首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The efficacy of three methods of applying ethanol to prevent storage decay was tested on two cultivars of table grapes, ‘Superior’ and ‘Thompson Seedless’. Ethanol was applied by: (1) dipping grapes in 50% ethanol for 10 s followed by air drying before packaging; (2) placing a container with a wick and 4 or 8 ml ethanol/kg grapes inside the package; (3) applying 4 or 8 ml ethanol/kg grapes to paper and placing this paper above the grapes in the package. The grapes were stored for 6 or 8 weeks at 0 °C and assessed after an additional 3 days at 20 °C. All methods of application controlled decay as well as or better than a SO2-releasing pad. The ethanol impregnated paper caused high levels of berry browning, perhaps because of high levels of acetaldehyde inside the package. However, the taste of the berries was not impaired by any of the ethanol applications. The taste of ‘Thompson Seedless’ grapes stored for 8 weeks in modified atmosphere storage was affected by CO2 levels above 7%. Some methods of applying ethanol used here show promise as alternatives to SO2 to prevent decay of grapes during storage while maintaining fruit quality.  相似文献   

2.
To control postharvest decay, table grapes are commercially fumigated with sulfur dioxide. We evaluated ozone (O3) fumigation with up to 10,000 μL L?1 of ozone for up to 2 h to control postharvest gray mold of table grapes caused by Botrytis cinerea. Fumigation for 1 h with 2500 or 5000 μL L?1 of ozone were equal in effectiveness. Both treatments reduced postharvest gray mold among inoculated ‘Thompson Seedless’ grapes by approximately 50% when the grapes were examined after storage for 7 d at 15 °C following fumigation. In a similar experiment, ‘Redglobe’ grapes were stored for 28 d at 0.5 °C following fumigation for 1 h with 2500 or 5000 μL L?1 of ozone. Both treatments were equal in effectiveness, but inferior to fumigation with 10,000 μL L?1. Ozone was effective when grapes were inoculated and incubated at 15 °C up to 24 h before fumigation. The cluster rachis sustained minor injuries in some tests, but berries were never harmed. Ozone was applied in three combinations of time and ozone concentration (10,000 μL L?1 for 30 min, 5000 μL L?1 for 1 h, and 2500 μL L?1 for 2 h) where each had a constant concentration × time product (c × t) of 5000 μL L?1 × h. The effectiveness of each combination was similar. The incidence of gray mold was reduced by approximately 50% among naturally inoculated, organically grown ‘Autumn Seedless’ and ‘Black Seedless’ table grapes, and by 65% among ‘Redglobe’ table grapes, when they were fumigated with 5000 μL L?1 ozone for 60 min in a commercial ozone chamber and stored for 6 weeks at 0.5 °C. Residues of fenhexamid, cyprodinil, pyrimethanil, and pyraclostrobin were reduced by 68.5, 75.4, 83.7, and 100.0%, respectively, after a single fumigation of table grapes with 10,000 μL L?1 ozone for 1 h. Residues of iprodione and boscalid were not significantly reduced. Ozone is unlikely to replace sulfur dioxide treatments in conventional grape production unless its efficacy is improved, but it could be an acceptable technology to use with grapes marketed under “organic” classification, where the use of SO2 is prohibited, or if SO2 use were to be discontinued.  相似文献   

