首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Plant Production Science》2013,16(2):177-184
Abstract

The physicochemical properties of eight popular glutinous rice varieties (Hwasunchal, Dongjinchal, Sangjuchal, Seolhyangchal, Jinbuchal, Sangnamchal, Hangangchal, Milyang-167) in Korea were evaluated. The starch granules in Seolyangchal, Sangnamchal, Hangangchal, and Milyang-167 rice showed greater crystallization than that of the other varieties, which were more loosely packed with larger air spaces in between granules. Dongjinchal rice showed lowest amounts of potassium and calcium with 44.51 and 3029.50 ppm, respectively. This variety also exhibited the highest sugar content with 1.30–16.82 μg g-1 and fastest hydrolysis rate of 771.5 mg g-1. Sangnamchal, Sangjuchal, and Jinbuchal varieties showed abundant amounts of essential amino acids and highest pasting values (73.6°C, 3.0 min). On the other hand, lowest pasting values (69.6°C, 2.7 min) and total amino acid content of 452.61 ng mg-1 were observed in Milyang-167 rice. Hwasunchal and Sangnamchal samples contained the highest concentration of unsaturated fatty acids with 760 mg g-1 and lowest level of saturated fatty acids with 230 mg g-1. The highest viscosity values were obtained in Hangangchal variety, while the lowest values were found in Jinbuchal sample. This study illustrates the wide variation in the physicochemical properties of the glutinous rice varieties analyzed. The results could serve as baseline information for the quality evaluation of rice with unique characteristics suitable for specialty food processing.  相似文献   

2.
A sulphur (S)‐deficient top soil was used in a pot experiment to investigate the effect of S supply on shoot and root growth and development in alfalfa (Medicago sativa L.). The treatments consisted of three rates of addition of S: 0, 20 and 40 mg kg?1 soil and each was replicated four times. Alfalfa was harvested at 15, 30, 45, 60 and 75 d after seedling emergence. By the end of the experiment, plants with S supply had a significantly larger leaf area, heavier leaf, shoot and root dry weight per pot than controls. The effects of adding S also significantly increased plant height, basal stem diameter, chlorophyll concentration of young leaves, root length and root surface area compared with controls. The effects of S were greater on shoots than on roots. The ratio of root to shoot dry weight was 0·47 when S was supplied and 0·88 without added S, indicating that c. 0·32 and 0·47 of the total net photosynthate, produced with or without S supply, respectively, were used for the development of roots. Overall, overcoming S deficiency resulted in a significant increase in shoot and root growth.  相似文献   

3.
以转来自耐盐植物异苞滨藜的甜菜碱醛脱氢酶基因(BADH)玉米T8代株系BZ-136及受体对照自交系郑58(耐盐)为试材,采用盆栽种植方法,分析转基因植株中外源基因的表达情况,检测耐盐相关生理指标。结果表明,转基因株系BZ-136中的BADH酶活性及甜菜碱含量显著高于受体对照,随着盐胁迫时间的延长,其表达量先增加后减少,在胁迫7 d时分别达到了最大值。转基因株系幼苗株高和干重从盐胁迫第3天开始显著高于对照,鲜重和含水量在胁迫第5天和第7天时转基因株系显著高于对照;转基因株系根总体积显著高于对照,直径和根尖数在胁迫第5天时显著高于对照;转基因株系电导率和丙二醛含量均低于对照,分别在胁迫第3天和第7天开始达显著差异,叶绿素含量高于受体对照,从第3天开始二者差异达显著水平。由于外源BADH基因的表达显著提高了基因株系的耐盐性。  相似文献   

4.
《Plant Production Science》2013,16(2):132-140
Abstract

The effects of temperature during the ripening period on digestible protein contents of the rice grains of a seed-protein mutant rice cultivar LGCsoft were examined. The plants were grown under a natural condition until the booting stage, and then in temperature-controlled greenhouses set at 24.0ºC, 28.0ºC, and 30.6ºC (mean temperature). The protein compositions and the protein contents of the rice grains were analyzed quantitatively. The protein compositions in the LGCsoft grains varied with the temperature condition. The ratio of the digestible to total protein was higher in high-temperature conditions, and that of difficult-to-digest proteins, especially 13 kDa prolamin was lower in high-temperature conditions. The protein compositions in a normal-type cultivar Nihonmasari, which was the original cultivar of LGCsoft also varied with the temperature. However, the effect of temperature on the ratio of the digestible to total protein was larger in LGCsoft than in Nihonmasari. The ratios of the digestible protein in the grains under 24.0ºC and 30.6ºC conditions were 74.3% and 81.3%, respectively, in Nihonmasari. On the other hand, they were 52.0% and 63.1%, respectively, in LGCsoft. In LGCsoft, the total protein content of grains was 70.6-72.5 mg g-1, and it was affected only slightly by temperature during the ripening period. Therefore, the digestible protein content of grains under 24.0ºC and 30.6ºC conditions was 36.7 mg g-1 and 45.7 mg g-1, respectively, in LGC soft. It was clarified that the digestible protein content was higher at elevated temperatures because of the increased ratio of digestible to total protein.  相似文献   

