首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Plant Production Science》2013,16(2):103-111
Abstract

Growth and structural changes in the seminal root tip of rice seedlings (Oryza sativa L. cv. Nipponbare) in response to NaCl salinity were studied. Seedlings were grown in agar medium with 0, 0.1, 0.3, 1.0, 2.0 and 3.0% NaCl(agar culture), and in water with 0, 0.01, 0.03, 0.06 and 0.1% NaCl (water culture). Seedling growth was significantly suppressed by higher concentrations of NaCl. The effect of NaCl appeared faster in water culture than in agar culture. In both agar and water cultures, root growth was markedly suppressed over shoot growth. Under saline conditions, epidermis, cortex and root cap cells appear to be damaged to a greater extent than the meristem and stelar cells. The most notable ultrastructural change in response to salinity was the development and increment of vacuoles, which seem to provide a space for accumulation of excess ions. Many electron dense deposits were observed in the larger vacuoles of the epidermal and cortical cells. Under saline conditions, cell wall thickening of the epidermis, an increase in endoplasmic reticulum, myelin figures, less compact Golgi bodies and inhibited production of Golgi vesicles were also observed.  相似文献   

2.
盐对柚幼苗的胁迫效应分析   总被引:4,自引:0,他引:4  
以坪山柚为材料,研究了盐对坪山柚幼苗的胁迫效应。结果表明:40mmol/LNaCl胁迫30d,坪山柚幼苗受害症状轻,幼苗生长受影响小;80~200mmol/LNaCl胁迫30d,随NaCl浓度提高,坪山柚幼苗受害症状逐渐加重,幼苗株高、叶面积、地上部干重和根部干重明显降低。不同浓度NaCl胁迫20d,坪山柚幼苗根及地上部Na+,Cl-,甜菜碱质量分数增加,K+质量分数及K+/Na+质量比下降。NaCl胁迫影响坪山柚幼苗生长与Na+和Cl-大量积累有关。NaCl胁迫下,维持相对稳定的根与冠干重比、保持根K+与Na+质量比>1及根部具有较高的甜菜碱含量,是坪山柚幼苗耐盐胁迫的一种适应。   相似文献   

3.
《Plant Production Science》2013,16(4):422-429
Summary

High concentrations of NaCl significantly reduced the fresh and dry weights and lengths of roots and shoots. NaCl exhibited a more rapid effect in water culture than in soil culture. In both water and solid cultures, root growth was suppressed more severely than shoot growth. Electron microscopic studies revealed that NaCl caused swelling of thylakoids, accumulation of starch grains and lipid droplets, distortion of grana stacking, increase in the size and number of plastoglobuli and vesiculation of cellular membrane. Mitochondria became deficient in cristae, swelled and the matrix appeared pale in salt-treated plants as compared with control plants. Disappearance of nucleolus and nuclear chromatin and destruction of vascular tissues were occasionally observed in salt-treated plants.  相似文献   

4.
《Plant Production Science》2013,16(4):453-461
Abstract

Effects of NaCl on the growth, ion content, root cap structure and Casparian band development were examined in four rice (Oryza sativa L.) cultivars with different salt resistance (salt-sensitive indica-type IR 24 and japonica-type Nipponbare and salt-resistant indica-type Nona Bokra and Pokkali). Experiments were conducted to find the differences in salinity resistance during early seedling and developed seedling stages among the cultivars. For salinity treatment, sodium chloride (NaCl) was added to nutrient solution at concentrations of 0, 25 and 50 mM for 7 days from germination to the 7th day (early seedling stage) or from the 7th day to 14th day (developed seedling stage). Growth inhibition by salinity was more prominent in the early seedling stage than in the developed seedling stage. Based on the growth, the order of the sensitivity was IR24 > Nipponbare > Nona Bokra > Pokkali. The growth of NaCl-treated rice cultivars relative to control was significantly and negatively correlated with the Na+ content and Na+/K+ ratio in roots and shoots in both stages. Scanning electron microscopic observation revealed that the root cap tissues proliferated and extended to the basal part of the root tip by salinity. The length of root cap was, however, reduced by 50 mM NaCl in sensitive cultivars due to peeling off. An endodermal Casparian band was formed in the basal region of the root tip. Development of the Casparian band was more prominent in sensitive cultivars than in tolerant cultivars. Root cap proliferation might be related to NaCl resistance in rice seedlings, but the Casparian band may not function efficiently in Na+ exclusion. Essentially the present results suggest that exclusion of Na+ from roots plays a critical role in expression of Na+ resistance in rice seedlings and the root cap is important for Na+ exclusion.  相似文献   

