首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Plant Production Science》2013,16(3):185-189
Abstract

The correlations of the reading of a portable chlorophyll meter (SPAD-502) with the chlorophyll and N contents of leaves of two faba bean (Vicia fabaL.) cultivars, Japanese (Ryousai-issun) and Egyptian (Cairo 241), were examined. The SPAD readings positively correlated (ρ<0.01) with the chlorophyll contents and the r2 values were 0.99 and 1.00 for Ryousai-issun and Cairo 241, respectively. A close linear relationship 0.001) was observed between SPAD reading and total leaf N content at the pod development stage of faba bean plants with r2 = 0.88 and 0.99 for Ryousai-issun and Cairo 241, respectively. The SPAD reading was the highest in the 2nd to 4th leaves counted from the top (the youngest fully expanded leaves). The changes in leaf chlorophyll content of both cultivars from 3 weeks after transplanting to the ripening stage showed an incomplete “M” type curve. SPAD readings were significant¬ly higher in Ryousai-issun than in Cairo 241 throughout the growth season. Organic fertilizers application improved faba bean plant growth. These results suggest that the SPAD-502 chlorophyll meter can be used to measure chlorophyll and nitrogen contents of faba bean leaves for quick screening faba bean genotypes.  相似文献   

2.
《Plant Production Science》2013,16(4):371-376
Abstract

The effects of soil amendment with oilseed-rape residue (OSRR) and chicken manure (CM) on the growth and nitrogen (N) uptake of faba bean (Vicia faba L.) were assessed in a pot experiments with Italian ryegrass (Lolium multiflorum Lam.) as a reference crop. A 15N isotope dilution method was used to estimate the amount of N derived from the residue (OSRR and CM) and from atmosphere through N2 fixation in the plants. Dry weights (DW) of shoots and whole plants were heaviest in the plants grown on the soil amended with CM (CM plants) followed by the plants grown on the soil amended with OSRR (OSRR plants) and control plants in this order. There were significant differences (p<0.05) in dry weight between CM, OSRR and control plants. DW of roots was also increased by amendment with either CM or OSRR in faba bean, but it was decreased in ryegrass. The amount of total N in both roots and shoots were increased by application of either CM or OSRR in both faba bean and ryegrass. The amount of N2 fixed by faba bean cultured on 1.2 kg soil amended with 10g residue (CM or OSRR) was 85.9 mg pot-1 but total N in faba bean derived from OSRR and CM was 192 and 374 mg pot-1, respectively. The percentage of N derived from atmosphere to total N in faba bean plants ranged from 15.9 to 26.5%. The amount of N taken up by faba bean and ryegrass plants from CM were larger than those from OSRR by 81.0 and 54.3%, respectively. Soil N balance was calculated as the difference between the amount of N applied (including fixed) and taken up by the plants. The N balance of soil amended with OSRR after cultivation of faba bean was 72.2% higher than that of the soil amended with CM, and that after cultivation of ryegrass was 89.9% higher.  相似文献   

3.
Grazing cover crops may increase land-use efficiency while promoting sustainability. We investigated how grazing intensity affects cover crop litter quantity, quality, decomposition, and cotton (Gossypium hirsutum L.) N uptake. Cover crops were a mixture of rye (Secale cereale L.) and oat (Avena sativa L.) managed as follows: no grazing +34 kg N ha−1 (NG34), no grazing +90 kg N ha−1 (NG90), heavy grazing (HG), moderate grazing (MG), and light grazing (LG). Grazed treatments received 90 kg N ha−1. After cover crop termination, above- and belowground litter was collected and incubated in situ for 0, 4, 8, 16, 32, 64, and 128 days, with cotton plants sampled on the same days to estimate N recovery and synchrony between N release from litter and uptake by cotton. By Day 128, only 13% of initial NG34 aboveground biomass had disappeared, whereas 42% of HG disappeared. Nitrogen retained in aboveground litter of HG was less than NG90 (27 vs. 60 kg N ha−1), and aboveground final N stock (at Day 128) of HG was less than NG90 and LG (16, 47, and 41 kg N ha−1, respectively). Belowground litter contributed 98 kg N ha−1 versus 46 for aboveground. Belowground N disappearance from litter bags was greater from NG90 than NG34 (39 vs. 21 kg N ha−1). Cotton N uptake by Day 128 was similar across treatments (191 kg N ha−1). Grazing cover crops impact aboveground litter quantity, quality, and decomposition rates, and belowground litter plays an important role on the N cycling.  相似文献   

