首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Thermal insulation and warmth-keeping properties of thick plywood-faced sandwich panels with low-density fiberboard (plywood-faced sandwich, PSW), which were developed as wood-based structural insulation materials for walls and floors, are comprehensively clarified. The properties focused on were thermal conductivity (λ), thermal resistance (R), and thermal diffusivity (D). The results for PSW panels were compared with those for commercial wood-based boards, solid wood, and commercial insulators. The λ values were measured for PSW panels and their core and face elements. As a result, the composite theory of λ was found to be appropriate for PSW composites, because the calculated/experimental λ ratios were approximately 90%. The λ values for PSW panels with densities of 340 kg/m3 (PSW350) and 410kg/m3 (PSW400) were 0.070 and 0.077W/mK, respectively. The R values for PSW350 and PSW400 were 1.4 and 1.2m2K/W, and the D values were 0.00050 and 0.00046m2/h, respectively. Consequently, the PSW provided thermal insulation properties superior to those of the boards and in terms of warmth-keeping properties were greatly advantageous over the insulators. These advantages were due to the moderate densities of PSW panels. The PSW panel with sufficient thickness showed remarkably improved thermal resistance compared with those of the boards.  相似文献   

2.
Low-density sandwich panels of veneer-overlaid fiberboards of 12 mm thickness for structural use were manufactured at densities of 0.3–0.5g/cm3 using an isocyanate compound resin adhesive and steam injection pressing method. The effects of board density, veneer thickness, and resin content on the fundamental properties of sandwich panels were examined, with the following results: (1) The dry moduli of rupture and elasticity in the parallel direction of sandwich panels with thicker veneers were superior. The dry moduli of rupture and elasticity in the parallel direction of sandwich panels with 2.0 mm thick veneer at densities of 0.4–0.5 g/cm3 were 40–60 MPa, and 5–8 GPa, which were two and four times as much as those of homogeneous fiberboards, respectively. (2) The higher-density panels exhibited tensile failure at the bottom veneer surface during static dry bending in a parallel direction, whereas lower-density panels experienced horizontal shear failure in the core. (3) The dimensional stability of sandwich panels had good dimensional stability, with negligible springback after accelerated weathering conditions. (4) The thermal insulation properties of sandwich panels were found to be much superior to other commercial structural wood composite panels.Part of this report was presented at the 47th annual meeting of the Japan Wood Research Society, Kouchi, April 1997  相似文献   

3.
This study was carried out to investigate the postbuckling behavior of thin wood-based sandwich panels under high humidity. Using the Rayleigh-Ritz method based on the von Karman nonlinear theory for the panel, the solutions for both the approximate and the closed form for postbuckling of orthotropic panels were derived to evaluate the deflection for the boundary condition of all clamped edges. The results suggested that the edge movement be considered for evaluation of a critical moisture content and deflection of thin wood-based panels fixed on the core with an adhesive. The numerical solution obtained from the derived model showed some discrepancy with the experimental results. The predicted results overestimated the center deflection of the panels because creep and plastic deformation might be caused by considerable in-plane stress on panels.Appendix: Abbreviations and symbols total potential energy of panel - A ij ,D ij extensional and bending stiffness, respectively - x , y midplane strains inx andy directions, respectively - xy midplane shear strain inxy plane - N x M , N y M hygroscopic forces inx andy directions, respectively - h panel thickness - a, b panel length inx andy directions, respectively - x, y, z coordinate system - u, v, w displacement inx, y, andz directions, respectively - MC moisture content change - a x ,a y coefficient of linear expansion inx andy directions, respectively - LE linear expansion (MC) - s arc length - R radius of curvature - N x ,N y resultant in-plane forces per unit length inx andy directions, respectively - N n nondimensional loadN x M b 2/E 2 h 3 - N cr nondimensional critical load,N x,cr M b 2/E 2 h 3 - ratio of the core to the total width,a c /a + a c - E c effective core MOE,E +E (i.e., the summation of MOE parallel to the grain and perpendicular to the grain) - h c core thickness  相似文献   

