首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 76 毫秒
1.
《Plant Production Science》2013,16(1):104-107
Abstract

We analyzed the yield characters of field-grown transgenic potato plants (Solanum tuberosum) carrying a maize gene for sucrose-phosphate synthase (SPS), the key enzyme in sucrose synthesis. The SPS activity in the leaves of transgenic plants (line Ag1203) was 2 times that of the control (cv. May Queen). There was no difference in the photosynthetic CO2 uptake rates between Ag1203 and May Queen plants, and the leaf starch content of Ag1203 was lower. These observations indicate that the introduction of a foreign SPS gene improved the supply of photosynthate from source (leaves) to sink (tubers). Additionally, leaf senescence of the transgenic potato plants was delayed relative to that of May Queen. The average tuber weight and total yield of Ag1203 plants were at least 20% higher, and the tuber sucrose content, which is related to eating quality, was also higher. Increased translocation of photosynthate and longer period of photosynthetic activity in the leaves may have increased the yield of Ag1203. These results suggest that introduction of the SPS gene improved the yield characters and quality of potato tubers under field conditions.  相似文献   

2.
应用RNAi技术创制了花粉彻底败育的玉米雄性不育株系,为玉米杂交制种提供雄性不育的基础材料。构建玉米MS26 RNAi植物表达载体,其中,以玉米综31未成熟的幼胚组织为受体,利用农杆菌介导法将目的基因定向转入到玉米中,以甘露糖为选择剂进行筛选获得能够稳定遗传的转基因植株。通过Taqman探针法进行分子检测,获得18株单拷贝T0代转基因植株,碘-碘化钾染色分析结果显示,12株完全不育。在田间试验中,5个转化事件的所有T1代转基因植株在散粉期都表现雄性不育,且除此之外与野生型玉米对照植株之间没有其他形态不同。实时定量PCR结果显示,MS26 RNAi转基因玉米植株中MS26基因的表达量显著下调,由此可推断,MS26 RNAiT-DNA已经整合到玉米基因组中,并能引起完全的雄性不育。  相似文献   

3.
Abstract

Mechanism(s) of gene transformation and integration in rice (Oryza sauva L.) is/are not currently well understood. This research was conducted to determine whether a transgene is inserted into the rice genome specifically or randomly. Seven homozygous transgenic Taipei (T) 309 and Nipponbare plants with the bar transgene from different rice transformation events were crossed. The segregation of F2 and F3 populations from a total of 21 crosses was studied in a greenhouse and field to determine if the genes were allelic or non-allelic. Five genomic locations appeared to be involved among the seven transgenic plants. An additional 20 homozygous transgenic T309 plants, with the bar transgene from different transformation events, were crossed reciprocally with the previous seven plants. One hundred and fifteen crosses made during 1999 and 2000 were analyzed for allelism. In some combinations, the genes were allelic, but most of them were non-allelic, with two or more pairs of genes being expressed. Twenty loci among the 27 transgenic plants were involved and some plants had several inserted genes expressed. Genes in nine out of 27 transformed plants were allelic. We concluded that the functional foreign (bar) gene was restrictively/preferentially inserted into the rice genome in some cases and was not completely randomly inserted and expressed in the rice genome. If the mechanism(s) for preferential insertion were identified, rice researchers could possibly control insertion sites of transgenes to optimize gene expression.  相似文献   

4.
 通过RNA干涉对一个水稻锌指蛋白基因OsZRL的功能进行分析。半定量RT PCR、定量PCR分析结果显示,转基因植株OsZRL基因表达水平显著下调。与野生型相比,OsZRL表达水平下调的转基因株系叶片变大,根系、茎秆更为发达,表明OsZRL的下调对水稻植株的生长有促进作用。OsZRL基因的表达模式和转基因幼苗表型显示OsZRL参与赤霉素、脱落酸信号途径。因而推测锌指蛋白OsZRL是受赤霉素、脱落酸调节的水稻生长发育负调控因子。  相似文献   