4.
《Field Crops Research》2005,91(1):91-105
A velvet bean (Mucuna pruriens L.) module for the agricultural production systems simulator (APSIM) was developed in order to assess the nitrogen (N) and yield benefits of velvet bean green manure crops, when grown in rotation with maize in small holder situations in Malawi. The velvet bean module was able to simulate maturity biomass from six contrasting sites in Malawi over an observed range of 847–10,420 kg/ha with a root mean squared deviation (RMSD) of 1562 kg/ha. APSIM was then tested for its ability to simulate the response of maize crops to fertiliser N in two seasons, to previous velvet bean green manure crops in one season, or both in combination in one season. With no previous velvet bean crop, the response to fertiliser N varied across sites from a non-significant increase to an eight-fold increase in maize yield. Where a velvet bean crop was grown in the previous season, the response to applied N varied from non-significant to slight. Simulated yields were within one standard error of the observed in the majority of cases. A sensitivity analysis for key parameters in the velvet bean module highlighted, that those governing the N content of crop root and shoot residues had greatest impact on maize yield response. Parameters controlling production and partitioning of root or shoot biomass were less important.To our knowledge this is the first reported case of a cropping systems simulation model being tested for its ability to simulate the production of a green manure legume followed by a cereal.  相似文献   

5.
为构建木薯茎叶生物量的估测模型,调查了木薯上、中、下部的茎粗、株高、叶柄长等形态学指标与茎叶生物量的关系.结果表明,木薯茎叶生物量主要受下部茎粗和株高的综合影响,并且下部茎粗、株高与茎叶生物量的关系均为乘幂函数关系.通过模型拟合和择优得到木薯茎叶生物量的估测模型W=0.032 83d2.48 6h0.1824.经新的实测数据检验,理论值与实测值的相对误差率为4.46%,完全满足测量精度要求.  相似文献   

6.
曹大伟 《杂粮作物》2009,29(6):371-376
红小豆在3叶期的叶面积和个体重中为最小,菜豆最大。3种豆类的两种性状与粒重之间都呈现了很高的正相关关系。但是,3叶期的叶面积和干物重的增加速度与粒重之间只有大豆呈有意正相关关系,红小豆和菜豆没有有意相关关系。本研究显示了出苗后的红小豆初期生育状况不如大豆和菜豆。从以上的结果可以判断粒重对叶面积以及干物重的影响到3叶期为止。  相似文献   

7.
The effect of different heat treatments on inactivation of trypsin inhibitor and hemagglutinin of winged bean was investigated. Trypsin inhibitor extracted from winged bean meal was stable at 60 °C for 60 min. At 80 °C, the activity of the extracted inhibitor decreased by 25% within 5 min, and continued to decline gradually to a loss of 45% of activity after 30 min. When the extracted inhibitor was incubated at 100 °C, it exhibited a triphasic pattern of inactivation. The winged bean extract incubated at 60 °C lost 60% of its hemaggluinating activity within 30 min. At 80 °C, there was a complete loss of activity within 5 min. The microwave treatment to winged bean meal had no effect on trypsin inhibitor or hemagglutinating activities in the meal. However, infrared treatment to winged bean seeds for 60 seconds was effective in destroying most of the trypsin inhibitor and hemagglutinating activities. Autoclave treatment (120 °C at 15 lb pressure) for 10 min inactivated trypsin inhibitor and hemagglutinin in winged bean meal almost completely. Cooking of presoaked beans in boiling water for 30 min was effective in destroying most of the trypsin inhibitor and hemagglutinating activities.  相似文献   

