首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
辽宁省野生大豆种质资源及其创新利用价值   总被引:1,自引:0,他引:1  
吴燕  赵秋  刘澍才 《杂粮作物》2004,24(3):182-183
野生大豆(Glycine soja)在辽宁省不同农业生态区均有分布.辽宁野生大豆资源已入国家基因库保存有1 248份,占全国野生大豆种质总贮量6 500份的19%,占世界野生大豆种质贮量的17%.野生大豆具有高蛋白、多花荚和多抗逆等特点.辽宁省野生大豆具有丰富的生物多样性.利用野生大豆丰富的遗传种质基础,进行野生大豆和栽培大豆的种间杂交,可实现基因重组,拓宽大豆的遗传背景,创造大豆新种质.  相似文献   

2.
以引进的78份多年生野生大豆为材料,在上海繁殖时,观察了形态性状、测定其叶片中大豆苷元及染料木素的含量,旨在明确变异范围和特点,筛选优异材料,为多年生野生大豆资源的研究与利用提供理论依据.在供试的多年生野生大豆中,Glycine falcata种有5份材料表现较好;Glycine tabacina种有9份材料大豆苷元和染料木素的含量最高.根据形态性状和大豆叶片异黄酮含量的综合表现,发现Glycine falcata种是异黄酮含量较高的优异多年生野生大豆资源.  相似文献   

3.
野生大豆(Glycine Soja)是栽培大豆(Glycine Max)的近缘野生植物。野生大豆经长期自然选择作用,对某一特定环境条件有很强的适应性,籽粒中蛋白质及氨基酸中某些成分含量高,结荚多,抗逆性强等优良性状,是大豆育种的重要种质资源。经人工改良可以  相似文献   

4.
野生大豆(Glycine.soja)抗锈鉴定   总被引:1,自引:0,他引:1  
大豆锈病近年来已发展成为影响大豆生产的世界性病害.筛选抗锈资源是开展抗病育种的基础,从野生大豆中发掘抗锈资源有利于拓宽抗锈育种的遗传基础.采用离体叶片定量接种方法对513份野生大豆(Glycine soja)进行抗锈鉴定,得到抗病资源1份,其余均为感病资源.  相似文献   

5.
1991-1995年鉴定了我国3355份栽培大豆和186份野生大豆对大豆孢囊线虫3号生理小种的抗生。在栽培大豆种质资源中筛选免疫的5份,抗病的19份,野生大豆资源中未筛选出免疫和抗病的。抗生材料多为黑色种皮。  相似文献   

6.
野生大豆(Glycine soja)是栽培大豆(G.max)的近缘野生植物,具有蛋白质含量高,抗逆性较强等特点,是开展大豆育种的重要种质资源。同时,考察野生大豆的自然分布,类型,与环境条件的关系,对研究大豆的起源、进化和分类也有十分重要的意义。 近年来,野生大豆资源的搜集研究,日趋受到重视。美国、日本等都在大力搜集野  相似文献   

7.
黑龙江省野生大豆资源考察研究新进展   总被引:4,自引:0,他引:4  
十五期间再次考察黑龙江省野生大豆(G.soja)资源状况,确定了我国野生大豆分布的北界和东界位点,收集保存野生大豆种质千余份。对其鉴定创新研究取得新进展,检测筛选出异黄酮含量0.45%以上野生大豆优异种质资源14份,创新选育出含有野生大豆亲缘,优质、抗病大豆新种质龙品8802-1、龙品03-324、龙品03-311等。  相似文献   