5.
《Plant Production Science》2013,16(3):172-177
Abstract

We obtained transgenic rice (Oryza sativa L. cv. Nipponbare) plants with the gene for maize sucrose-phosphate synthase (EC 2.4.1.14, SPS). Some of the transgenic plants over-expressed maize SPS (over-expressing plants) and some had reduced levels of native SPS protein (co-suppressed plants). There was a positive correlation between the amounts of maize SPS protein and SPS activities. However, apparent Km values for uridine diphosphoglucose (UDPG) were higher in over-expressing plants than in control rice plants. These results suggest that overproduced maize SPS protein was not fully activated. The sucrose contents did not differ significantly between control and over-expressing rice plants, but they were lower in co-suppressed plants than in control plants. The starch contents were negatively and the sucrose/starch ratios were positively correlated with SPS activities. Thus, carbon partitioning in the transgenic rice was changed, even though rice is predominantly a sucrose-former.  相似文献   

6.
采用ZmCol3基因RNAi载体构建、农杆菌介导玉米遗传转化、转基因材料开花期表型鉴定等研究方法,评估抑制ZmCol3基因表达对玉米开花期的影响。转基因玉米基因组PCR结果证实,人工合成RNAi片段已成功整合到玉米基因组中。qRT-PCR结果表明,在不同转基因玉米株系中ZmCol3基因表达受到不同程度的抑制。温室转基因玉米开花期相关性状调查结果表明,抑制ZmCol3表达,可以将玉米抽雄、散粉和吐丝时间提前2~3 d。研究结果证实,ZmCol3具有调控开花期的生物学功能,抑制该基因表达进而缩短玉米开花期可以作为行之有效的方法应用到玉米熟期改良研究中。  相似文献   

7.
以转来自耐盐植物异苞滨藜的甜菜碱醛脱氢酶基因(BADH)玉米T8代株系BZ-136及受体对照自交系郑58(耐盐)为试材,采用盆栽种植方法,分析转基因植株中外源基因的表达情况,检测耐盐相关生理指标。结果表明,转基因株系BZ-136中的BADH酶活性及甜菜碱含量显著高于受体对照,随着盐胁迫时间的延长,其表达量先增加后减少,在胁迫7 d时分别达到了最大值。转基因株系幼苗株高和干重从盐胁迫第3天开始显著高于对照,鲜重和含水量在胁迫第5天和第7天时转基因株系显著高于对照;转基因株系根总体积显著高于对照,直径和根尖数在胁迫第5天时显著高于对照;转基因株系电导率和丙二醛含量均低于对照,分别在胁迫第3天和第7天开始达显著差异,叶绿素含量高于受体对照,从第3天开始二者差异达显著水平。由于外源BADH基因的表达显著提高了基因株系的耐盐性。  相似文献   

8.
9.
10.
为了验证小麦籽粒大小相关基因TaCYP78A5在小麦籽粒发育中的功能,对pINO启动子驱动的TaCYP78A5基因过表达的转基因小麦后代株系进行了鉴定,检测了T_0代植株目标基因拷贝数,定量分析了7个T_1代阳性植株的目标基因表达,并对其籽粒大小进行了统计。结果表明,利用Bar试纸条和目标基因特异PCR检测相结合的方法对21株转基因T_0代再生苗进行检测,共鉴定出14个阳性植株,除2个植株的目标基因拷贝数为3和1个植株为7外,其余11个T_0代转基因植株目标基因插入拷贝数均为1~2个,其中有6个单拷贝植株。与野生型相比,7个T_1代阳性植株目标基因表达量均极显著增加,粒厚和粒宽均有不同程度增加,粒重极显著增加。  相似文献   

11.

Background

The type II clustered, regularly interspaced, short palindromic repeat (CRISPR)/ CRISPR-associated protein 9 (Cas9) system is a novel molecular tool for site-specific genome modification. The CRISPR-Cas9 system was recently introduced into plants by transient or stable transformation.