5.
In vitro direct plant regeneration of lucerne was achieved by simultaneous application of thidiazuron (TDZ) and 6‐benzyladenine (BA) in Murashige and Skoog (MS) medium. Seedlings were germinated and grown for 6 d on growth regulator–containing MS medium. The shoot tip, consisting of the apical meristem along with parts of the cotyledonary leaves and hypocotyl, was then cultured on a medium containing the growth regulator(s). Adventitious budding of the shoot tip was promoted synergistically by treatment with TDZ and BA, and a maximum of thirty‐five shoots per explant was obtained on a medium supplemented with 2 mg L?1 TDZ and 1 mg L?1 BA. Plant regeneration frequency varied from 67 to 93%, and five Indian lucerne cultivars responded well to the regeneration protocol. The Agrobacterium‐mediated transformation frequency from co‐cultivated explants was 13% following multiple shoot induction. Southern analysis of the T0 plants and T1 progenies confirmed stable inheritance of the hpt marker gene. Agrobacterium infection of the explant caused a significant reduction in the plant regeneration frequency (23%) and the number of shoots induced (11) when compared with uninfected explants. A single shoot tip provided sufficient material to regenerate and establish twenty‐seven lucerne plants, whereas only nine plants could be regenerated from an Agrobacterium co‐cultivated explant. This transformation protocol could represent a valuable improvement over existing ones for lucerne.  相似文献   

6.
ABSTRACT

Crop phenotyping is a key process used to accelerate breeding programs in the era of high-throughput genotyping. However, most rapid phenotyping methods developed to date have focused on major cereals or legumes, and their application to minor crops has been delayed. In this study, we developed a non-destructive method to predict shoot biomass by measuring spectral reflectance in staking yam (Dioscorea rotundata). The normalized difference vegetation index (NDVI) was evaluated using a handheld sensor that was vertically scanned from the top to the bottom of a plant alongside the stake. A linear regression model was constructed to predict shoot biomass through Bayesian analysis using NDVI as a parameter. The model well predicted the observed values of shoot biomass, irrespective of the growth stage and genotypes. Conversely, the model tended to underestimate the shoot biomass when the actual shoot biomass exceeded 150 g plant?1; this was compensated for when the parameter green area, calculated from plant image, was included in the model. This method reduced the time, cost, effort, and field space needed for shoot biomass evaluation compared with that needed for the sampling method, enabling shoot biomass phenotyping for a large population of plants. A total of 210 cross-populated plants were evaluated, and a correlation analysis was performed between the predicted shoot biomass and tuber yield. In addition to the prediction of tuber yield, this method could also be applied for the evaluation of crop models and stress tolerance, as well as for genetic analyses.  相似文献   

7.
Drought is one of the major limitations to agricultural productivity, suppressing plant growth and yield of food crops throughout the world particularly in arid and semiarid regions. Drought-tolerant carbonic anhydrase (CA; EC 4.2.1.1)-containing endophytic bacteria may improve plant growth under stressed conditions. In the present study, effect of drought-tolerant CA-containing endophytic bacteria on growth and physiology of wheat under water-deficit conditions was studied. One hundred and fifty isolates were isolated from wheat plants and screened for their ability to tolerate polyethylene glycol (PEG) 6000-induced water-deficit stress (?0.31 to ?3.20 MPa). Fifty isolates exhibiting intrinsic ability to tolerate stress were further screened for CA activity. Ten drought-tolerant isolates with higher CA activity were evaluated for improving wheat growth under water-deficit conditions (?0.04, ?1.09, ?1.23 MPa). Results showed that PEG-mediated water-deficit stress significantly reduced growth of wheat. However, inoculation with isolates WR2, WS11 and WL19 significantly enhanced seedling growth by improving maximum root length, shoot length, root and shoot dry weight under non-stressed as well as stressed conditions. These isolates were identified by 16S rRNA as Bacillus marisflavi (WR2) Bacillus thuringiensis (WS11) and Bacillus subtilis (WL19). Isolate WL19 also improved chlorophyll content, photosynthetic rate, CA activity and relative water content compared to uninoculated control plants. Overall, our findings suggest that endophytic bacterial isolates WR2, WS11 and WL19 with CA activity can enhance photosynthesis and biomass of wheat seedlings under water-deficit conditions.