5.
外界K水平对水稻幼苗耐盐性的影响   总被引:9,自引:0,他引:9  
外界K~+水平对水稻幼苗耐盐性的影响晏斌,戴秋杰(江苏省农业科学院,南京210014)EffectofExternalK~+LevelonSaltToleranceofRiceSeedlings¥YANBin,DAIQiujie(JiangsuAcad...  相似文献   

6.
采用振荡培养(移除根尖边缘细胞)和静置培养(保持边缘细胞附着在根尖)方法,对比研究盐胁迫对黑豆根系生长和根尖边缘细胞发育、根系Na+、K+含量的影响以及根系生理特性的变化。结果显示:100和200 mmol.L-1NaCl处理抑制边缘细胞发育,引起根系相对电导率和MDA含量增加。振荡培养去除根尖边缘细胞处理36 h,黑豆根相对伸长率、根尖K+含量明显低于对应NaCl浓度的静置培养处理,同时根尖Na+含量、相对电导率和MDA含量在去除边缘细胞后显著增加。说明包裹于根尖的边缘细胞通过调节Na+和K+的吸收和维持较高的细胞膜完整性,以适应盐害环境。  相似文献   

7.
Genome duplication improves rice root resistance to salt stress   总被引:2,自引:0,他引:2  

Background

Salinity is a stressful environmental factor that limits the productivity of crop plants, and roots form the major interface between plants and various abiotic stresses. Rice is a salt-sensitive crop and its polyploid shows advantages in terms of stress resistance. The objective of this study was to investigate the effects of genome duplication on rice root resistance to salt stress.

Results

Both diploid rice (HN2026-2x and Nipponbare-2x) and their corresponding tetraploid rice (HN2026-4x and Nipponbare-4x) were cultured in half-strength Murashige and Skoog medium with 150 mM NaCl for 3 and 5 days. Accumulations of proline, soluble sugar, malondialdehyde (MDA), Na+ content, H+ (proton) flux at root tips, and the microstructure and ultrastructure in rice roots were examined. We found that tetraploid rice showed less root growth inhibition, accumulated higher proline content and lower MDA content, and exhibited a higher frequency of normal epidermal cells than diploid rice. In addition, a protective gap appeared between the cortex and pericycle cells in tetraploid rice. Next, ultrastructural analysis showed that genome duplication improved membrane, organelle, and nuclei stability. Furthermore, Na+ in tetraploid rice roots significantly decreased while root tip H+ efflux in tetraploid rice significantly increased.

Conclusions

Our results suggest that genome duplication improves root resistance to salt stress, and that enhanced proton transport to the root surface may play a role in reducing Na+ entrance into the roots.  相似文献   

8.
以垂盆草为材料,研究不同浓度NaCl[0(对照)、25、50、100、150、200 mmol/L]对垂盆草生长和生理特性的影响.结果表明:与对照相比,随着NaC1浓度的增加,垂盆草鲜重、干重、含水量、K+含量、根Na+/叶Na+、叶的K+/Na+和SOD活性均呈下降趋势;而Na+、游离氨基酸、可溶性糖、有机酸、脯氨酸、丙二醛含量和质膜透性均呈上升趋势;叶绿素含量、硝酸还原酶活性呈先上升后下降趋势,而NO3-含量则呈相反的变化趋势.综合分析显示,盐胁迫对垂盆草生长有抑制作用,其耐盐阈值为100 mmol/L NaCl;盐胁迫下垂盆草通过积累Na+、有机酸、游离氨基酸、可溶性糖、脯氨酸进行渗透调节.  相似文献   

9.
采用水培的方法,研究了外源NAA对盐胁迫下水稻幼苗根系生长的影响.结果 表明,20~100 mg· L-1 NAA处理均能缓解100 mmol·L-1 NaCl胁迫对水稻幼苗根生长的抑制效应.NAA对根系生长的缓解效应随处理浓度的增加呈现先增后降的趋势,其中以80 mg·L-1NAA的效果最明显.NAA可通过抑制盐胁迫下水稻根尖活性氧积累和降低根尖细胞质膜透性来保护根系正常的生理活性.  相似文献   

