首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以玉米品种农大108为试验材料,当玉米幼苗2叶1心时,一部分在常温下(25℃/18℃)培养,另一部分在低温下(10℃/4℃)培养,以叶片喷施0.4 mmol/L亚精胺为处理组,喷施蒸馏水为对照组,研究亚精胺在玉米幼苗冷胁迫过程中的作用。结果表明,低温胁迫抑制了幼苗生长,加剧了叶片中超氧自由基和过氧化氢的产生,提高了膜脂过氧化水平,降低了叶绿素含量。叶片喷施亚精胺,显著缓解了冷胁迫导致的生长抑制、叶绿素含量下降、活性氧积累和膜脂过氧化,提高了幼苗可溶性糖和脯氨酸含量,使抗氧化酶活性显著提高。此外,亚精胺处理提高了冷胁迫条件下幼苗热激蛋白HSP70和HSP90的mRNA和蛋白表达水平。结果表明,外源亚精胺能提高玉米幼苗的抗寒性。  相似文献   

2.
《Plant Production Science》2013,16(3):319-326
Abstract

We investigated the mechanisms of increased sensitivity to Na+ in the apical and basal regions of the rice leaf under salinity. Three-week-old plants were treated with 200 mM NaCl in hydroponic culture for 3 d. Segments 6 cm in length were obtained from the apical and basal regions of the fully expanded uppermost leaves (6th leaf blades) as old and young tissues, respectively. In the plants exposed to 200 mM NaCl, Nitro blue tetrazolium (NBT) reducing activity, and H2O2 and Malondialdehyde (MDA) contents significantly increased, accompanied by the swelling of thylakoids and destruction of thylakoid membranes in the apical regions. However, no indication of oxidative damages was observed in the basal region, even though the Na+ content in the basal region was comparable to that in the apical region. In the apical region, the capacity to scavenge H2O2 was lower than that in the basal region due to decrease in the constitutive levels of ascorbate peroxidase and guaiacol peroxidase. In addition, the activities of antioxidant enzymes except superoxide dismutase and guaiacol peroxidase decreased drastically after 48 hr of exposure to NaCl. By contrast, the activities of catalase and glutathione reductase in the basal region increased compared with those in the control, and other antioxidant enzymes did not decrease under salinity during the experimental period. These results suggest that the capacity to scavenge reactive oxygen species decreased with age, and thus the apical region of the leaf blade suffered severer damage by Na+ than the basal region.  相似文献   

3.
水分胁迫下玉米叶片光合的活性氧限制   总被引:6,自引:1,他引:5  
玉米植株叶片在水分胁迫下,活性氧代谢平衡失调。随着胁迫强度的增加,O-2和H2O2大量产生,导致叶绿素氧化破坏。光合受抑在中度至重度胁迫时,非气孔因素中活性氧伤害起主导作用。抗旱杂交种抵御活性氧伤害的能力强于干旱敏感杂交种。  相似文献   

4.
玉米耐盐基因ZmHKT1;5在烟草中的功能验证   总被引:1,自引:0,他引:1  
HKT类基因是与植物耐盐性密切相关的一类基因。在作物中HKT蛋白可通过排出Na+来维持植物体内的Na~+/K~+平衡,从而影响植物耐盐性。通过在烟草中过表达玉米ZmHKT1;5基因,验证该基因具有提高植物耐盐性的作用。结果表明,过表达ZmHKT1;5基因的T0代材料即显示出叶片耐盐能力的明显提高;T2代转基因株系种子在含盐培养基上的发芽能力明显强于野生型材料,T2代转基因株系幼苗阶段的耐盐能力也得到了明显的提高。通过比较在盐胁迫后2月龄的转基因材料和野生型材料的生理指标,发现野生型材料中MDA和H_2O_2的含量相较转基因材料发生了更为明显的上升,说明转基因材料中过表达ZmHKT1;5基因有效降低了盐胁迫引起的过氧化物积累。综合转基因验证的结果,证明ZmHKT1;5基因具有提高植物耐盐性的作用。  相似文献   