8.
Chemical analyses and feeding experiments using rats were conducted to evaluate the nutritive value of winged bean and other legumes (soyabean, green gram, bambarra nuts, pigeon peas, field beans, cow peas) sources grown in Tanzania. Proximate analyses showed that the composition of winged bean was similar to soyabean, while the composition of the other legumes differed considerably. This was also the case for antinutritional constituents and minerals. As to the amino acid composition, the lysine level was high with the highest value in winged bean (7.5 g/16 g N). However, the concentration of methionine and cystine was low which limits their protein quality. Another important amino acid, threonine, was generally high, especially in winged bean (4.3 g/16 g N). With exception of field bean, true protein digestibility was above 80%, soyabean having the highest value (90.7%). The biological value was also highest in soyabean (76.1%) followed by winged bean (69.9%). Utilizable protein was high in soyabean (28.8%) and somewhat lower in winged bean (23.4%). Energy digestibility was around 80%, soyabean having the highest value of 85.8%. The study findings support the idea that winged bean is a good alternative plant protein source in Tanzania.  相似文献   

9.
In relay intercropping systems, late-planted crops often grow under the shade of the canopy of early-planted tall crops and then transfer to full sunlight after the harvest of the early-planted crops. In order to know the effects of recovery growth of the late-planted soya bean in maize–soya bean relay intercropping, a field experiment was carried out to observe architectural, morphological, physiological and anatomical traits of soya bean plants related to shade and subsequent removal in intercropping before and after maize harvest, respectively. During shade period, soya bean biomass was severely reduced, and stem elongation was stimulated. Typical features of shade grown leaves were found, such as lower LMA (leaf mass per unit area), thinner thickness, higher chlorophyll content, lower chlorophyll a:b ratio. Whole-plant leaf area analysis found that soya bean increased leaf area ratio by adjusting leaf morphology rather than by dry mass allocation. After maize harvest, leaf area and leaf mass increased rapidly, contributing to compensation growth in intercropped soya bean. Meanwhile, physiological and anatomical traits of leaf went back to similar levels as grown in sole cropping. However, stem morphological traits were irreversible after removal of shade. Finally, no difference on seed weight per plant of soya bean was observed between relay intercropping and sole cropping. Based on these findings, we speculated the recovery growth might be the direct determining factor on pod formation in soya bean, and improvement on the capacity of recovery growth could increase yield of relay intercropped soya bean.  相似文献   

10.
《Plant Production Science》2013,16(1):109-115
Abstract

We examined the effects of seeding rate, 50 or 150 seeds m-2, nitrogen (N) application rate at active tillering and jointing, 4 and 2 g N m-2, respectively, or none, and N application rate at anthesis, 0, 2, 4, or 6 g N m-2, on grain yield and protein content of a bread wheat cultivar, ‘Minaminokaori’, during the 2004–2005 crop season in southwestern Japan. Grain yield was similar at a seeding rate of 50 and 150 seeds m-2. It was higher when 4 and 2 g N m-2 were applied at active tillering and jointing, respectively (4–2N), than when no N was applied at these stages (0–0N). However, it was not influenced by N application rate at anthesis. Grain protein content was similar at 50 and 150 seeds m-2. It was higher in 4–2N than in 0–0N. It was the highest when 6 g N m-2 was applied at anthesis, followed by 4, 2, and 0 g N m-2. The SPAD value at anthesis was higher at 50 than 150 seeds m-2, but leaf area index (LAI) at anthesis was similar at 50 and 150 seeds m-2 and protein content of grain was nearly the same at 50 and 150 seeds m-2 irrespective of N application rate at anthesis. LAI and the SPAD value were higher in 4–2N than in 0–0N and the protein content of grain was also higher in 4–2N than in 0–0N irrespective of N application rate at anthesis. Therefore, both LAI and the SPAD value may be important traits related to the N application rate at anthesis suitable for yielding wheat grain with a high protein content.  相似文献   