10.
We investigated the alleviative effects of mixed cropping using ice plant, which is one of the salt-accumulating halophytes, on the damage and growth inhibition of cowpea, which is not tolerant to high salinity. Three cropping patterns (mono cropping of cowpea and ice plant and their combination) were tested. The plants were treated with 0, 100, 200 and 300 mM NaCl for 14 days (consecutive NaCl). The plants were also treated with NaCl for 3 days, followed by 2 weeks (short-term recovery) and 1 month (long-term recovery) recovery. Salinity levels for short-term recovery were similar to those of the consecutive experiment, while the concentration of long-term recovery was 250 mM. The alleviative effects of mixed cropping in the consecutive NaCl experiment were observed at 200 and 300 mM NaCl. Mixed cropping significantly reduced the Na content in the cowpea leaves at 200 and 300 mM NaCl compared with mono cropping. In addition, the Na content in the soil of mix-cropped cowpea at 200 and 300 mM NaCl was statistically lower than that of the mono cropping. Mixed cropping was effective to recover from high concentration of NaCl in the experiments of short- and long-term recovery. These results indicate that mixed cropping with a halophyte could be effective in mitigating the damage and growth inhibition of a glycophyte not only under salinity but also under recovery periods.  相似文献   

11.
盐逆境下两个水稻品种根系Na+吸收及质膜ATP酶的作用   总被引:8,自引:1,他引:8  
 以两个不同耐盐力水稻品种80-85 (耐盐) 和83-51(不耐盐)为材料进行研究。根系Na+总吸收随盐胁迫的加重而增高,耐盐品种始终具有较低的Na+总吸收和较高的整株K+/Na+比;在10 mmol/L NaCl浓度下显示出根系具有较低的Na+吸收速率和较强的对K+选择性,低盐浓度(0.2% NaCl) 对根质膜ATP酶活性略有提高;在高盐浓度(0.5% NaCl以上)下,质膜ATP酶活性受到明显抑制,而耐盐品种受抑程度更大.ATP酶活性的下降与根部Na+积累以及K+吸收的减少相伴随,推测根系K+、Na+吸收与质膜ATP酶有关  相似文献   

12.
NaCl胁迫对玉米根尖细胞染色体行为的影响   总被引:1,自引:0,他引:1  
用不同浓度的NaCl处理萌发的玉米种子。结果表明,随着NaCl浓度的升高,玉米根尖细胞有丝分裂指数降低,NaCl浓度高于100 mmol/L时,引起根尖细胞染色体行为异常,异常类型有微核、多核、染色体落后、染色体粘连、染色体桥、染色体断裂等,以多核和染色体粘连为主。染色体异常行为与NaCl处理浓度呈正相关。  相似文献   

13.
王桂芹  王玉良 《热带作物学报》2012,33(11):2085-2090
采用悬空气培养法研究了入侵植物空心莲子草(Alternanthera phiLoxeroides Griseb)不同器官水浸提液对苏丹草根尖生长、根缘细胞活性和根冠果胶甲基酯酶(PME)的化感效应。结果表明:空心莲子草水溶性化感物质对苏丹草根尖的发育有明显的抑制及伤害作用,且随着处理浓度增加抑制作用显著增强;苏丹草根缘细胞存活率随着水浸提液浓度的升高而下降;苏丹草根冠果胶甲基酯酶(PME)活性与水浸提液处理浓度具有密切相关性,呈先上升后下降趋势(茎例外),经茎的水浸提液处理的苏丹草根冠PME活性则表现出与空心莲子草根、根状茎和叶相反的趋势;空心莲子草不同器官化感作用差异显著,其综合化感效应表现为:叶>根和根状茎>茎。化感作用是空心莲子草实现干扰性竞争的基础,也是排挤和绞杀土著物种迅速占领生态位的主要原因之一。  相似文献   

14.
In Japan, tea (Camellia sinenis (L.) Kuntze) seedlings are propagated by cutting. A root system of clonal plants by cutting consists of adventitious roots and lateral roots. Most of the roots grow horizontally, which results in a shallow distribution of the root system. Such a shallow root system could be one of the factors contributing to the deterioration of nutrient uptake and resistance to water stress. Gravitropism of the roots is considered to be a decisive factor that controls the depth of a root system. The authors have investigated changes in the growth direction of roots to gravitative stimulus, using several kinds of roots (seminal roots, lateral roots and adventitious roots). Furthermore, amyloplasts in the root-cap cells, which are considered to be an equipment sensing gravistimulus, were observed. Seminal roots prominently showed orthogravitropism and contained many amyloplast particles in their root cap cells. Most lateral and adventitious roots showed plagiogravitropism, growing in an angle to gravistimulus, and lacked observable amyloplast particles in their root cap cells. The results suggest that the shallowing of root systems of elonal tea plants could be attributed to a gravitropic reaction of the adventitious and lateral roots composing the root system. There could also be a close relationship between the growth direction of roots and the presence of amyloplasts in root-cap cells.  相似文献   