5.
Low temperature stress is a current challenge to plants that is associated with climate change. In plants, exposure to extreme temperatures is followed by the accumulation of reactive oxygen species, such as hydrogen peroxide (H2O2), leading to oxidative stress. Salicylic acid (SA) and H2O2 mediate the tolerance responses to stress and have been reported to induce freezing tolerance in potato microplants. The objectives of the present investigation were (1) to evaluate the short- and long-term effects of H2O2 and SA treatments on freezing tolerance in potato (Solanum tuberosum L.) plants grown from tubers and (2) to analyse the relationship between catalase (CAT) activity and H2O2 concentration associated with freezing tolerance responses. We observed the lowest freezing survival rates in 45-day-old potato plants (cv. Granate) compared to younger plants. The two treatments consisted of (1) the tuber-dip (long-term) treatment in which sprouted minitubers were saturated for 1 h in SA 10?5 M or H2O2 1 mM and planted in soil under greenhouse conditions and (2) the crop-spray (short-term) treatment in which plants 5–8 cm high were sprayed twice a week with SA 10?5 M or H2O2 1 mM until 45 days of age. In all treatments, 45-day-old plants were then exposed to ? 6?±?1 °C for 4 h. The survival rate was measured 15 days after freezing. CAT and H2O2 measurements were performed 1 h before and after the freezing treatment. The results showed that SA and H2O2 induced freezing tolerance in both the short- and long-term treatments. Survival was significantly higher in SA- and H2O2-treated plants than in control plants. In both the long- and short-term treatments this higher survival was associated with lower internal H2O2 concentrations after freezing compared with control plants and decreasing oxidative stress. SA and H2O2 induced different levels of CAT activity after freezing compared to that found in the control plants in the long- and the short-term treatments. These results suggest the SA and H2O2 function in independent pathways in terms of their induction of freezing tolerance that depends on the method the treatment was applied, by spraying the canopy or by immersion of the sprouted seed tuber.  相似文献   

6.
自交系"CB1208-82"是浙江大学新发现的玉米光温敏雄性不育材料,探究其雄性不育的生理生化机制,测定其不育株/可育株在雄穗不同发育时期叶片中的超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)、抗坏血酸过氧化物酶(APX)的活性和O~(2-)产生速率、丙二醛(MDA)、过氧化氢(H_2O_2)、叶绿素、可溶性糖和游离脯氨酸含量。结果表明,从整体上看,不育株叶片中的抗氧化酶活性总是低于同期可育株,并且不育株叶片中的MDA和H_2O_2含量、O~(2-)产生速率高于同期可育株,说明叶片中抗氧化酶活性低、活性氧积累多可能是引起雄性不育的原因之一。不育株叶片中的叶绿素、脯氨酸和可溶性糖的含量均低于同时期的可育株,特别是在雄穗发育初期可溶性糖含量显著低于可育株,说明光合效率低及营养物质缺乏可能会导致雄穗发育异常。  相似文献   