3.
Plant growth regulators (PGRs) are used to increase berry size in table grapes. The objective in this study was to determine if the levels of PGRs used commercially affected rachis postharvest quality. Three seedless table grape cultivars, ‘Mystery’, ‘Superior’, and ‘Crimson’ were treated with gibberellin (GA), cytokinin (CPPU), or both at berry diameter of 6–8 mm, while a seeded cultivar, ‘Redglobe’ was treated at 13 mm. The fruits were harvested at commercial maturity and held for 7 days shelf-life either immediately after harvest or after 2 weeks storage at 0 °C. The combination of GA and CPPU increased berry weight and diameter, and rachis diameter in all three seedless cultivars, but had minor or no effect on TSS and acidity. Rachis quality was measured by a browning scale derived from image analysis. Browning was lower after storage for rachis of ‘Mystery’ treated with GA, while the other three cultivars showed no difference between PGR treated and control rachis. Reduction of water loss by covering punnets of control clusters with microperforated film had a significant positive effect on decreasing weight loss in all cases and a positive effect on slowing rachis browning. Calculation of the shelf-life required to reach 50% rachis browning found that shelf-life was longer for the microperforated packaging as compared to open packages in all the cultivars, with stronger influence during shelf-life after storage than shelf-life after harvest. However, the data also indicated that rachis browning cannot only be attributed to weight loss, either from the whole cluster or from the rachis.  相似文献   

4.
‘Crimson Seedless’ is a popular table grape cultivar, but in warm-climates, its fruits often fail to develop adequate red color, even after they have been treated with ethephon. Application of abscisic acid (ABA) may improve color more effectively than ethephon, but its potential effects on postharvest quality must be considered before recommending its use on table grapes. Therefore, we compared the postharvest quality attributes of grapes treated preharvest with 250 μL L−1 ethephon, the current industry standard, to that of grapes treated with 150 or 300 μL L−1 ABA, or nontreated. Treatment with either ethephon or 150 μL L−1 ABA allowed grapes to be harvested 10 d before nontreated fruit, and fruits treated with 300 μL L−1 ABA attained marketable quality 30 d before nontreated fruit. Early harvest was possible because the treatments induced more rapid coloring of the grapes, and though total yield was not affected by any plant growth regulator (PGR), all PGRs doubled packable yields by improving the color of the grapes. ABA-treated grapes were characterized by superior appearance both in berries and clusters’ rachises compared to ethephon-treated and control grapes. Other quality attributes such as firmness, berry weight, decay incidence, and shatter remained unaffected among treatments. Therefore, ABA is an effective alternative to ethephon for enhancing the color and maintaining postharvest quality of ‘Crimson Seedless’ grapes.  相似文献   

5.
Pre-storage application of 40% CO2 at 0 °C for 24 or 48 h and controlled atmosphere (12% O2 + 12% CO2) storage at 0 °C for up to eight weeks on decay control and quality of organic ‘Flame Seedless’ and ‘Crimson Seedless’ table grapes were studied as a postharvest disease control alternative. To simulate different potential field conditions, these organic treatments were applied to organic-grown grapes that were naturally infected (without inoculation), surface inoculated (berries inoculated by spraying with a conidia suspension), and nesting inoculated (clusters inoculated by placing in the middle an artificially infected berry) with the pathogen Botrytis cinerea, the cause of grape gray mold. Under these three conditions, a 40% CO2 for 48 h pre-storage treatment followed by controlled atmosphere reduced the gray mold incidence from 22% to 0.6% and from 100% to 7.4% after four and seven weeks, respectively. High CO2 pre-storage alone limited botrytis incidence in both naturally and artificially infected grapes, but was more effective when combined with CA. These treatments did not affect visual or sensory fruit quality. Exposure to high CO2 for 24 or 48 h effectively inhibited mycelial growth of B. cinerea in PDA plates incubated at 22 °C for up to 72 h. Conidia germination in PDA plates was reduced ∼60% after 12 h incubation. In vitro studies demonstrated a fungistatic effect, but further studies on the mechanism of action could improve treatment performance. This novel high CO2 initial fumigation followed by controlled atmosphere during storage or transportation could be a commercially feasible alternative for postharvest handling of organic and conventional table grapes. Our results encourage validating this combined physical treatment in other cultivars and under commercial conditions.  相似文献   