8.
中俄大豆种质遗传多样性分析   总被引:2,自引:0,他引:2  
种质资源的扩增、改良和创新是解决大豆遗传基础狭窄的主要途径.利用SSR分子标记技术对来自俄罗斯和黑龙江省的82份野生大豆和东北四省区的39份栽培大豆材料进行遗传多样性分析,为种质资源利用和创新提供分子依据.在所合成的45对SSR引物中,12对引物扩增结果表现出良好的多态性,多态性位点共检测到50个等位基因,每个位点2~7个,平均4.17个,平均多态性信息量为0.595.聚类分析结果表明,在遗传相似系数0.734处,野生大豆和栽培大豆被明显的分开,与以往大豆属Soja亚属的形态学分类结果相一致,为野生大豆和栽培大豆分为两个种提供了分子水平上的依据.野生大豆和栽培大豆的平均遗传距离分别为0.2595和0.1895,表明野生大豆的遗传多样性比栽培大豆丰富.因此,可以利用俄罗斯和东北地区的野生大豆特有等位变异来扩大东北栽培大豆遗传多样性,进而拓宽东北大豆遗传基础.  相似文献   

9.
野生大豆由于丰富的遗传背景在大豆育种中具有重要的利用价值.选取来自俄罗斯远东地区和中国东北地区的野生大豆与栽培在中国北京种植,并对其农艺性状进行比较.与栽培大豆相比,野生大豆具有较高的蛋白质含量(47.55%),较低的脂肪含量(12.91%).此外,野生大豆的异黄酮含量高并且具有较好的胞囊线虫抗性.将经过筛选的不同野生大豆与栽培大豆进行杂交,已经选育出一些具有高异黄酮含量和良好胞囊线虫抗性的大豆材料.同时研究了野生大豆与栽培大豆的天然杂交,发现通过分析F1代花色和荚皮色的分离情况可以鉴定天然杂交种.结果证明通过杂交的方式将野生大豆中的目的基因导入栽培大豆进而提高大豆育种效率是切实可行的.  相似文献   

10.
以山东垦利县野生大豆(Glycine soja)ZYD 03262及栽培大豆(Glycine max)鲁豆2号为材料,通过比较不同NaCl浓度(0,50,100,150,200 mmol.L-1)处理下叶绿素及光合特性的差异,探讨了野生大豆对NaCl胁迫的耐受机理。结果表明:不同NaCl浓度处理下,野生大豆总叶绿素含量、净光合速率(Pn)、气孔导度(Gs)及气孔限制值(Ls)均高于栽培大豆,气孔导度(Ci)低于栽培大豆。综合分析表明:在盐胁迫浓度较低时,主要表现为气孔限制,刺激引起了气孔的张开;在盐胁迫浓度较高时,主要为非气孔限制,引起渗透胁迫,导致部分气孔关闭。NaCl胁迫对栽培大豆叶绿素及光合特性的抑制均大于野生大豆,说明野生大豆植株能有效地避免过多Na+进入叶片光合组织,这是野生大豆比栽培大豆更抗盐的原因之一。  相似文献   

11.
大豆种间杂交主要农艺性状和蛋白质含量的遗传变异研究   总被引:13,自引:3,他引:13  
本文对大豆种间杂交(Glycine max (L) Merril×G. soja Sieb. and Zucc., G. max×G.gracilis Skvok Tzow)后代的性状表现及基因效应进行了研究,并初步分析了以栽培大豆为轮回亲本的回交效应。结果表明:F_1代育性不完全正常。上位性基因效应是普遍存在的、不可忽视的重要遗传组成成分。种间杂交后代分离广泛,类型丰富。利用野生资源成败的关键在于亲本选配。回交是利用野生资源的一条有效途径。半野生大豆的价值不容忽视。  相似文献   

12.
为明确高蛋白野生大豆籽粒高蛋白形成过程中特有的遗传规律,本试验以高蛋白栽培大豆为对照,对两类材料整个生育期叶片氮同化物相关指标,及根瘤谷氨酰胺合成酶基因(GSγ1)和豆血红蛋白基因(Glba)表达量的差异进行研究。结果表明:两类型大豆间存在明显差异。R3之后,栽培大豆比野生大豆叶片可溶性蛋白含量下降趋势明显。野生大豆叶片GSA在R3之前增长明显,R3之后下降缓慢。整个生育期间野生大豆叶片硝酸还原酶活性都要高于栽培大豆。野生大豆根瘤中GSγ1表达量在R3之前明显高于栽培大豆,R3期之后相反。从V6开始直到成熟,栽培大豆根瘤Glba的表达量都要高于野生大豆。说明野生大豆生育前期氮代谢各种物质的合成代谢较旺盛,而且能长时间的保持叶片高的可溶性蛋白含量及硝酸还原酶活性是籽粒高蛋白形成的原因之一。  相似文献   