4.
Summary Laboratory scale cement-bonded particleboards were made from mixed particles of three tropical hardwoods. Boards were three-layered comprising of 2 mm thick sawdust face and 4 mm thick core layers made from flakes of three lengths-12.5 mm, 25.0 mm and 37.5 mm and two thicknesses of 0.25 mm and 0.50 mm. The panels were fabricated at three density levels of 1,050 kg/m3, 1,125 kg/m3 and 1,200 kg/m3. From the statistical factorial analysis carried out, flake length, flake thickness and board density had significant effects at 1% level of propability on the properties of the tested panels. Mean MOR ranged from 5.22 to 11.15 N/mm2; MOE-2,420 to 4,820 N/mm2; water absorption and thickness swelling following 144 hours soak in water, 32.95 to 46.00% and 0.35 to 5.47% respectively. The longer and thinner the flakes, the stronger, stiffer and more dimensionally stable the experimental cement-bonded particleboards. Similarly, the higher density panels generally exhibited higher strength values in terms of MOR and MOE and were more dimensionally stable. MOR, MOE, water absorption and thickness swelling were found to be highly correlated with flake length, flake thickness and panel density. Correlation coefficients (R) for these relationships were 0.888 to 0.986 for the combined variables; and 0.574 to 0.992 for the individual factors. In all the cases tested, the regression relationships were linear.  相似文献   

5.
This study investigated the dynamic modulus of elasticity (DMOE) of wood panels of Fraxinus mandshurica, Pinus koraiensis, and Juglans mandshurica using the natural frequency measurement system of fast Fourier transform (FFT). The results were compared with the static modulus of elasticity (E S) tested by a mechanical test machine. The results show a significant correlation between E S, transverse vibration DMOE (E F), and longitudinal vibration DMOE (E L). For all of these species, the correlation between E S, E F and E L is more significant than the individual species, which indicated that the FFT method is universal. The correlations between E S and sample’s density (ρ) are significant, but the correlation coefficient of E S and ρ is lower than those between E F, E L and E S. The E S of wood is more accurately tested by the analysis based on FFT measurement than by the estimation based on density. __________ Translated from Scientia Silvae Sinicae, 2005, 41(6): 126–131 [译自: 林业科学, 2005, 41(6): 126–131]  相似文献   

6.
Modal testing based on the theory of transverse vibration of orthotropic plate has shown great potentials in measuring elastic constants of panel products. Boundary condition (BC) and corresponding calculation method are key in affecting its practical application in terms of setup implementation, frequency identification, accuracy and calculation efforts. To evaluate different BCs for non-destructive testing of wood-based panels, three BCs with corresponding calculation methods were investigated for measuring their elastic constants, namely in-plane elastic moduli (E x , E y ) and shear modulus (G xy ). As a demonstration of the concept, the products used in this study were oriented strand board (OSB) and medium density fiberboard (MDF). The BCs and corresponding calculated methods investigated were, (a) all sides free (FFFF) with one-term Rayleigh frequency equation and finite element modeling, (b) one side simply supported and the other three free (SFFF) with one-term Rayleigh frequency equation, (c) a pair of opposite sides along minor strength direction simply supported and the other pair along major strength direction free (SFSF) with improved three-term Rayleigh frequency equation. Differences between modal and static results for different BCs were analyzed for each case. Results showed that all three modal testing approaches could be applied for evaluation of the elastic constants of wood-based panels with different accuracy levels compared with standard static test methods. Modal testing on full-size panels is recommended for developing design properties of structural panels as it can provide global properties.  相似文献   