6.
An integrated approach was evaluated that combined biological and chemical fumigation of table grapes to control postharvest gray mold caused by Botrytis cinerea. After fumigation of the grapes with ozone or sulfur dioxide during pre-cooling, the fruit were then exposed to continuous biofumigation by the volatile-producing fungus Muscodor albus during storage. Biofumigation was provided by in-package generators containing a live grain culture of the fungus. This grain formulation of M. albus survived the initial ozone or sulfur dioxide fumigation, but sulfur dioxide reduced its production of isobutyric acid, an indicator of the production of antifungal volatiles. Gray mold incidence was reduced among inoculated ‘Autumn Seedless’ grapes from 91.7 to 19.3% by 1 h fumigation with 5000 μL L?1 ozone, and further reduced to 10.0% when ozone fumigation and M. albus biofumigation were combined. The natural incidence of gray mold among organically grown ‘Thompson Seedless’ grapes after 1 month of storage at 0.5 °C was 31.0%. Ozone fumigation and M. albus biofumigation reduced the incidence of gray mold to 9.7 and 4.4, respectively, while the combined treatment reduced gray mold incidence to 3.4%. The use of commercial sulfur dioxide pads reduced the incidence to 1.1%. The combination of ozone and M. albus controlled decay significantly, but was less effective than the standard sulfur dioxide treatments. Although less effective than sulfur dioxide treatment, ozone and M. albus controlled decay significantly, and could be alternatives to sulfur dioxide, particularly for growers complying with organic production requirements.  相似文献   

7.
Rachis browning of table grapes after harvest is a significant problem, and water loss is considered the primary factor in browning. The major rachis desiccation and browning occurs during marketing at ambient temperatures and relative humidity (RH) which create high water vapor pressure deficits (WVPD). In this study the effect of WVPD and its components on rachis browning were examined on the two white seedless cultivars ‘Superior’ and ‘Thompson’. The grape clusters were stored at 20 °C or at 10 °C with low (70%) or high (>95%) RH, thus creating 4 WVPD levels. At each WVPD the clusters were held in open punnets, punnets sealed with low density polyethylene film or microperforated polyethylene, and examed every 2 or 3 d for weight loss, berry firmness, rachis dry weight and subjective rachis index. In addition, the rachis were photographed and image analysis employed to identify the level of browning. The results show that image analysis gave very similar patterns to subjective evaluation of rachis browning with correlation coefficients up to 0.90. However, image analysis detected an increase in browning before subjective evaluation. There was poor overall correlation between cluster weight loss and rachis dry weight to browning for ‘Superior’ grapes but a good correlation for ‘Thompson’. Rachis of ‘Superior’ suffered extensive browning at 20 °C even at high RH while rachis of ‘Thompson’ remained relatively green under similar conditions. ‘Thompson’ grape rachis remained green during the entire examination period (11 d) when held at high RH in either 10 °C or 20 °C. At high WVPD, microperforated packaging offered better control of browning in ‘Superior’ grapes than closed packaging, while clusters of ‘Thompson’ retained green rachis after 4 d in open punnets, and after 7 d in covered punnets. In summary, detailed analysis of rachis browning shows that water loss is an important but not the only factor in browning. Quantitative and objective measurement of rachis browning is likely to facilitate better communication of experimental data and higher resolution of processes which lead to browning.  相似文献   

8.
Experiments of initial hermetic sealing using high barrier film were carried out on ‘Kyoho’ grapes (Vitis vinifera L. × V. Labrusca L. cv. Kyoho) in the 2008 and 2009 fruit seasons, to investigate their potential to enhance quality and extend storage life of the fruit. In the 2008 season, grapes were packaged in high barrier film bags for 1, 2, 3, 4 and 5 weeks, and a modified atmosphere (MA) of low oxygen and high carbon dioxide was formed after sealing. After packaging, fruit were removed from bags and stored in air for up to 90 d at 0 °C. In the 2009 season, grapes were packaged in perforated bags, or in high barrier film bags for 2 weeks and subsequently perforated bags to avoid further anoxia and excessive CO2 accumulation. After treatment, fruit were stored for up to 90 d at 0 °C, followed by shelf-life at 20 °C for 7 d. Non-packaging air storage was used as a control in both seasons. Fruit quality attributes including soluble solids, titratable acidity, stem browning, berry drop and decay incidence were measured. The results indicated that short-term initial MAP (≤2 weeks) had potential for improving appearance of bunches and maintaining the quality of berries during long-term storage, and significantly reduced quality deterioration. Stems were greener and berry drop and decay incidence were more effectively controlled when fruit were sealed in high barrier film bags for 2 weeks and the bags were subsequently perforated.  相似文献   