7.
Abstract

Abstract: The energy partitioning in photosystem II (PSII) and the susceptibility to photoinhibition in PSII were investigated in flag leaves of two rice cultivars, Shirobeniya (a traditionaljaponica) and Akenohoshi (an improved japonica-indica intermediate) grown under standard-nitrogen (N) (SN) and low-N (LN) conditions. N-deficiency resulted in significant decreases in total dry weight, net photosynthetic rate (Pn), the energy flux via carboxylation (Jc), and content of ribulose-1,5-bisphosphate carboxylase /oxygenase (Rubisco) in flag leaves in the two cultivars, and these parameters of Shirobeniya were lower than those in Akenohoshi under the LN condition. In the two cultivars, the energy flux via alternative electron flow was significantly increased by N-deficiency, which was accompanied by enhanced activity of superoxide dismutase (SOD). Although under the LN condition no cultivar differences were found in Ja and SOD, ascorbate peroxidase activity in Shirobeniya was lower than that in Akenohoshi. N-deficiency resulted in more significant increases in the susceptibility to photoinhibition (the degree of decrease in maximum quantum yield of PSII), hydrogen peroxide (H2O2) content and malondialdehyde content after exposure to high irradiance in Shirobeniya than those in Akenohoshi. These results indicated that the increased susceptibility to photoinhibition in the LN plants of Shirobeniya was mainly due to oxidative damages to chloroplasts, resulting from lower carboxylation and H2O2-scavenging capacities. Therefore, both carboxylation and H2O2-scavenging capacities could be important factors in determining the cultivar difference in the productivity of rice under LN conditions.  相似文献   

8.
核氧还蛋白(nucleoredoxin,NRX)可通过还原目标蛋白的二硫键来调控其生物活性,在植物的生长发育和抗逆境胁迫中发挥着重要作用。蛋白质二硫键异构酶(protein disulfide isomerase,PDI)、h型硫氧还蛋白(h-type thioredoxin,TRXh)和蛋白磷酸酶2A催化亚基(protein phosphatase 2A catalytic subunit,PP2Ac)是小麦核氧还蛋白TaNRX1的互作蛋白。为了明确TaNRX1互作蛋白的抗旱性功能,本研究在拟南芥中过表达了小麦 TaPDI-A TaTRXh-A TaPP2Ac-D基因,对野生型和转基因拟南芥的表型和抗旱相关生理指标进行了鉴定。结果表明,干旱胁迫处理后,转 TaPDI-A TaTRXh-A TaPP2Ac-D基因拟南芥的根长、存活率、脯氨酸含量均大于野生型,离体叶片失水率、丙二醛(MAD)含量均小于野生型。二氨基联苯胺(diaminobenzidine,DAB)对H2O2组织定位染色结果表明,干旱胁迫处理后,转 TaPDI-A TaTRXh-A TaPP2Ac-D基因拟南芥的H2O2含量均低于野生型。上述结果说明,TaNRX1的互作蛋白基因 TaPDI-A TaTRXh-A TaPP2Ac-D增强了拟南芥对于干旱胁迫的抵抗能力。本研究可为小麦抗旱育种提供候选基因和理论基础。  相似文献   

9.
Reactive oxygen species (ROS) play an important role in seed germination. Although hydrogen peroxide (H2O2), a type of ROS, enhances the germination rate of various plant seeds, little is known about the mechanism. NADPH oxidases catalyze the production of superoxide anion (O2-) that is one of the ROS and the enzymes regulate plant development. We, therefore, investigated the role of NADPH oxidases in seed germination and seedling growth in barley (Hordeum vulgare L.). The production of O2- was observed both in embryo and aleurone layers in barley seeds treated with distilled water (DW). However, it was suppressed in seeds treated with diphenylene iodonium (DPI) chloride, NADPH oxidase inhibitor. Moreover, DPI markedly delayed germination and remarkably suppressed α-amylase activity in barley seeds, indicating the importance of NADPH oxidases in germination of barley seeds. The gene expression and the enzyme activity of NADPH oxidases gradually increased after imbibition, and the enzyme activities were closely correlated with seedling growth after imbibition. Besides, DPI markedly suppressed the seedling growth. These results indicated that NADPH oxidases perform a crucial function in germination and seedling growth in barley. These facts clearly reveal that O2- produced by NADPH oxidases after imbibition regulates seed germination and seedling growth in barley.  相似文献   