7.
The use of calibrated near-infrared (NIR) spectroscopy for predicting of a range of solid wood properties is described. The methods developed are applicable to large-scale nondestructive forest resource assessment and to tree breeding and silviculture programs. A series ofPinus radiata D. Don (radiata pine) samples were characterized in terms of density, longitudinal modulus of elasticity (E L), and microfibril angle (MFA). NIR spectra were obtained from the radial/longitudinal face of each sample and used to generate calibrations for the measured physical properties. The relations between laboratory-determined data and NIR fitted data were good in all cases, with coefficients of determination (R 2) ranging from 0.68 for 100/MFA to 0.94 for densitystrip. A good relation (R 2 = 0.83) was also obtained forE L estimated using data collected by SilviScan-2. The finding suggests that an NIR instrument could be calibrated to estimate theE L of increment cores based on SilviScan data. In view of the rapidly expanding range of applications for this technique, it is concluded that appropriately calibrated NIR spectroscopy could form the basis of a testing instrument capable of predicting a range of properties from a single spectrum obtained from the product or from the raw material.  相似文献   

8.
Kenaf composite panels were developed using kenaf bast fiber-woven sheets as top and bottom surfaces, and kenaf core particles as core material. During board manufacture, no binder was added to the core particles, while methylene diphenyldiisocyanate resin was sprayed to the kenaf bast fiber-woven sheet at 50 g/m2 on a solids basis. The kenaf composite panels were made using a one-step steam-injection pressing method and a two-step pressing method (the particleboard is steam pressed first, followed by overlaying). Apart from the slightly higher thickness swelling (TS) values for the two-step panels when compared with the one-step panels, there was little difference in board properties between the two composite panel types. However, the two-step pressing operation is recommended when making high-density composite panels (>0.45 g/cm3) to avoid delamination. Compared with single-layer binderless particleboard, the bending strengths in dry and wet conditions, and the dimensional stability in the plane direction of composite panels were improved, especially at low densities. The kenaf composite panel recorded an internal bond strength (IB) value that was slightly low because of the decrease of core region density. The kenaf composite panel with a density of 0.45 g/cm3 (one-step) gave the mechanical properties of: dry modulus of rupture (MOR) 14.5 MPa, dry modulus of elasticity (MOE) 2.1 GPa, wet MOR 2.8 MPa, IB 0.27 MPa, TS 13.9%, and linear expansion 0.23%.  相似文献   

9.
Despite the exceptional position of yew among the gymnosperms concerning its elastomechanical properties, no reference values for its elastic constants apart from the longitudinal Young’s modulus have been available from literature so far. Hence, this study’s objective was to determine the Young’s moduli E L, E R and E T and the shear moduli G LR, G LT and G RT of yew wood. For that purpose, we measured the ultrasound velocities of longitudinal and transversal waves applied to small cubic specimens and derived the elastic constants from the results. The tests were carried out at varying wood moisture contents and were applied to spruce specimens as well in order to put the results into perspective. Results indicate that E L is in the same order of magnitude for both species, which means that a high-density wood species like yew does not inevitably have to have a high longitudinal Young’s modulus. For the transverse Young’s moduli of yew, however, we obtained 1.5–2 times, for the shear moduli even 3–6 times higher values compared to spruce. The variation of moisture content primarily revealed differences between both species concerning the shear modulus of the RT plane. We concluded that anatomical features such as the microfibril angle, the high ray percentage and presumably the large amount of extractives must fulfil important functions for the extraordinary elastomechanical behaviour of yew wood which still has to be investigated in subsequent micromechanical studies.  相似文献   