9.
Investigations were carried out to verify the potential of putrescine and spermidine as a postharvest dip treatment for maintaining quality and extending storage life of table grapes (Vitis vinifera L.) cv. Flame Seedless during the 2012 and 2013 seasons. Grape clusters were manually harvested at the commercial mature stage and were dipped in different concentrations (0.0, 0.5, 1.0 and 1.5 mM) of putrescine and spermidine, and then stored at 3–4 °C, and 90–95% RH. Evaluation of physico-chemical parameters and other fruit quality attributes were made at 0 day (before treatment) and at 30, 45, 60 and 75 days of storage. Putrescine and spermidine at the lowest dose (0.5 mM) effectively maintained berry firmness, peel colour (L*, C*, h°) and stabilized anthocyanins as well as suppressing the activity of pectin methylesterase and reducing the rate of electrolyte leakage. The polyamines also retarded the degradation of TSS and TA while maintaining higher total phenol content and reduced decay incidence. Putrescine and spermidine at 1.0 mM exhibited almost similar effects with a 0.5 mM dose. The highest doses (1.5 mM) of both polyamines showed detrimental effects, especially on weight loss, decay incidence, rachis browning and organoleptic properties, as found in the control group, which was commercially acceptable only up to 45 days. Furthermore, analysis of linear regressions and correlations showed that many quality parameters were interdependent. The postharvest dip treatment of spermidine or putrescine at a dose of 0.5 mM for 5 min could be an effective means for prolonging storage and increasing shelf-life of ‘Flame Seedless’ grapes.  相似文献   

10.
Spathe regreening is a primary determinant limiting the postharvest quality for most hybrids of Zantedeschia, e.g. ‘Best Gold’, wherein the spathe commences regreening approximately two days after it is fully open. To identify an effective method to postpone the regreening, several synthetic plant hormones were evaluated for their influence on changes in color during regreening of discs excised from the spathe of ‘Best Gold’. The tested synthetic plant hormones included 6-benzylaminopurine (BAP), zeatin, N1-(2-chloro-4-pyridyl)-N3-phenylurea (CPPU) and GA3 at concentrations up to 0.1 mM. A concentration of BAP at 0.5 mM resulted in phytotoxicity symptoms on discs. Subsequently, the effect of a combination of BAP and GA3 on the regreening was examined. Application of the cytokinins (in particular BAP at 0.1 mM) or GA3 alone resulted in a one to five day delay in regreening on the spathe tissue. The most effective treatment in delaying regreening was from the simultaneous application of GA3 and BAP in a ratio of 1:1 (v:v) at 0.1 mM, wherein regreening was delayed for more than ten days. This treatment was then tested on the entire inflorescence, resulting in a delay in regreening for between seven and eight days.  相似文献   