10.
在非生物胁迫条件下,海藻糖可以提高植物的抗逆性,减少逆境胁迫对植物组织的伤害,维持植物的相对正常生长。为了解其具体的作用机制,以小麦为材料,通过检测高温胁迫及室温恢复过程中丙二醛(MDA)含量、过氧化氢(H2O2)含量、超氧自由基(O·-2)含量、抗氧化物质[抗坏血酸(AsA)、还原型谷胱甘肽(GSH)]含量、抗氧化酶[超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)]活性及其基因转录的表达调控,以探究外源海藻糖对小麦幼苗抗氧化系统的影响。结果表明,在高温胁迫下外源海藻糖处理主要提高了AsA含量,增强了CAT和APX活性,同时上调了Mn-SOD、Cu/ZnSOD、CAT、POD和APX的相对表达量,从而降低了MDA及H2O2的产生。而随后的室温恢复过程基本与高温胁迫的结果一致,也提高了这些酶的基因转录水平以及AsA含量,主要差别是对抗氧化酶活性的影响,即室温恢复阶段外源海藻糖主要提高了POD和APX活性。综合来看,外源海藻糖在小麦幼苗的高温胁迫及室温恢复过程中,通过促进抗氧化酶基因的上调表达,提高抗氧化酶活性和抗氧化物质含量,以酶促和非酶促两种机制共同清除高温胁迫产生的活性氧,减少氧化胁迫的损伤,维持小麦幼苗的生长。  相似文献   

11.
《Plant Production Science》2013,16(5):567-577
Abstract

The changes in chloroplast ultrastructure and the contents of chlorophyll, Na and K in response to salinity stress were investigated in leaves of maize, an NADP-malic enzyme-type C4 plant species possessing dimorphic chloroplasts. The seedlings were treated with 0, 1, 2 or 3% NaCl for three or five days under a light or dark condition. In both light and dark conditions, the dry weight of salt-treated plants decreased as NaCl concentration increased. Chlorophyll and K contents of the second leaf blade decreased as NaCl concentration increased under the light condition but not under the dark condition. Na content of the second leaf blade was significantly higher at high NaCl concentrations under both light and dark conditions. However, Na content was much lower under the dark condition than light condition. Higher concentrations (2 and 3%) of NaCl significantly increased the size of plastoglobules, decreased the number and size of starch granules and altered the chloroplast ultrastructure. Under the light condition, mesophyll cell (MC) chloroplasts appeared more sensitive to the damaging effect of salinity than the bundle sheath cell (BSC) chloroplasts. MC chloroplasts became more globular in shape and showed swollen and disorganized thylakoids and reduced thickness of grana by salinity. BSC chloroplasts were less affected by salinity than MC chloroplasts. Although chloroplast size and number and size of starch granules were reduced, there was no structural distortion in the thylakoids of BSC chloroplasts. However, the thickness of grana was increased by salinity. Under the dark condition, the chloroplast structure was less affected by salinity. Though the envelope of BSC chloroplasts was occasionally damaged, the thylakoids in both MC and BSC chloroplasts were preserved under salinity stress. The present study suggests that the chloroplast damage caused by salinity is light-dependent and MC chloroplasts are more sensitive to salinity than BSC chloroplasts.  相似文献   

12.
Mango (Mangifera indica L.) and their components are commonly used in folk medicine for many curative effects. The protective effects of different concentrations of aqueous extract of Mangifera indica L. fruit (Mango Extract) (20, 50 and 100 μg/ml) and also gallic acid (100 μM) as a pure compound in the extract were examined against oxidative stress toxicity induced by cumene hydroperoxide (CHP) in isolated rat hepatocytes. The extracts and gallic acid (100 μM) protected the hepatocyte against all oxidative stress markers including cell lysis, ROS generation, lipid peroxidation, glutathione depletion, mitochondrial membrane potential decrease, lysosomal membrane oxidative damage and cellular proteolysis. Mango Extracts (20, 50 and 100 μg/ml) were more effective than gallic acid (100 μM) in protecting hepatocytes against CHP induced lipid peroxidation. On the other hand gallic acid (100 μM) acted more effective than Mango Extracts (20, 50 and 100 μg/ml) at preventing lysosomal membrane damage. In addition H2O2 scavenging effect of all extracts were determined in hepatocytes and compared with gallic acid (100 μM). There were no significance differences (P<0.05) between all plant extracts and gallic acid (100 μM) in H2O2 scavenging activity. These results suggest a hepatoprotective role for Mango Extract against liver injury associated with oxidative stress.  相似文献   