Findings

Here, we report gene targeting in rice via the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system. Three 20-nt CRISPR RNAs were designed to pair with diverse sites followed by the protospacer adjacent motif (PAM) of the rice herbicide resistance gene BEL. After integrating the single-guide RNA (sgRNA) and Cas9 cassette in a single binary vector, transgenic rice plants harboring sgRNA:Cas9 were generated by A. tumefaciens-mediated stable transformation. By analyzing the targeting site on the genome of corresponding transgenic plants, the mutations were determined. The mutagenesis efficiency was varied from ~2% to ~16%. Furthermore, phenotypic analysis revealed that the biallelic mutated transgenic plant was sensitive to bentazon.

Conclusions

Our results indicate that the agricultural trait could be purposely modified by sgRNA:Cas9-induced gene targeting. CRISPR-Cas9 system could be exploited as a powerful tool for trait improvements in crop breeding.  相似文献   

12.
《Plant Production Science》2013,16(3):341-344
Abstract

In order to improve rice dough functionality, we co-transformed the Glu-1Dx5 gene encoding a high molecular weight (HMW) glutenin subunit Dx5 from bread wheat, Triticum aestivum L. and either bar gene conferring resistance to herbicide bialaphos or hpt gene conferring resistance to hygromycin B to rice callus cells of cv. Fatmawati. We molecularly characterized 9 plants regenerated from bialaphos-containing medium and 63 plants from hygromycin-containing medium. The Glu-1Dx5 gene was detected by PCR analysis in 15 transgenic T0 plants. Further analysis of T1 and T2 plants revealed that some transgenic plants carried the Glu-1Dx5 gene. Analysis of the endosperm extracts of T2 plants by SDS-PAGE revealed the existence of a protein similar in size to the wheat Glu-1Dx5 gene product, suggesting successful expression of the transgene. These plants will be incorporated into breeding program for further assessment of their benefits.  相似文献   

13.
【Objective】Gelatinization temperature (GT) is one of the key physicochemical properties in rice quality, which is mainly regulated by ALK (SSII-3) gene. In general, there are two ALK alleles among indica cultivars. To detect their functional differentiation in indica rice,【Method】Zhenshan 97B (a high GT variety carrying ALKc allele) and Longtefu B (a low GT variety carrying ALKb allele), were used as receptors for the generation of transgenic rice with down-regulation of ALK expression by RNA interference (RNAi).【Result】Down-regulation of ALK gene significantly decreased the GT of the transgenic lines. Due to the difference of original GT between the two receptors, the GT of transgenic rice lines derived from Zhenshan 97B (a high GT variety) decreased significantly, but it is slightly decreased in transgenic plants derived from Longtefu B (a low GT variety). The differential scanning calorimetry (DSC) results showed that the initial temperature of RNAi transgenic rice was significantly lower than the corresponding control and the transgenic lines were gelatinized in advance. The peak value of GT(Tp) in RNAi rice grains was significantly lower than that of the control under Zhenshan 97B background. However, Tp of RNAi rice grains under Longtefu B background was significantly lower than the control to a lesser extent. Also, down-regulation of ALK expression had a significant effect on rice physical-chemical characteristics. An increase of apparent amylose content in RNAi transgenic plants was detected due to the decreased expression of ALK gene. Besides, the pasting properties showed that down-regulation of ALK gene had obvious effects on peak viscosity and breakdown value, improving the taste of the transgenic rice. The gel consistency was significantly different among Zhenshan 97B RNAi lines and their parents, but no difference was found in Longtefu-derived transgenic lines.【Conclusion】RNA interference to ALK allele expression had a significant effect on rice quality, especially the gelatinization characters. Down-regulated expression level of ALKc allele would cause larger variation of physical-chemical characteristics between transgenic rice and their parent than that of ALKb allele.  相似文献   