Abbreviations: CA: Carbonic anhydrase; PEG: Polyethylene glycol; CO2: Carbon dioxide; HCO3–: Bicarbonate; TSA: Tryptic Soy Agar; LB: Luria Bertani; A: CO2 assimilation rate; E: Transpiration rate; gs: Stomatal conductance; Ci: Substomatal CO2 concentration; RWC: Relative water content; EL: Electrolyte leakage  相似文献   

8.
Abstract This field study investigated the effect of timing of nitrogen (N) fertilizer application in spring on the survival of grazed perennial ryegrass (Lolium perenne cv. Dobson and Yatsyn) over summer in a subtropical environment. There were five N fertilizer treatments: no applied N, 46 kg N ha?1 on 22 October or 22 November or 22 December, or on 22 October and again on 22 December. Water‐soluble carbohydrate (WSC) concentration of perennial ryegrass plants entering the summer was altered by varying defoliation frequency, with defoliation interval based on the number of leaves per tiller. Frequent defoliation was set at a regrowth level of one leaf per tiller and less frequent defoliation at a regrowth level of three leaves per tiller, over a total of two by three‐leaf per tiller regrowth periods. Application of N fertilizer was found to have no significant effect (P > 0·05) on survival of perennial ryegrass plants over summer. On the other hand, defoliation had a marked effect on perennial ryegrass persistence, with frequent defoliation decreasing ryegrass plant density (51 vs. 88 plants m?2; P < 0·001) and increasing the density of tropical weed grasses (99 vs. 73 plants m?2; P < 0·001) by autumn. Frequently defoliated plants had a lower stubble WSC content on a per plant basis than less frequently defoliated plants in spring (103 vs. 201 mg per plant; P < 0·001) and summer (59 vs. 101 mg per plant; P < 0·001). The lower WSC content was associated with a smaller root system in spring (1·50 vs. 2·14 g per plant; P < 0·001) and autumn (1·79 vs. 2·66 g per plant; P < 0·01), and this was reflected in 0·29 more plants being pulled from the soil by livestock between November 1996 and April 1997. Rhizoctonia fungus was associated with roots of pulled plants, but not with roots of seemingly healthy plants, indicating that this fungus may have a role in a weakened root system, which was more prone to sod pulling. Nitrogen applied in October and November resulted in a reduced WSC concentration, although the effect was restricted to 1 month after N application. The present study indicates that survival of perennial ryegrass plants over the summer in a subtropical region is prejudiced by frequent defoliation, which is associated with a lower WSC concentration and a shallower root system. Under grazing, sod pulling is a reflection of this weaker root system and contributes to plant mortality.  相似文献   

9.
We investigated the alleviative effects of mixed cropping using ice plant, which is one of the salt-accumulating halophytes, on the damage and growth inhibition of cowpea, which is not tolerant to high salinity. Three cropping patterns (mono cropping of cowpea and ice plant and their combination) were tested. The plants were treated with 0, 100, 200 and 300 mM NaCl for 14 days (consecutive NaCl). The plants were also treated with NaCl for 3 days, followed by 2 weeks (short-term recovery) and 1 month (long-term recovery) recovery. Salinity levels for short-term recovery were similar to those of the consecutive experiment, while the concentration of long-term recovery was 250 mM. The alleviative effects of mixed cropping in the consecutive NaCl experiment were observed at 200 and 300 mM NaCl. Mixed cropping significantly reduced the Na content in the cowpea leaves at 200 and 300 mM NaCl compared with mono cropping. In addition, the Na content in the soil of mix-cropped cowpea at 200 and 300 mM NaCl was statistically lower than that of the mono cropping. Mixed cropping was effective to recover from high concentration of NaCl in the experiments of short- and long-term recovery. These results indicate that mixed cropping with a halophyte could be effective in mitigating the damage and growth inhibition of a glycophyte not only under salinity but also under recovery periods.  相似文献   