11.
《Field Crops Research》2006,95(2-3):234-249
The use of Al-tolerant and P-efficient maize cultivars is an important component of a successful production system on tropical acid soils with limited lime and P inputs. Grain yield and secondary plant traits, including root and aboveground biomass, nutrient content and leaf development, were evaluated from 1996 to 2002 in field experiments on an Oxisol in order to identify maize characteristics useful in genetic improvement. Here we present the results of the 2002 trial and compare them with previous results. The aim of this experiment was to assess the effect of assimilate and nutrient partitioning on the growth and grain yield of two tropical cultivars having different Al tolerance (CMS36, tolerant, Spectral, moderately tolerant). The soil had an Al saturation of 36% in topsoil (pH 4.5) and >45% below 0.3 m depth (pH 4.2). Measurements made from emergence to grain filling included: root, stem and leaf biomass, P and N content, leaf area index (LAI), radiation use efficiency (RUE), soil available N and root profiles at anthesis. The experiments consisted of two P treatments, zero applied or 45 kg P ha−1 (−P and +P). All the treatments received N and K fertilizers. In −P, root biomass and LAI at anthesis were twice as great in CMS36 as in Spectral. In +P the differences between cultivars were negligible. Roots were deeper in CMS36 due to its higher Al tolerance. Total biomass and grain yield were not strongly related to root biomass and LAI. Other factors such as the leaf biomass and the amount of nutrients per unit leaf area were highly correlated with RUE and biomass. In −P, Spectral had the same total biomass but a higher grain yield than CMS36 (2.1 Mg ha−1 versus 1.5 Mg ha−1). This was due to a higher leaf P content (+40%), a greater RUE (+74%), and a lower number of sterile plants. In +P, CMS36 had higher total biomass and grain yield (4.1 Mg ha−1 versus 3.1 Mg ha−1). This was due to its higher leaf P (+25%) and leaf N (+43%) contents, and an increased RUE (+130%) that were associated with higher P and N uptake. Our results indicated that although root tolerance to Al toxicity is necessary for good crop performance on acid soils, assimilate and nutrient partitioning in the aboveground organs play a major role in plant adaptation and may partially compensate for a lower root tolerance.  相似文献   

12.
对17份四棱豆绿肥N、P、K、Ca、Mg、S、Fe、B、Mn、Cu、Zn、Mo、Cd、Cr、Hg、Pb、As营养元素含量进行分析评价。结果表明,四棱豆是含N、P、K高的优质绿肥,且中微量元素含量丰富,重金属含量低。根据综合评价,17份四棱豆均属于二级或三级有机肥。  相似文献   

13.
The winged bean,Psophocarpus tetragonolobus (L.) DC has been widely recognised as a potentially useful source of protein for tropical regions of the world. A neglected aspect of the plants nutritional quality has been the reporting of the accumulation of aluminum (Al) in the edible parts of the plant; the leaves, pods, seeds and tubers. The accumulation of Al in the plant on acidic tropical soils and the implication of Al to human health problems further justified the inclusion of Al in nutritional analysis. Field experiments on two varieties of the winged bean, the USDA-releaseHi-Flyer and an unnamed variety from the Phillipines, showed that all edible portions of the plant accumulate Al from high to very high levels when compared to an average of usually less than 300 ppm in other crop plants. Aluminum accumulation is generally highest in the youngest tissues particularly in the young roots with levels recorded as high as 25,000 ppm and these contents are as high as levels for recognised Al accumulators such as the leaves ofPinus and tea. Future improvement breeding programs for the winged bean will necessarily require identifying and taking advantage of possible variation in Al accumulation between varieties.  相似文献   

14.
The aim of the study was to evaluate non-legume cover crops for growing no-till grain legumes in organic farming systems. Evaluated cover crops should be able to suppress weed growth, reduce plant available nitrogen in the soil and produce large amounts of biomass with slow N mineralisation. Six non-legume species; spring rye (Secale cereale L.), black oat (Avena sativa L.), sunflower (Helianthus annuus L.), white mustard (Sinapis alba L.), buckwheat (Fagopyrum esculentum Moench) and hemp (Cannabis sativa L.) were tested. Plots with organic fertiliser (50 kg N ha?1) and without fertiliser incorporation at three locations in south-east Germany were trialled and the cover crops’ ability to produce biomass and accumulate N in plant compartments was evaluated. The N mineralisation from stem and leaf material was simulated using the STICS model. The biomass production ranged from 0.95 to 7.73 Mg ha?1, with fertiliser increasing the total biomass at locations with low-N status. Sunflower consistently displayed large biomass and N accumulation at all locations and fertiliser variations, although not always significantly more than other species. Most N was stored in sunflower leaf material, which can be easily mineralised making it less suited as cover crop before no-till sown spring grain legumes. Rye, which produced slightly less biomass, but accumulated more N in the stem biomass, would be better suited than sunflower in this type of system. The N mineralisation simulation from rye biomass indicated long N immobilisation periods potentially improving weed suppression within no-till sown legume cash crops.  相似文献   