11.
The efficacy of some potassium and calcium based salts, namely potassium sulphate (PS), potassium sorbate (PSo), potassium carbonate (PC), potassium bicarbonate (PB), calcium sulphate (CS), calcium chelate (CCh), calcium chloride (CC) and calcium silicate (CSi) against gray mold of ‘Italia’ table grapes, was evaluated. In in vitro experiments, PSo, PC, PB, and CCh completely inhibited mycelial growth of Botrytis cinerea at 0.25%. Under artificial inoculation, salts at 1% (immersed or sprayed) showed a variable effect against the pathogen. For natural infection, salt solutions (1%, w/v) were applied according to three strategies: (a) spray (one week) before harvest, (b) immersion after harvest, and (c) combined treatments spray and immersion. The decay incidence of gray mold was evaluated after 30 days at 2 ± 1 °C and 90–95% RH, followed by 7 days of shelf-life at 22 ± 2 °C. All tested salts significantly reduced the decay incidence of gray mold as compared to a water control for the three strategies. The percentages of reduction ranged between 77–100, 91–98, and 61–100% for the preharvest treatment, in combined application, and in the postharvest treatment, respectively. PB and PSo were the most effective salts, completely inhibiting development of gray mold when applied before harvest and as a postharvest treatment. The influence of salts on physical and chemical properties of berry quality including total soluble solids, titratable acidity, pH, color index, weight losses and microbiological profiles was also investigated. New strategies are needed with the critical goal of controlling gray mold of grapes with no fungicide residues. Salts applied just before harvest may be an effective way to minimize gray mold during storage.  相似文献   

12.
Gray mold is the most common postharvest disease of table grapes in most regions of the world. The effect of eight salts, namely sodium silicate (SSi), sodium sulphate (SS), sodium carbonate (SC), sodium bicarbonate (SB), iron chelate (Fech), iron sulphate (FeS), ammonium bicarbonate (AB), and ammonium oxalate (AO) was determined in vitro on mycelial growth and spore suspension of Botrytis cinerea. In particular, SSi, SC, SB, FeS, and AB completely inhibited pathogen growth at 0.25% concentration. Six salt solutions at 1%, immersion or spray, were tested to verify their effect on grapes artificially inoculated with B. cinerea. All salts significantly reduced the percentage of gray mold as compared to control except for Fech after one week at 22 ± 1 °C. Three salt solutions were applied, in vivo, according to different strategies: (i) spraying before harvest, (ii) immersion after harvest, and (iii) the combination of pre- and postharvest treatments. Water was involved as a negative control while Rovral (a.i. iprodione) and SO2 served for comparisons. After one month of cold storage at 2 ± 1 °C followed by one week of shelf-life at 22 ± 2 °C, the natural incidence of postharvest mold was mostly caused by B. cinerea. The efficacy of preharvest applications was noticeably high and statistically was not enhanced by further treatments after harvest. Salts applied only after harvest were not effective in suppressing Botrytis mold, with the exception of FeS. The influence of salts on physicochemical properties for berry quality was also monitored. The field application of salts can be considered as an appropriate regime to enhance their activity since no negative impact of their application on quality profile was observed. The incidence of gray mold can be significantly reduced using some salts which are safe for consumers and the environment.  相似文献   

13.
To maintain peach and nectarine quality after harvest, low temperature storage is used. Low temperatures induce physiological disorders in peach, but the effect of cold storage on the sensory quality of the fruit before it is damaged by chilling injury syndrome remains unclear. To evaluate the cold storage effect on the sensory quality two peach cultivars (’Royal Glory’ and ‘Elegant Lady’) and two nectarines (’Ruby Diamond’ and ‘Venus’) were harvested at a standardized firmness level and subjected to quality evaluations and sensory analysis at harvest and after storage at 0 °C for 35 d. For both time points, a supplementary ripening followed such that homogeneous flesh firmness and suitability for consumption was achieved.The fruit segregation through the Durofel firmness (DF), evaluated using a non-destructively method (Durofel device), allowed the formation of a uniform group of fruit in terms of flesh firmness (FF), showing scores between 45.1 and 55.9 N. The average FF in fruit ripened immediately after harvest was 22.9 N and 25.6 N in fruit ripened after cold storage for 35 d.The “acceptability” of fruit is highly correlated with “aroma”, “sweetness”, “juiciness”, “texture” and “flavor”. Only the “acid taste” parameter had no significant correlation with “acceptability” or with the other parameters evaluated.It is possible to conclude that the sensory quality and acceptability of peach and nectarine are characteristic of each cultivar and change, depending on the time elapsed after harvest. In general, it was confirmed that nectarine cultivars have a more consistent quality than peach cultivars.  相似文献   