10.
蚓粪对盐胁迫下小麦幼苗生长及光合特性的影响   总被引:3,自引:0,他引:3  
为明确添加蚓粪对盐胁迫下小麦幼苗生长及光合特性的影响机理,通过向基质中分别添加10%、20%、40%(苗死亡)比例的蚓粪,同时设不添加蚓粪的单盐胁迫处理和空白对照处理(CK),分析了添加蚓粪后盐胁迫(150 mmol·L-1 NaCl)下小麦生长指标(叶长、叶宽、叶面积,地上和地下部干重、根冠比)、气体交换参数及光合色素含量的变化。结果表明,盐胁迫下小麦幼苗各生长指标与CK相比略有下降,但差异不显著。添加蚓粪后,小麦幼苗叶长、叶宽、叶面积、地上部分干重、总干重以及叶绿素a、叶绿素b、叶绿素总含量及类胡萝卜素含量较未添加蚓粪处理均呈明显的上升趋势,而根冠比则呈下降的趋势。添加蚓粪对盐胁迫下小麦叶片气体交换也产生了显著的影响。盐胁迫下,小麦叶片净光合速率显著低于CK,但添加蚓粪后,净光合速率呈明显的上升趋势。这说明基质中添加适量蚓粪可以有效促进小麦幼苗生长和光合作用。  相似文献   

11.
Salinity, waterlogging and a combination of both stresses are severe threats to plant growth, development and yield of field-grown cotton (Gossypium hirsutum L.), but their individual or combined effects on insecticidal efficacy of Bacillus thuringiensis (Bt) transgenic cotton and the underlying mechanisms are not well understood. In the present study, two cotton cultivars (33B and SCRC17) containing the Cry1Ac insecticidal protein gene were planted in 10 L pots filled with soil and allowed to grow in a greenhouse. The potted plants were either treated with NaCl (5 mg/g, w/w), waterlogging, or a combination of both stresses at the three true-leaf stage, and levels of total soluble protein, Bt insecticidal protein, gossypol and the control efficacy as indicated by mortality of bollworm larvae were examined at 7-day intervals after stress. Waterlogging and a combination of salinity and waterlogging reduced total protein content by 40–46% and 45–65% and Bt protein content by 38–50% and 45–72% from 7 to 21 days after stress, relative to the non-stressed control, respectively. The control efficacy was significantly reduced by either waterlogging or the combined stress. Regression analysis indicated that Bt protein content was correlated to total soluble protein content (R2 = 0.7677*), while Bt cotton efficacy was correlated to Bt protein level (R2 = 0.7917**). Salinity reduced Bt protein by 11–22% and total soluble protein by 5.7–7.2% from 7 to 21 days after NaCl stress, but did not result in reduction in control efficacy. It is concluded that reduced bollworm control efficacy under waterlogging or the combined stress could be mainly attributed to the declined levels of Bt protein, which is closely associated with the inhibited nitrogen metabolism by stresses. As one of the secondary compounds that are toxic to pests, increases in gossypol may be involved in maintaining the efficacy when Bt protein level was reduced under salinity.  相似文献   

12.
The effects of five rates [0 (control), 1, 2, 4 and 6 Mg ha?1] of calcium silicate on the growth and water consumption by rhodes grass (Chloris gayana Kunth) and sudan grass (Sorghum sudanense Piper) under wet and dry soil water regimes (60 g and 30 g H2O kg?1 soil respectively) were evaluated in a pot experiment. The effect of the application of silicate on plant biomass was similar to that of the control. However, the shoot and root dry mass varied significantly (P < 0.001) according to the soil water regime and plant species. During the first cut, the shoot dry mass was 5.7 g per pot under the wet soil moisture regime, significantly exceeding that under the dry soil water regime proportionately by 0.68. For sudan grass, the shoot dry mass varied from 3.6 g per pot in the control to 4.3 g per pot in the treatment that received 6 Mg ha?1 of calcium silicate. Plant water demand decreased as the rate of calcium silicate application increased, suggesting that an application of calcium silicate could reduce drought stress and enhance water economy. For the soil under study, the reduction in plant water demand represents a water saving ranging from 0.076 to nearly 0.20.  相似文献   