15.
《Plant Production Science》2013,16(3):217-225
Abstract

Genetic variation in the growth response to temperature is a basis for developing adaptation measures to global warming, but evaluation of cultivars for the temperature responses may depend on other environmental factors such as light. In this study, we tested the growth responses of 18 diverse rice cultivars to constant day/night temperature of 25, 28, 31 and 34ºC in artificially-lit growth chambers (ALC) in Wagga Wagga (7.8 MJ m-2 d-1), and in naturally-lit chambers (NLC) in Yanco (25 and 28ºC and 13.4 MJ m-2 d-1; 31 and 34ºC and 11.5 MJ m-2 d-1), both in NSW, Australia. There was a significant interaction between temperature and chamber type for total shoot and panicle biomass; total shoot biomass was largest at 31ºC in ALC, and at 25 and 28ºC in NLC. From the average of all temperatures, the total shoot biomass declined by 29.5% in plants grown in ALC compared with those grown in NLC. Importantly, cultivar performance in ALC was similar to that in NLC at these temperatures, as evidenced by the highly significant correlation in total shoot biomass between ALC and NLC. Among 18 cultivars, IR64, IR72, N22, Vandana, Takanari and Koshihikari commonly produced a larger total shoot biomass under higher temperature conditions. Leaf area at earlier measurement date was highly correlated with the final total shoot biomass at the higher temperature more than specific leaf area.  相似文献   

16.
To address the potential of legumes to contribute to improved quality and quantity of natural pastures in the semi‐arid rangelands of Kenya, five legume species were introduced and evaluated in a small‐plot field experiment over three growing seasons. The investigated species were glycine (Neonotonia wightii), siratro (Macroptilium atropurpureum), dolichos (Lablab purpureus cv. Rongai), velvet bean (Mucuna pruriens) and shrubby stylo (Stylosanthes scabra cv. seca). Treatments included two cutting heights (ground level and 15 cm) and two cutting intervals (at 2 and 4 months). The mean dry matter (DM) yields of glycine and siratro were highest when the legumes were harvested at ground level at 2‐month intervals (10·31 and 7·81 t ha?1 year?1 respectively). Mean DM yield of stylo was highest when the legume was harvested at 15 cm after 4 months (3·52 t ha?1 year?1). These three legumes also produced high organic matter through litter fall, which contributed to soil fertility. Evidence from a supporting pot experiment showed effective nodulation and potential for N fixation. These legumes also possessed deep tap roots and withstood heavy defoliation. These three legumes were selected for further integration with grasses in natural pastures. The DM yields of dolichos and velvet bean when harvested at 15 cm after 2 or 4 months were low (2·48 and 1·91 t ha?1 year?1), and these species were considered inappropriate for further investigation.  相似文献   

17.
四棱豆种质资源农艺性状的主成分及聚类分析   总被引:1,自引:0,他引:1  
对27份四棱豆种质资源的生育期、单株商品荚数、单荚重等22个主要农艺性状进行主成分和聚类分析,以探讨四棱豆种质资源的遗传差异性,为四棱豆品种选育和引种栽培提供理论依据.结果表明,27份四棱豆种质可以归纳为4大类;10个数量性状主成分可分为产量、生育期、粒重和品质因子,这4个主要因子对变异的累积贡献率达86.356%.  相似文献   