15.
Phosphorus(P) starvation in rice facilitates the reutilization of root cell wall P by enhancing the pectin content. NaCl modulates pectin content, however, it is still unknown whether NaCl is also involved in the process of pectin regulated cell wall P remobilization in rice under P starved conditions. In this study, we found that 10 mmol/L NaCl increased the shoot and root biomasses under P deficiency to a remarkable extent, in company with the elevated shoot and root soluble P contents in rice...  相似文献   

16.
Summary 0.4 μmol/l naphtalenacetic acid (NAA) stimulated early root formation and caused highly significant increases in numbers of rooted plantlets (from 55 to 74%) when potato meristem tips were cultured in a medium supplemented with gibberellic acid (GA). When the medium lacked GA, 0.1 μmol/l NAA induced complete development in about 30% of the explants. Higher concentrations inhibited root and shoot growth and induced conspicuous callus formation, both in the presence and absence of GA. Low NAA concentrations were thus useful in obtaining accelerated and more uniform development in the potato meristem tip population.  相似文献   

17.
火炬树叶浸提液对小麦根尖细胞的遗传毒性   总被引:1,自引:0,他引:1  
为了解入侵植物火炬树对小麦根尖细胞的遗传毒性,用不同浓度的火炬树叶浸提液(0.5‰、1‰、2‰、5‰、1%、3%、5%、7%、10%)处理萌发期的小麦根尖6、12、24和36h,观察其有丝分裂的变化和染色体行为的异常。结果表明,除低浓度(<2‰)浸提液外,火炬树叶浸提液对小麦根尖细胞产生了明显的毒害作用。随着处理浓度的升高和处理时间的延长,有丝分裂指数逐渐降低,同时诱发了微核、多核和染色体畸变的出现,畸变率随处理浓度的提高和处理时间的延长而逐渐升高。  相似文献   

18.
NaCl胁迫对水稻苗期生长及离子吸收和转运的影响   总被引:1,自引:0,他引:1  
通过室内水培试验,探讨了NaCl胁迫对水稻苗期生长及离子吸收与转运的影响。结果表明,NaCl胁迫促使株高下降和生物量积累减少,且随着NaCl浓度增加,株高和生物量积累降幅增大,但长白9号降幅均较小。较低浓度NaCl胁迫下,各材料叶片中Na+浓度增幅显著小于根和茎部,但随浓度增加,越光叶片Na+浓度增幅大于根和茎部。长白9号叶片和根部K+/Na+显著高于越光。NaCl胁迫降低了各器官Ca2+吸收量,且随浓度增大,Ca2+吸收量降低。生长叶对NaCl胁迫响应最敏感,下降幅度最大,成熟叶次之。根的Ca2+的降幅最小。从材料上看,长白9号各器官降幅均低于越光。  相似文献   

19.
为研究药物诱导玉米孤雌生殖植株的倍性变异,用2%DMSO 40mg/kgMH诱导掖单13号等材料获得结实。实验结果表明,孤雌生殖根尖体细胞以二倍体细胞最多,其次为非整倍体细胞,其它异倍体和单倍体细胞极少。Pa1植株可分为二倍体和混倍体两类,以二倍体占绝对多数的混倍体植株最多。讨论了体细胞染色体变异的来源问题。  相似文献   

20.
丛枝菌根真菌对澳洲坚果幼苗的生长效应   总被引:4,自引:0,他引:4  
将澳洲坚果种子进行表面消毒,并播种于盛装已灭菌珍珠岩的塑料育苗盒中,观察其幼苗期接种丛枝菌根真菌【Arbuscular Mycorhiza Fungi,AMF(CL.mosse)】对澳洲坚果幼苗生长效应的影响。试验结果表明,AMF对澳洲坚果幼苗的生长发育均有重要的促进作用。AMF 能促进澳洲坚果幼苗的生长及其幼苗叶片蛋白质及糖分的积累;能促进其根系磷酸酶的活性,磷酸酶活性与AMF侵染率存在显著相关性。接种AMF可增强澳洲坚果幼苗根系活力,促进其根系对N,P等矿质养分的吸收和积累,并促进澳洲坚果植株的光合作用,提高其幼苗  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号