13.
14.
以玉米自交系Mo17为材料,用不同浓度的EBR处理150 mmol/L NaCl胁迫的玉米幼苗,测定其叶绿素含量、过氧化物酶(POD)活性、脯氨酸含量、可溶性糖含量、丙二醛(MDA)含量和根系活力等指标,同时通过荧光定量PCR测定CAT酶基因和ZMPIP2-4基因的表达。结果表明,EBR处理后,玉米幼苗的POD酶活性、可溶性糖含量、脯氨酸含量和根系活力增加,MDA含量降低。EBR处理浓度为0.1 mg/L时,可溶性糖、过氧化物酶和根系活力显著增加;EBR浓度为0.001 mg/L时,酶(CAT)基因的表达量有明显上升。EBR浓度为0.1 mg/L时,在生理层面可有效增加玉米抗盐胁迫的能力;0.001 mg/L时在基因层面可显著增加玉米幼苗抗盐胁迫CAT和ZMPIP2-4基因表达量。有效缓解盐胁迫的最适EBR浓度为0.1 mg/L。玉米幼苗抗胁迫基因表达后调控具体机理尚不清楚,需进一步探究。  相似文献   

15.
Abstract

The effects of exogenously applied glycinebetaine on the salt-stress-induced inhibition of growth and ultrastructural damages in rice seedlings were investigated. Glycinebetaine was not effective in alleviating the NaCl-induced inhibition of root growth and rather enhanced the NaCl-induced inhibition. However, it was found to alleviate the inhibition of shoot growth induced by NaCl stress. Concentrations of Na were higher in salt-stressed plants than in unstressed plants. Stressed plants receiving glycinebetaine had a significantly lower Na and higher K concentrations in the shoots than the plants grown without application of glycinebetaine. Salinity induced ultrastructural damages in leaf such as swelling of thylakoids, disintegration of grana stacking and intergranal lamellae and destruction of mitochondria (deficiency of cristae, swelling and vacuolation). Such damages were largely prevented by pretreatment with glycinebetaine resulting in greening of the plants. In roots, the epidermis, cortex and root cap were more sensitive to salt stress than the meristem and stele. The most frequently observed ultrastructural alteration due to NaCl salinity was the formation of many large vacuoles in the root tip and root cap cells. The number of mitochondria was increased and they were aggregated in the cytoplasm of the root tip and root cap cells by treatment with NaCl or NaCl plus glycinebetaine. Glycinebetaine could not prevent the NaCl-induced ultrastructural damages in root cells. The effects of glycinebetaine to mitigate the ultrastructural damages in the chloroplast and mitochondria induced by NaCl might be due to the production of many vacuoles in root cells which may act to store Na and decrease its accumulation in the shoot.  相似文献   

16.
盐胁迫下益生菌对玉米的促生效应研究   总被引:1,自引:0,他引:1  
为提高盐渍化农田作物的耐盐性,从生长于高盐土壤的玉米根际中分离促生潜力的菌株,在NaCl胁迫下,测定其对玉米发芽率、发芽势、促生长和电导率的影响。结果表明,枯草芽孢杆菌NY-06、巨大芽孢杆菌YJ-1和解淀粉芽孢杆菌YJ-3有很好益生效果。在1.5%NaCl和2.0%NaCl胁迫下,3个菌株发酵液处理后的玉米株高分别增高16.3%、9.5%、16.7%和18.9%、8.3%、19.9%,地上部鲜重分别增加28.8%、21.5%、34.0%和29.3%、22.8%、36.3%,根系鲜重分别增加32.7%、15.5%、18.3%和51.9%、58.6%、56.8%,玉米叶片相对电导率分别降低11.1%、9.2%、8.0%和6.4%、9.5%、14.2%。  相似文献   

17.
《Plant Production Science》2013,16(4):464-470
The effects of calcium concentrations in the growth medium on oxalate content of leaf blades, petioles and corms and the involvement of guttation in the regulation of oxalate homeostasis were investigated in eddo (Colocasia esculenta (L.) Schott var. antiquorum Hubbard & Rehder). The plants were grown hydroponically in solutions containing 0 mM calcium, 1 mM calcium nitrate (control), 15 mM calcium nitrate or 15 mM calcium chloride. Total oxalate content (soluble plus insoluble) of leaf blades, petioles and corms did not differ with the calcium concentration in solutions containing 1 mM or 15 mM calcium nitrate or 0 mM calcium. The soluble oxalate content of these parts decreased as the calcium concentration of the solution was increased. Solutions containing 15 mM calcium nitrate or 15 mM calcium chloride gave a significantly lower proportion of soluble oxalate content to total oxalate content in each part, especially in leaf blades than 0 mM calcium or 1 mM calcium nitrate. In contrast, a positive correlation was found between insoluble oxalate content and calcium concentration in the solution. These results demonstrate that high calcium concentrations in the growth medium reduce soluble oxalate content of the plant. Soluble oxalate was detected in eddo guttation fluid. Soluble oxalate content in this fluid (mg mL?1) and the amount of soluble oxalate exuded by guttation (mg leaf?1 night?1) were significantly lower in the solutions containing 15 mM calcium than in those containing 0 mM and 1 mM calcium. These results indicate that guttation may affect the concentration of soluble oxalate in the plant bodies although not strongly contributing to a decrease in soluble oxalate content in eddo grown under high calcium conditions.  相似文献   