14.
The accumulation of bacteria in vase water is often associated with premature senescence in many cut flower species. In the present study, we tested the efficacy of aqueous chlorine dioxide (ClO2) to extend flower display life by preventing the build-up of bacteria in vase solutions. The addition of 2 or 10 μL L−1 ClO2 to clean deionized water extended the vase life of Alstroemeria peruviana ‘Senna’, Antirrhinum majus ‘Potomic Pink’, Dianthus caryophyllus ‘Pasha’, Gerbera jamesonii ‘Monarch’, Gypsophila paniculata ‘Crystal’ and ‘Perfecta’, Lilium asiaticum ‘Vermeer’, Matthiola incana ‘Ruby Red’ and Rosa hybrida ‘Charlotte’ flowers by 0.9–13.4 d (7–77%) relative to control (i.e. 0 μL L−1 ClO2) stems. The beneficial effects of ClO2 treatment were associated with a reduction in the accumulation of aerobic bacteria in vase water and on cut surfaces of flower stems. ClO2 treatment was also effective in maintaining or extending the vase life of A. majus ‘Potomic Pink’, Dendrathema × grandiflorum ‘Albatron’, G. paniculata ‘Perfecta’ and M. incana ‘Ruby Red’ flowers even when stems were placed into water containing 1011 CFU L−1 bacteria. The efficacy of 10 μL L−1 ClO2 in vase water containing 0.2 g L−1 citric acid and 10 g L−1 sucrose to extend the display life of G. jamesonii ‘Lorca’ and ‘Vilassar’ flowers was equal to or greater than other tested biocides (i.e. aluminum sulfate, dichloroisocyanuric acid, 8-hydroxyquinoline sulfate, Physan 20™, sodium hypochlorite). Taken collectively, the results of the present study highlight the potential of aqueous ClO2 for use as an alternative antibacterial agent in flower vase solutions.  相似文献   

15.
The purpose of this study was to explore the utility of chlorophyll fluorescence to non-destructively monitor water status in plant tissue, specifically water loss in grapes (Vitis spp.) destined for wine production. An automated remote-sensing (ARS), pulse amplitude modulation (PAM) fluorometer prototype, capable of scanning a large surface area, was used to monitor chlorophyll fluorescence from ‘L’Acadie’ (LAc) and ‘Thompson Seedless’-type (TS) grape clusters during postharvest dehydration. Increasing mass loss (%) in grapes correlated with increasing soluble solids (SS) content and decreasing osmotic potential (Ψs) (p < 0.001). All of the primary fluorescence parameters monitored (F0, Fm, Fv and Fv/Fm) had a strong curvilinear relationship (p < 0.001) with grape mass loss. In both cultivars, F0 increased during the later stages of dehydration, likely as a result of increased disorder within the thylakoid membranes and/or a reduction in energy transfer between LHCII and PSII. Fm, Fv and Fv/Fm declined, likely due to several factors that are known to inhibit photosynthesis and the primary charge recombination during osmotic stress. Chlorophyll degradation during dehydration was a major factor influencing cultivar differences in the fluorescence relationships. An inflection point in the F0 value at ≈20–25% mass loss appeared to correspond with an inflection point in the decreasing glucose:fructose ratio. The relationship between chlorophyll fluorescence and water loss, SS, Ψs and potentially other indicators of metabolic change, could lead to practical applications of this technology in the slow dehydration of grapes and other fruits used to make high value wines.  相似文献   