10.
The effects of grain angle, thickness of face veneer, and shelling ratio on dynamic modulus of elasticity (E) of veneer-overlaid particleboard composite (VOP) were examined by using nondestructive test. In this study, the possibility that E of VOP can be predicted by means of some empirical formula was also discussed. This study has shown that grain angle, thickness of face veneer, and shelling ratio have substantial effects on E of VOP. The E at 0° of grain angle of face veneer was the largest, decreasing rapidly with increase in the grain angle. The lowest value of E occurred at 90° of grain angle of face veneer. The relationship between grain angle of face veneer and E of VOP can be expressed in the form of Jenkin’s and Hankinson’s equations. The orthotropic properties of wood and VOP defined as the ratio E 0/ E 90 were 25.7 for wood and 4.7 for VOP. When the grain direction of face veneer was parallel to the length of the specimens, the E of VOP increased with increasing shelling ratio. VOP increased E from 125 to 179% over that of the particleboard and veneer thickness from 2.1 upto 3.6 mm. However, when the grain direction of face veneer was perpendicular to the length of the specimens, the E of VOP decreased with increasing shelling ratio. VOP decreased E from 23 to 41% over that of the particleboard and veneer thickness from 2.1 upto 3.6 mm. The relationship between E of VOP and face veneer thickness can be expressed in the form of a second-order parabolic equation. Rule of Mixture (ROM) can be used to predict E of VOP from the E of wood element and particleboard element.  相似文献   

11.
 The fundamental in-plane shear properties were investigated for the wood-based sandwich panel of plywood-overlaid low-density fiberboard (SW) manufactured at a pilot scale to develop it as a shear wall. The shear test method using tie-rods standardized for shear walls was applied to SW with dimensions of 260 mm square and 96 mm thick as a small shear wall and to plywood (PW) and thick low-density fiberboard (FB). The shear modulus and shear strength of PW, FB, and SW were determined. To measure the shear deformation angle, a displacement meter and strain-gauge were used. The shear moduli of PW (0.68 g/cm3) and FB (0.25–0.35 g/cm3) were 460 and 21–58 MPa/rad, respectively. The shear modulus of SW as a composite was analyzed. Some experimental models of SW were proposed (i.e., rigid-α, rigid-β, flexible, and semirigid models). The shear modulus of SW (0.35–0.40 g/cm3) evaluated based on the rigid-α and semirigid models were 73–89 and 109–125 MPa/rad, respectively. The theoretical shear modulus of SW was calculated to be 110–129 MPa/rad. Received: May 9, 2001 / Accepted: June 26, 2002 RID="*" ID="*" Part of this report was presented at the 50th Annual Meeting of the Japan Wood Research Society, Kyoto, Japan, April 2000; and the 5th Pacific Rim Bio-Based Composite Symposium, Canberra, Australia, December 2000 Acknowledgments The authors express our deep gratitude to Mr. Noritoshi Sawada (Hokushin Co.), Dr. Wong Cheng, and their cooperative members for their expert technical support for the preparation of manufacturing the thick fiberboard and sandwich panel. We are grateful also to Drs. Min Zhang, Kenji Umemura, Wong Ee Ding, and Guangping Han for their great help and advice in manufacturing the thick panels. The authors are grateful to Hokushin Co. for the fiber and resin and to Ishinomaki Gouhan Co. for the plywood. We thank Mr. Makoto Nakatani for his expert assistance when preparing the specimens for the shear test. Funding provided by the Research Fellowship of the Japan Society for the Promotion of Science for Young Scientists as a JSPS Research Fellow is also gratefully acknowledged.  相似文献   

12.
The effects of using 100% black spruce (Picea mariana) bark fibers as core layer material accounting for up to 70% of the board and its resin content (between 6 and 10%) on the properties of three-layer medium-density fiberboard (MDF) were investigated using a full factorial experimental design with two independent variables and three levels. Five response variables, namely internal bond strength, modulus of rupture, modulus of elasticity, thickness swelling and water absorption were statistically analyzed using a response surface methodology and two-way analysis of variance. The effects of the proportion of core layer (bark fibers) and its resin content on panel properties were significant. All properties studied were positively affected by increasing core layer resin content. The effects of the proportion of core layer (bark fibers) on mechanical properties and water absorption were negative, but positive on thickness swelling. Simultaneous optimization of panel properties indicated that at a density of 850 kg/m3, a three-layer MDF with a core layer resin content of 6.5%, a face resin content of 12 and 60% of core layer proportion (spruce bark fibers) would satisfy the minimum requirements of ANSI standard for 130-grade MDF. Overall, black spruce bark, a major residue source in the Eastern Canada, should be considered as a supplemental furnish for the core layer materials of a three-layer MDF.  相似文献   