13.
采用沙培试验对NaCl胁迫条件下野生及栽培大豆叶片中可溶性糖、脯氨酸、可溶性蛋白质含量以及地上部及根部Na+、K+含量进行了测定.结果表明:0~200 mmol·L-1浓度范围内,随着NaCl胁迫浓度的增加,野生大豆叶片可溶性糖、脯氨酸含量均逐渐增加,可溶性蛋白含量先升高后降低;栽培大豆脯氨酸含量逐渐升高,可溶性糖及蛋...  相似文献   

14.
中国野生和栽培大豆蛋白质及油脂含量的比较分析   总被引:1,自引:0,他引:1  
蛋白质和油脂是大豆的主要营养成分,掌握大豆种质蛋白质和油脂含量的遗传变异是专用型品种选育的基础.以全国各生态区的野生豆138份、地方品种408份、国内育成品种145份、国外育成品种77份,合计768份大豆种质为材料,测定蛋白质和油脂含量,研究其遗传变异特点.结果表明:在南京同一环境下全国野生豆蛋白质含量、油脂含量和蛋脂总含量变幅分别为39.2%~54.2%、7.5%~17.5%和47.3%~64.6%,地方品种38.8%~51.5%、11.5%~22.5%和55.6%~69.0%,国内育成品种41.7%~49.4%、12.9%~22.9%和55.6%~68.6%.野生豆驯化为栽培豆并经人工选育后油脂含量和蛋脂总含量有大幅增加,而蛋白质含量平均数和变异度则有减小,说明以往人工进化着重在油脂含量的改进.三个性状各群体在各生态区内均有较大变异,区平均间差异并不大,各区都有优良变异.野生豆蛋白质含量、油脂含量和蛋脂总含量与来源地纬度并未发现相关;栽培豆地方品种和育成品种的油脂含量与地理纬度出现显著正相关;育成品种蛋白质含量与地理纬度还出现显著负相关;野生自然状态下蛋白质含量和油脂含量之间无相关,而栽培豆地方品种和育成品种依次增强了负相关;形成这种相关的原因在于地区间油脂含量人工进化程度的差异.  相似文献   

15.
利用均匀分布于20条染色体的53对SSR标记(每条染色体上2~5对),对190份大豆资源进行遗传差异检测,随后根据标记试验结果进行遗传多样性分析、聚类分析、PCA分析和群体结构分析。53对SSR标记共检测到159个等位变异,每个位点等位基因范围为2~6个,平均每个位点的等位基因为3个,有效等位基因数Nei为1.474 4±0.237 5,多态性信息含量PIC为0.305 0±0.105 6;Shannon-Weaver指数值为0.476 2±0.124 9。这些参数显示了190份大豆资源异质程度不是很高,遗传多样性丰富程度一般,总体遗传多样性处于中等水平。UPGMA聚类分析结果显示190份大豆资源(群体1:P1)被分为3个大类,且四川审定大豆品种与野生大豆资源、国外引进资源亲缘关系较远,随后将四川审定大豆品种31份、国外资源13份和野生大豆资源8份共52份材料(群体2:P2)单独进行聚类分析,52份材料也被分成3个大类。群体1和群体2分别在K=3,K=2时得到合理群体结构。群体1的3个亚群分别是:亚群I由地域来源丰富的78份材料组成,不包含野生大豆资源;亚群II 59份材料中含7份野生大豆资源;亚群III 53份材料只包括1份野生大豆资源zy05292。群体2分成两个亚群:亚群Ⅰ26份材料中含24份四川审定大豆品种和2份国外资源;亚群II包含了6份审定大豆品种。供试的190份大豆资源蕴含了比较丰富的遗传变异,显示了较高水平的基因多样性。群体结构不能严格地按照地域、来源国家的划分而区分,这一现象显示了大豆资源存在着广泛的基因交流。从分析结果来看,四川大豆资源的种质创新可以充分地利用国外引进资源与直立型野生大豆资源,进而丰富四川大豆的基因多样性。  相似文献   