16.
Highbush blueberries (Vaccinum spp.) are a major export fruit crop of Chile which is stored at 0 °C and transported to markets in Asia, Europe, and the USA, using more than 15 d of maritime transportation. Under these conditions, gray mold caused by Botrytis cinerea can produce important economic losses. The effectiveness of sulfur dioxide (SO2) concentration × time treatments on gray mold control was determined in the laboratory and validated prior to refrigerating the fruit, using pallet scale SO2 fumigation treatment on the following blueberry cultivars: ‘Brigitta’, ‘Legacy’, ‘Liberty’ and ‘O’Neal’. In inoculated ‘Brigitta’ and ‘Liberty’ blueberries, gray mold prevalence varied from 97.2% to 97.5% in non-treated fruit, and this value was reduced from 7.9% to 6.1% in blueberries that were exposed to a SO2 concentration × time (Ct) product of 400 (μL L−1) h. The relationship between SO2 Ct products and gray mold prevalence under laboratory conditions was best explained by exponential models, which had a determination coefficient (R2) that ranged from 0.88 to 0.96. The estimated EC90 values varied between 245 and 400 (μL L−1) h, and the SO2 Ct between 250 and 350 (μL L−1) h was validated using a pallet scale application treatment to obtain the best control and minimal variation. No visual phytotoxicity symptoms of SO2 were observed with the Ct that was tested in this study. Therefore, SO2 fumigation was demonstrated to be an effective and practical technology for reducing the risk of blueberry gray mold decay during storage, and further effort should be given to register the use of this product for blueberries in the main Chilean export markets.  相似文献   

17.
‘Superior seedless’ table grapes were stored for 7 days at 0 °C followed by 4 days at 8 °C + 2 days at 20 °C under modified atmosphere packaging (MAP). Two polypropylene films (PP) were used to generate the MAP, the micro-perforated PP-30 and an oriented PP (OPP). The OPP film was applied with and without fungicide (10 μL of trans-2-hexenal or 0.4 g Na2S2O5 kg−1). As control a macro-perforated PP was used. PP-30 packages reached the lowest O2 and the highest CO2 levels. Control clusters showed the highest weight losses and decay while almost no losses occurred under MAP treatments. No changes in softness, skin and/or pulp browning, or cluster shatter were found. After shelf life MAP-treated clusters showed slight to moderate stem browning, except under SO2 where practically no browning occurred while control clusters showed an extreme stem browning. After shelf life, MAP treatments showed good visual appearance and crunchiness, while control fruits were unmarketable. No off-flavors were detected for MAP treatments except for hexenal-treated berries. No remarkable changes for color, firmness, soluble solids content, pH, titratable acidity and maturity index were detected. Total sugars content at harvest was 200 g L−1 and only slight decreases were found after shelf life for most treatments. Total organic acids content at harvest was 15.4 mg 100 mL−1, which remained quite constant after cold storage and shelf life. The main phenolic compounds were flavan-3-ols (over 85% from the total content), hydroxycinnamic acid derivatives and flavonols, whose total amount at harvest was 140 mg kg−1 in a fresh weight basis. After shelf life only slight decreases in total phenolics occurred in all treatments. As a main conclusion, SO2-free MAP kept the overall quality of clusters close to that at harvest, with few differences when SO2 was added.  相似文献   

18.
Previously we reported that postproduction quality of pot ‘Seadov’ tulip (Tulipa gesneriana) was significantly increased by GA4+7 plus BA in a manner dependent on the concentration and stage of flower development at application. In these experiments, we extended the survey to 20 tulip cultivars to further evaluate the effects of GA4+7 plus BA sprays for enhancing postproduction flower and leaf quality. The senescence symptom of the cultivars fell into three categories: wilting, wilting-abscission (abscission shortly after tepal wilting) and abscission (abscission without wilting), with the majority of the cultivars belonging to the wilting and wilting-abscission categories. Pots bearing six plants were sprayed with a range of GA4+7 plus BA concentrations at marketable stage and placed in a simulated consumer environment (SCE). GA4+7 plus BA significantly enhanced individual flower and postproduction longevity, but the effect was dependent upon the senescence category of the cultivar. In general, GA4+7 plus BA increased individual flower and postproduction longevity of wilting-type cultivars at concentrations above 10 mg L?1, while longevity of wilting-abscission-type cultivars was only enhanced by 50 mg L?1. Abscission-type cultivars were not affected by any concentrations of GA4+7 plus BA. Regardless of floral senescence category, leaf yellowing was significantly reduced by GA4+7 plus BA sprays in those cultivars showing postproduction leaf yellowing. GA4+7 plus BA did not induce leaf and stem elongation in most cultivars. Only ‘Yellow Baby’, the shortest cultivar, showed elongation of stem and leaf by GA4+7 plus BA at concentrations above 25 mg L?1. Spray applications of GA4+7 plus BA can be useful to enhance flower and leaf quality in pot tulips.  相似文献   