13.
The influence of moisture content (MC) on the dynamic modulus of elasticity of structural lumber was investigated using transverse vibration testing methods. The flexural rigidity (EI) of a transversely vibrating beam was calculated as the modulus of elasticity (E) multiplied by the moment of inertia (I). The increase in E of lumber due to reduction in moisture content was computed by assuming that the flexural rigidity remains constant with changes in moisture content. Reductions in I due to shrinkage were compensated by the increases in E which led to a proposal for a species-dependent MC adjustment model for modulus of elasticity. The model was validated using 38 mm × 89 mm × 4,290 mm western Canadian Spruce–Pine–Fir dimension lumber evaluated in the “as-received” and “dry” conditions. Results obtained from the species-dependent model agreed closely with those from the E adjustment equation for dimension lumber given in ASTM D 1990. The results show that the ASTM moisture adjustment procedures can be used to adjust dynamic E values for changes in moisture content also.  相似文献   

14.
 The mechanical performance of pine sapwood (pinus sylvestris), impregnated with linseed oil to different take-up levels, is evaluated using several test methods. SEM is used to study morphological changes following the impregnation procedure. The reduction of mechanical properties is attributed to a) localized cell wall damage in the ray region that facilitates longitudinal inter-cell split in L-R plane (macrocrack) initiation and propagation; b) submicroscopical cracking in the S1 sublayer that reduces the resistance to Mode I and Mode II inter-cell splitting at any location where the oil front has passed. Mechanical testing shows the following effect of the impregnation on failure a) the Mode I fracture toughness G Ic in L-T and L-R planes, determined in DCB test, is significantly lowered with no significant difference in fracture resistance reduction in between planes; b) 3-point flexural test for specimen geometry leading to cracking in R-L and T-L planes show that the flexural strength as well as flexural modulus are reduced due to impregnation; c) 3-point flexural tests on longitudinal specimens used to determine the impregnation effect on longitudinal modulus E L and shear moduli G LT and G LR , reveal only minor changes. Fracture surfaces in mechanical tests are analyzed using SEM, and differences are explained by described microdamage mechanisms. Received 10 August 1999  相似文献   

15.
Grain deviations and high extractives content are common features of many tropical woods. This study aimed at clarifying their respective impact on vibrational properties, referring to African Padauk (Pterocarpus soyauxii Taub.), a species selected for its interlocked grain, high extractives content and uses in xylophones. Specimens were cut parallel to the trunk axis (L), and local variations in grain angle (GA), microfibril angle (MFA), specific Young’s modulus (E L /ρ, where ρ stands for the density) and damping coefficient (tanδL) were measured. GA dependence was analysed by a mechanical model which allowed to identify the specific Young’s modulus (E3/ρ) and shear modulus (G′/ρ) along the grain (3) as well as their corresponding damping coefficients (tanδ3, tanδG). This analysis was done for native and then for extracted wood. Interlocked grain resulted in 0–25° GA and in variations of a factor 2 in EL/ρ and tanδL. Along the grain, Padauk wood was characterized, when compared to typical hardwoods, by a somewhat lower E3/ρ and elastic anisotropy (E′/G′), due to a wide microfibril angle plus a small weight effect of extracts, and a very low tanδ3 and moderate damping anisotropy (tanδG/tanδ3). Extraction affected mechanical parameters in the order: tanδ3 ≈ tanδG > G′/ρ > > E3/ρ. That is, extractives’ effects were nearly isotropic on damping but clearly anisotropic on storage moduli.  相似文献   