16.
本文对栽培大豆(Glycine max)和野生大豆(G.soja)雄配子体的发育和同步性及精子发生进行了比较研究。大豆和野生大豆花粉母细胞的减数分裂是属于同时型的,小孢子的发育过程基本相同。花粉粒的发育在同一花药中基本上是同步的,在同花中九个连体花药的花粉粒的发育也基本上是同步的,而单个花药中花药粉粒的发育要稍落后于九个连体花药中的花粉粒。大豆的两个精子是在花粉管和花粉粒中形成的,即二、三细胞型;野生大豆的两个精子是在花粉管中形成的即二细胞型。本文讨论了这两种植物精子发生途径的类型及分类学上的意义。  相似文献   

17.
大豆种间的同工酶比较分析   总被引:5,自引:0,他引:5  
钟珍萍  陈启锋 《大豆科学》1992,11(4):329-335
比较了栽培、半野生、野生大豆4种同工酶的表现,初步认为:1.3个大豆种的过氧化物酶同工酶叠加酶带共有25条,其中7条为共有的基本酶带,其余酶带的出现频率和活性,因种不同而存在差异。2.有7条过氧化物酶同工酶酶带在野生大豆中不出现,而在另两个种以一定的频率出现,尤其是其中4条酶带的出现频率,随进化程度的提高而呈递增趋势。3.ATP酶、苹果酸酶及过氧化氢酶同工酶都呈现种间差异。尤其是ATP酶,不仅酶带清晰、带次分明,而且种间易于区别。因此,除了过氧化物酶同工酶外,还可在幼苗期用根、幼茎和子叶作材料,以3条ATP酶同工酶酶带AP—11、AP—12及AP—13来反映进化程度不同的3个大豆种之间的差异。  相似文献   

18.
选用野生大豆、栽培大豆按异黄酮含量不同(高、中、低)配制杂交组合,对33个组合进行杂种优势分析。结果表明:中亲优势为正向优势的组合为15个,占全部组合的45.5%。具有超高亲优势的组合为12个,其中高异黄硐含量母本组合5个,占全部正向超高亲优势的41.7%,说明高异黄酮亲本杂种优势明显。18个栽培与野生杂交组合中超高亲优势正向优势组合为11个,中亲优势正向优势组合为13个,说明栽培与野生杂交组合的杂种优势明显,但14个栽培×野生杂交组合F2优势降低,表现为自交衰退,因此获得高异黄酮的后代材料仍需进一步选择。  相似文献   

19.
为发现高光效亲本,以野生大豆及其与栽培大豆的杂交后代品种(系)为研究对象,研究其在田间条件下的光合特性,以评价杂交品系的育种潜力。所有试验材料于2017年同时种植于通辽市查金台牧场,小区种植,随机排列,土壤条件、环境条件和管理条件一致。在自然条件下测定15个材料的光合参数,并对其进行单因素方差分析、相关分析、主成分分析、聚类分析以及判别分析。结果表明,所有杂交后代及野生大豆光合参数都表现出显著差异。净光合速率与羧化效率、水分利用效率及蒸腾速率极显著正相关,与胞间CO2浓度和SPAD极显著负相关。筛选出5个划分光合能力的参数,分别为净光合效率(Pn)、羧化效率(CE)、蒸腾速率(Tr)、胞间CO2浓度(Ci)和水分利用效率(WUE)。以5个光合参数对野生大豆及其与栽培大豆杂交后代品种(品系)进行聚类分析,可将其分为3类,并建立3个判别能力高的判别模型。通过对光合特性的评价,选出10个光合特性较好品种(品系),包括600、9010、9004、0004、9006、0005、9002、9008、内农S002饲用大豆和9014,具有高净光合速率、低胞间CO2浓度、较高蒸腾速率、高羧化效率等特点。这些品种(品系)在产量及生物量表现也较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号