18.
光质能够影响绞股蓝的生长发育和总皂甙的积累。将绞股蓝和五柱绞股蓝幼苗置于相对光照强度为32~34%的红色滤光膜、蓝色滤光膜和遮荫网下处理45 d,以自然光照(光照强度100%)为对照,分析影响幼苗的生长和总皂甙含量的有效光质。结果表明,红色滤光膜下绞股蓝的叶面积、叶柄长、茎长和单株生物量显著高于对照组,茎长和单株生物量显著高于光照强度相似的遮荫网处理组;蓝膜下绞股蓝的叶面积、叶柄长、茎长和单株生物量显著高于对照组,茎长显著高于遮荫组,单株生物量显著低于红膜处理组;自然光下的绞股蓝总皂甙含量最高,红膜处理组次之,遮荫网处理组最低。在相似的光照强度下,红膜处理比蓝膜处理更有利于绞股蓝总皂甙产量的增加。波谱分析表明,红色滤光膜透过的红橙光比蓝色滤光膜透过的蓝紫光更有利于绞股蓝的生长发育和总皂甙产量的提高。五柱绞股蓝具有类似的变化规律。  相似文献   

19.
This study was designed to investigate the effect of calcium and nitrogen application during heat stress on leaf calcium concentration, transpiration rate, membrane thermostability, and biomass accumulation and partitioning. Micropropagated Russet Burbank potato (Solanum tuberosum L). plants were transplanted into 20 L pots containing 1:1 (v/v) soil: perlite and exposed to 30/20C (D/N) temperatures for four weeks (weeks 9–12 after transplanting) in a controlled-environment growth room. The maximum temperature was maintained for 6 hr during the middle of the 14 hr photoperiod. The nutrition treatments were N before stress (NBS), N during stress (NDS) and Ca and N during stress (Ca+NDS). Calcium was supplied as Ca(NO3)2. All treatments received the same total amount of nitrogen. Native soil Ca level without amendment (550 mg Ca/kg soil) was sufficient for potato plant growth under normal temperatures. Plants given Ca and N during heat stress had the highest leaf Ca concentration and transpiration rate during and 2 weeks after conclusion of the heat stress period. When measured after 4 weeks of heat stress, area and fresh and dry weight of the most recently mature leaf was significantly greater in NDS and Ca+NDS plants compared to NBS plants. Cellular membrane thermostability (measured as ion leakage from heat-treated leaf disks) was not affected by any treatment prior to heat stress. However, leaf tissue from Ca+NDS plants exhibited significantly higher membrane thermostability compared to NBS plants after 2 and 4 weeks of heat stress. At harvest, NDS and Ca+NDS plants had significantly higher leaf/stem (fresh weight ratio) values compared to NBS plants. Also, Ca+NDS plants had significantly greater total tuber and biomass values than NBS and NDS plants. Results of this study suggest that some detrimental effects of heat stress on plant growth and stomatal function may be alleviated by Ca and N application during heat stress. The data also suggest that mitigation of heat stress by Ca and N application during heat stress may maintain plant productivity when optimum growing temperatures are restored.  相似文献   

20.
To understand the changes in yield, harvest index (HI) and biomass of aboveground parts of rice, 33 japonica rice cultivars released from 1958 to 2005 were planted. During the 47 years, the grain yield increased from 9 118.36 to 15 060.1 kg/hm2 and HI from 0.46 to 0.55. In the genetic improvement, the total number of tillers per plant decreased, and the biomass per unit area slightly increased at the harvest stage. The increases of yield and HI resulted from the increased biomasses of effective tillers and single stem, and the increase of biomass per stem was related to the increased biomasses of different organs along with the genetic improvement. The stem and sheath biomass at heading and the leaf biomass at 30 days after heading showed the highest increase, up by 75.17% and 49.94%, respectively. The biomasses of leaf and stem-sheath at 10 days after heading, and biomass per stem at 30 days after heading were obviously correlated with the yield. The results indicate that the genetic improvement has resulted in the increase of yield and HI. This increase is correlated with the decrease of total tiller number per plant, and increase of biomasses of effective tillers and single stem. The leaf biomass after heading and the stem and sheath biomass at 10 days after heading can be used as selection criteria for breeding high yielding rice cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号