16.
对3株绿僵菌菌株通过不同温度水浴处理,发现了孢子的萌发条件;并开展了3菌株对松褐天牛成虫的毒力测定,筛选出Ma789菌株的致病力较强。通过正交试验对其液体振荡培养条件进行了分析,选出了菌丝体生长最适培养基为蔗糖20 g·L-1,酵母粉10 g·L-1,KH2PO4 3.0 g·L-1,MgSO4·7H2O 1.0 g·L-1,CaCl2 0.5 g·L-1;培养液生孢子最适培养基为蔗糖20 g·L-1,蛋白胨10 g·L-1,KH2PO4 1.5 g·L-1,MgSO4·7H2O 2.0 g·L-1,CaCl2 0.5 g·L-1。  相似文献   

17.
The vibrational properties of Japanese bamboo were examined. To obtain the Young’s modulus and shear modulus, a flexural vibration test and a longitudinal vibration test were conducted. The Young’s modulus with vibration in the R-direction was smaller than that measured in the longitudinal vibration test E l . This was due to the shift of the neutral axis to the outer layer. On the other hand, the Young’s modulus with vibration in the T-direction was close to E l . Hence, an adequate Young’s modulus should be used for each use of bamboo. The shear moduli of the LR and LT planes of bamboo were similar to those of beech. There were high correlations between shear moduli of the LR and LT planes and density.  相似文献   

18.
Changes in surface property and mechanical properties in commercial particleboards and medium density fiberboards subjected to repetitive relative humidity treatment (i.e., aging treatment) were investigated. The stylus technique was used to evaluate surface roughness and a non-destructive vibrational test was used to evaluate dynamic bending strength during aging treatment. These methods evaluated the effect of aging treatment effectively. The aging treatment increased surface roughness and loss tangent (tan δ) values, but decreased dynamic modulus of elasticity (E d) values of the panels compared to the respective initial values. The increment of surface roughness and E d degradations observed were larger than the tan δ degradations. Surface roughness and tan δ seemed to be relatively dependent on resin type, whereas E d was relatively independent under the aging treatment. Overall, the medium density fiberboard bonded methylene diphenyl diisocyanate (MDF(MDI)) panel was superior among the types of panels studied under the aging treatment. There was strong correlation between average roughness (R a) increment and E d retention.  相似文献   

19.
Drag force due to vegetation in mangrove swamps   总被引:8,自引:0,他引:8  
Field studies of tidal flows in largely pristine mangrove swamps suggestthat the momentum equation simplifies to a balance between the water surfaceslope and the drag force. The controlling parameter is the vegetation lengthscale LE, which is a function of the projected area ofmangrove vegetation and the volume of the vegetation. The value ofLE varies greatly with mangrove species and water depth. It isfound that the drag coefficient is related to the Reynolds number Re definedusing LE. The drag coefficient decreases with increasingvalues of Re from a maximum value of 10 at low value of Re (<104), and converges towards 0.4 for Re < 5 ×104.  相似文献   

20.
Dynamic elastic modulus (EL) and wave velocity (V) were determined using resonance vibrations from initially green, 100 × 50 mm sample boards of Eucalyptus regnans F. Muell., and after several stages of drying to oven dry. EL and V were determined from impact induced vibrations and spectral analysis. EL and V from green wood were positively related to basic density and normal shrinkage, only V was negatively related to green density, and both EL and V were negatively related to green moisture content and the number of internal checks after drying. The latter relationship has the potential to provide a simple method of segregating highly check prone material. No significant relationships were obtained with collapse. Outside the hygroscopic range, in low shrinkage material, EL increased little or gradually, while in high shrinkage, collapse prone material, it increased more rapidly, but no clear breakpoint was evident. In the hygroscopic range, EL increased rapidly in all samples. V increased curvilinearly throughout the entire moisture range, but no difference between collapse prone and non-collapse prone material was observed. Received 16 February 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号