13.
Abstract

We measured the concentration of polyols (pinitol, ononitol, and myo-inositol), which are known to have health-promoting and/or disease-preventing functions, in the common ice plant (Mesembryanthemum crystallinum L.) cultured under salt- and drought-stressed treatments. In NaCl-treated plant the concentration of pinitol/ononitol increased with increasing NaCl concentration in culture solution. The maximal concentration was 3.6 mg g-1 FW, which was foundin the shoot top, followed by small side shoots (2.1 mg g-1 FW) of mature plants grown with 400 mM NaCl for 35 ds. The drought stress also accelerated the accumulation of pinitol/ ononitol. The maximal concentration was 1.2 mg g-1 FW, which was found in the shoot top of plants under the stress for 25 ds. The myo-inositol increased in salt-stressed plants at 3 ds after the start of the treatment and then decreased with the lapse of time during stress. The concentration of polyols in the ice plant was comparable to that in the other species reported to accumulate polyols at high levels. Radical scavenging activity evaluated by DPPH assay was increased two-fold by 400 mM NaCl treatment, which was twice as high as that in the leaves of lettuce (Lactuca sativa L.). These results indicated the high potential of the ice plant as a polyol-rich high-functional food.  相似文献   

14.
利用NaHSO3处理玉米幼苗模拟水相SO2胁迫,比较分析了BT-1(抗)、N6(感)自交系经NaHSO3胁迫后细胞膜脂过氧化和几种抗氧化酶活性的动态变化。结果表明:随着水相SO2胁迫时间的延长,高感系N6叶片中丙二醛(MDA)含量和H2O2积累量比高抗系BT-1显著增加;抗、感系中抗氧化酶超氧化物歧化酶(SOD)和抗坏血酸过氧化物酶(APX)活性都有明显的增强,而过氧化氢酶(CAT)的活性呈显著下降趋势。说明H2O2的积累导致玉米叶片膜脂过氧化加剧,SOD和APX在玉米遭受SO2胁迫中起着重要的保护作用。  相似文献   

15.
16.
《Plant Production Science》2013,16(5):509-514
Abstract

High germinability of seeds and establishment of young seedlings in rice (Oryza sativa L.) are necessary for direct seeding in paddy fields. We investigated whether germinability and seedling growth were promoted by treatment of rice seeds (cv. Hitomebore) with hydrogen peroxide solution (H2O2) during the imbibition for 24 h. H2O2 treatment with 50 mM H2O2 promoted seed germination, and seedling growth (shoot length, root length and shoot fresh weight) in agar culture under a low temperature condition (18°C day/14°C night). Seedling growth was promoted by H2O2 treatment not only under the low-temperature condition but also under a normal (23°C day/18°C night) temperature condition. Furthermore, H2O2 treatment promoted seedling growth under a flooding condition in a greenhouse. These results suggest that H2O2 treatment of rice seeds during the imbibition is advantageous for direct seeding. We discussed the relation between the promotion of the seed germinability and the seedling growth under a low-temperature condition, and the expression of some genes encoding ROS scavenger enzymes induced by H2O2 treatment.  相似文献   