18.
The effects of elevated atmospheric carbon dioxide (CO2) concentration (700 μmol mol?1) on defoliated (three clippings at 3‐week intervals) and undefoliated plants were determined for the C4 grass Themeda triandra, Forsk. The elevated CO2 concentration significantly increased leaf regrowth following defoliation, and total leaf production was greatest in this treatment. Shoot biomass of undefoliated plants was also increased under the elevated CO2 concentration treatment. The primary effect of the elevated CO2 concentration in both defoliated and undefoliated plants was an increase in individual leaf length and mass of dry matter, linked to a higher leaf water content and increased photosynthetic rates at the canopy level. Photosynthetic down‐regulation at the leaf level occurred, but this was compensated for by increased assimilation rates and greater canopy leaf area at the elevated CO2 concentration. Increases in leaf and sheath growth of defoliated plants in the elevated CO2 concentration treatment were lost following a final 3‐week reversion to ambient CO2 concentration, but occurred in plants exposed to the elevated CO2 concentration for the final 3‐week period only. In conclusion, elevated atmospheric CO2 concentration increases shoot growth via increased leaf extension, which is directly dependent on stimulation of concurrent photosynthesis. CO2 responsiveness is sustained following moderate defoliation but is reduced when plants experience reduced vigour as a result of maturation or high frequency of defoliation.  相似文献   

19.
盐对柚幼苗的胁迫效应分析   总被引:4,自引:0,他引:4  
以坪山柚为材料,研究了盐对坪山柚幼苗的胁迫效应。结果表明:40mmol/LNaCl胁迫30d,坪山柚幼苗受害症状轻,幼苗生长受影响小;80~200mmol/LNaCl胁迫30d,随NaCl浓度提高,坪山柚幼苗受害症状逐渐加重,幼苗株高、叶面积、地上部干重和根部干重明显降低。不同浓度NaCl胁迫20d,坪山柚幼苗根及地上部Na+,Cl-,甜菜碱质量分数增加,K+质量分数及K+/Na+质量比下降。NaCl胁迫影响坪山柚幼苗生长与Na+和Cl-大量积累有关。NaCl胁迫下,维持相对稳定的根与冠干重比、保持根K+与Na+质量比>1及根部具有较高的甜菜碱含量,是坪山柚幼苗耐盐胁迫的一种适应。   相似文献   

20.
《Plant Production Science》2013,16(2):169-176
Abstract

The effect of NaCl stress on the structure of leaf chloroplasts was investigated in several NAD-Malic enzyme (NAD-ME) and phosphoenolpyruvate carboxykinase (PCK) type C4 plant species. Seedlings of the monocot species, except Zoysia japonica, grown in 300 mL pots were subjected to salt stress by adding 50 mL of 3% NaCl solution per day to the soil for 5 d after the fourth leaf blades were fully developed. Z. japonica and the dicot species, Amaranthus tricolor, were also treated with 3% NaCl in a similar manner from 5 wk after germination. Salt stress negatively affected the growth, chlorophyll content and chloroplast structure in all the species. At the ultrastructure level, swelling of thylakoids and disruption of envelopes were more or less observed in mesophyll cell (MC) chloroplasts after salt treatment. The structure of bundle sheath cell (BSC) chloroplasts, on the other hand, was hardly damaged under salt condition although stromal and starch areas were considerably decreased. Furthermore, salinity induced granal development in BSC chloroplasts in most species; the number of thylakoids per granum, granal indices and appressed thylakoid density in salt-treated plants were generally higher than those in control. Since the similar responses have also been reported in all NADP-ME type C4 species investigated in our previous study, the high sensitivity to salt stress in MC chloroplasts and the granal development in BSC chloroplasts by salinity were considered to be common phenomena in all three C4 subtypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号