19.
The potential of humidifying cold storage rooms to control moisture loss and quality of table grapes in different package designs was studied. Fruit were stored in cold rooms (−0.33 ± 0.32 °C or −0.12 ± 0.32 °C) with humidifier (95.0% RH) or no humidification (90.3% RH) respectively. Room humidification resulted in a 7.5% and 9.0% increase in RH inside the clamshell and open-top punnets multi-scale packages respectively in comparison to non-humidified storage, while there was no significant change in RH inside the 4.5 kg carry bag multi-packaging. The grapes were assessed for weight loss and SO2 injury at intervals during a 35 d period. After 21 d of cold storage under humidification, weight loss of grapes was significantly higher (P < 0.05) in packages with open-top punnets than clamshell punnets and carry-bags. After 35 days in non-humidified cold storage, grape weight losses were 1.45 ± 0.32%, 1.62 ± 0.21% and 2.01 ± 0.57% for the 4.5 kg carry-bag, 5 kg clamshell punnet and 5 kg open-top multi-packages, respectively. When fruit were stored inside the same types of multi-packages under humidification, the corresponding weight losses were 0.97 ± 0.34%, 1.08 ± 0.27% and 2.00 ± 0.57%. Cold storage humidification reduced the rate of stem dehydration and browning; however, it increased the incidence of SO2 injury in table grape bunches and caused wetting of the packages.  相似文献   

20.
‘Big Top’ and ‘Venus’ nectarines and ‘Early Rich’ and ‘Sweet Dream’ peaches were picked at commercial maturity and stored for 20 and 40 d at −0.5 °C and 92% RH under either air or one of the three different controlled atmosphere regimes (2 kPa O2/5 kPa CO2, 3 kPa O2/10 kPa CO2 and 6 kPa O2/17 kPa CO2). Physicochemical parameters and volatile compounds emission were instrumentally measured after cold storage plus 0 or 3 d at 20 °C. Eight sensory attributes were assessed after cold storage plus 3 d at 20 °C by a panel of 9 trained judges, in order to determine the relationship between sensory and instrumental parameters and the influence of storage period and cold storage atmosphere composition on this relationship.A principal component analysis (PCA) was undertaken to characterize the samples according to their sensory attributes. PCA results reflected the main characteristics of the cultivars: ‘Big Top’ was the nectarine cultivar with the highest values for sweetness, juiciness and flavor; ‘Sweet Dream’ was the sweetest peach and was characterized by high values for crispness and firmness, while ‘Venus’ and ‘Early Rich’ were characterized by their sourness. To assess the influence of storage period and CA composition on sensory properties, a PLS model of the flavor of the different samples was constructed using standard quality attributes and volatile concentrations as the X-variables. The model with 2 factors accounted for more than 80% of flavor variance. PLS results indicated that the main influence on flavor perception was storage period. Atmosphere composition also had an influence on flavor perception: flavor perception decreased from samples stored in a 2/5 O2/CO2 atmosphere composition to those of 3/10 and 6/17. These results can be qualitatively extended to juiciness and sweetness since all these sensory properties were strongly correlated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号