conditions (ECe=2.5 dS/m) from 135 days after sowing onwards a different behaviour by the growth of new leaves and flowers, a delay in senescence, leading to the same yield as under non-saline conditions. Under saline conditions (ECe=3.8 dS/m) the drought sensitive variety showed the same yield reduction of about 70% as the drought tolerant variety.  相似文献   

20.
Differential sensitivity during growth stages is one of the major issues in the management of saline water for irrigation. This study was designed to analyze the effects of salinity on plant growth and yield components of rice by composing 20-day periods of salinization at different growth stages. Plants were grown in sand tanks in a greenhouse and irrigated with nutrient solutions. Treatments were three levels of salinity with electrical conductivities at 1.8, 3.2 and 4.6 dS m−1 and five timing treatments. Plants were salinized on the day of seeding, 1-leaf, 3-leaf, panicle initiation (PI), and booting stages, respectively, and stress was relieved after 20 days in each timing treatment. Salinity-induced reductions in shoot dry weights of plants harvested before PI were significant, but there were no significant differences among timing treatments. Reduction in shoot dry weight of plants harvested at seed maturity was significant only when plants were salinized for a 20-day duration before booting, but not after booting. Reduction in tiller number per plant was significant only when plants were salinized for a 20-day duration before PI. The reductions in spikelets per panicle and seed weight per panicle were most pronounced when plants were stressed between the 3-leaf and PI stages or between PI and booting stages and minor when stressed at the other stages. A 20-day period between 3-leaf and PI stages was most sensitive to salinity in terms of seed yield. These results indicate that the differential sensitivity at growth stages can be clearly shown when stages are well defined in the timing treatments and the stress is quantified at growth stages based on the same duration of salinization. The interaction between cultivar and timing treatment was not significant. Uniform management options can be developed for irrigation using saline water for the cultivars with similar genetic backgrounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号