17.
《Plant Production Science》2013,16(3):155-159
Summary

A greenhouse experiment was conducted to compare root system development of two upland rice cultivars, IRAT 13 and Senshou, during recovery from drought stress and to identify the plant traits that confer drought resistance. From 62 days after sowing (62 DAS), drought stress was given for 6 d followed by rewatering for 14 d. Root length density (RLD) and root diameter (thickness) were measured at the end of the stress and rewatering periods. Control plants were well-watered throughout the study. Gultivar IRAT 13 had thicker roots and higher relative RLD (ratio of RLD in drought-stressed plants to that in control plants) than under drought stress, and significantly higher root growth recovery after rewatering cultivar Senshou. Related plant traits such as evapotranspiration (ET), leaf and stem dry weights and weight of senescent leaves (dead leaves) in IRAT 13 were significantly more favorable for drought resistance compared to Senshou.  相似文献   

18.
《Plant Production Science》2013,16(3):165-173
Abstract

Eleocharis retroflexa (Poir.) Urban ssp. chaetaria (Roem. & Schult.) T. Koyama, an amphibious leafless sedge, grows not only under terrestrial conditions but also under completely submerged aquatic conditions. We investigated the photosynthetic traits and structural features of the culms, which are the photosynthetic organs, in the terrestrial and submerged forms of this species and compared them with those of other amphibious species of Eleocharis which are known to change the photosynthetic modes. The culms of the terrestrial form had Kranz anatomy with well-developed Kranz (bundle sheath) cells and high levels of C4 enzyme activity typical of the NAD-malic enzyme (NAD-ME) subtype of C4 metabolism. They also had a δ 13C value typical of C4 plants, indicating that the terrestrial form fixes carbon through the C4 pathway. The culms of the submerged form had not only a Kranz-like anatomy but also revealed anatomical traits typical of leaves of submerged aquatic plants. The activities of the C4 enzymes in the submerged form were lower than those in the terrestrial form, but were still in the range typical of G4 plants, 14C pulse-12C chase experiments with the submerged form indicated that almost all of the fixed 14C was incorporated into G4 compounds, and subsequently the raioactivity was transferred into C3 compounds and sucrose. The submerged form showed no diurnal fluctuation in malate level. These data demonstrate that a C4 metabolism is operative even in the submerged form. This unique amphibious C4 plant provides an intriguing example of the physiological and ecological adaptability of C4plants.  相似文献   

19.
NaCl胁迫对甜、爆、糯玉米幼苗生长及活性氧代谢的影响   总被引:1,自引:0,他引:1  
以3种不同的特用玉米(沈糯6号、沈爆3号、沈甜6号)为试材,设置5个梯度的NaCl盐溶液(0、50、100、150、200mmol/L)进行盐胁迫处理,测定玉米幼苗的生长量、干物质积累量、质膜透性、活性氧代谢等的变化。结果表明,随着NaCl盐浓度的增加,植株生长量明显降低,单株鲜重、干重均明显降低,干物质积累减少,电导率不同程度地增大,丙二醛含量逐渐升高;超氧阴离子(O2-)产生速率在各处理间差异显著,随着处理浓度的增大,O2-产生速率也显著增加;超氧化物歧化酶(SOD)活性在3个品种间变化不同;过氧化物酶活性(POD)在沈糯6号和沈甜6号间表现为逐渐上升,而沈爆3号先上升后下降;过氧化氢酶(CAT)活性在3个品种间均在150mmol/L时达到最大。从总体上看,耐盐能力相对较强的是沈糯6号,较弱的是沈甜6号。  相似文献   

20.
外源亚精胺提高玉米抗芽涝的研究   总被引:2,自引:1,他引:1  
张健  王考艳 《玉米科学》2011,19(3):87-80
以农大108为材料,研究外源亚精胺浸种对玉米幼苗生长和生理特性的影响。结果表明,外源亚精胺能减少芽涝逆境下玉米幼苗黄叶数和死苗率,延缓叶绿素含量的下降,维持根细胞膜透性的稳定,减少芽涝逆境下超氧阴离子(O2-).产生速率和丙二醛(MDA)的积累。外源亚精胺浸种能提高玉米的抗芽涝能力,适宜浓度为0.4mmol/L。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号