14.
【目的】稻米糊化温度是影响稻米品质的重要指标,该性状受主效基因ALK/SSII-3调控,ALK基因具有多个复等位基因,本研究旨在通过RNAi技术明确籼稻亚种中两个不同ALK等位基因的效应。【方法】以分别含有ALKc和ALKb等位基因的高糊化温度品种珍汕97B和低糊化温度品种龙特甫B为试验材料,使用RNAi技术构建ALK表达下调的转基因株系,通过对其稻米理化品质的测定来明确不同等位基因表达下调对稻米品质的影响。【结果】对不同转基因水稻目的基因的表达分析显示本研究中转基因株系的ALK基因受到了不同程度的干扰。重点分析了不同RNAi株系稻米的糊化温度,结果表明珍汕97B的RNAi转基因稻米的糊化温度极显著降低,而在低糊化温度品种龙特甫B背景中下调表达ALK基因后对糊化温度的影响较小;转基因株系与未转化亲本相比,米粉的起始糊化温度都显著降低,表现为提前糊化;在珍汕97B背景下干扰系的峰值温度与未转化亲本相比极显著降低,而在龙特甫背景下米粉的峰值温度与未转化对照相比显著降低。对不同转基因系的理化品质分析表明,ALK下调表达植株稻米的表观直链淀粉含量显著增加,下调表达ALK后会引起米粉峰值黏度和崩解值的改变。高糊化温度品种珍汕97B干扰系与未转化对照相比胶稠度呈现极显著性差异,而低糊化温度品种龙特甫干扰系的胶稠度与未转化对照相比没有差异。【结论】下调表达ALK等位基因对稻米理化品质产生显著影响,并且干扰不同等位基因的效应存在明显差异,即籼稻中的两个ALK等位基因的效应存在显著差异。  相似文献   

15.
Abstract

Ornamental plant transformation has advanced considerably in the last decade. Now over 40 genera have been reported to be transformed. The primary methods of creating transgenic ornamental species have been Agrobacterium tumefaciens-medmtedtransformation and microprojectile bombardment. The vast majority of reports indicate the use of Agrobacteriummedmtedtransformation employing binary vectors and virhelper plasmids or supervirulence genes. Many reports are of transformation with the uidA reporter gene driven by the 35S cauliflower mosaic virus promoter, but recent efforts are now focusing on trait genes including disease resistance, flower color, flower longevity, floral scent and plant habit. Greater use of tissue specific and inducible promoters promises to enhance the functionality and usefulness of introduced trait genes. While technical challenges for production of transgenic ornamental plants still exist, the greatest challenges to realizing the potential benefits of transgenic ornamental plants are questionable public acceptance of transgenic plants and the prohibitive costs of generating environmental impact data needed to gain regulatory clearance.  相似文献   

16.
RNA干涉下调RACK1基因表达增强水稻抗旱能力   总被引:1,自引:0,他引:1  
 RACK1是一种多功能支架蛋白,广泛参与植物生长发育过程的调节。利用RNA干涉技术抑制水稻RACK1基因的表达,分析了RACK1基因在响应干旱胁迫中的功能。实时定量PCR对获得的转基因植株的RACK1基因表达分析结果表明,转基因水稻RACK1基因表达受抑制程度达50%左右。与非转基因水稻(对照)相比,转基因水稻耐干旱能力显著强于对照,其膜的过氧化酶和丙二醛的产生显著低于对照,而超氧化物歧化酶活性极显著高于对照。表明RACK1蛋白质调节水稻对干旱胁迫的耐性,并且这种调节在很大程度上与植株体内的氧化还原系统有关。  相似文献   

17.
以玉米优良自交系郑58的子粒为材料,切取无菌苗的第1个茎节,上下各保留0.5 cm,接种于诱导培养基(1/2MS+0.3 mg/L NAA)培养,直接获得再生苗。腺苷二磷酸葡萄糖焦磷酸化酶(AGPase)是玉米淀粉合成过程中的一个限速酶,AGPase酶大亚基(AGPL)是酶的调节中心,在玉米胞质中过表达能够提高玉米淀粉含量。利用农杆菌介导法将玉米AGPL基因导入郑58的茎节体系,转化后的茎节在含有3mg/L双丙氨膦的1/2 MS培养基上进行筛选培养,对筛选后的抗性苗进行PCR和PCR-Southern blot检测,获得了4株转基因植株。  相似文献   

18.
通过分子生物学技术把酸性蛋白酶pepB基因转入受体玉米自交系基因组中,培育转酸性蛋白酶pepB基因玉米新品系。以耐盐基因badh作为筛选标记性基因,经过抗性筛选,对T1、T2、T3代转基因植株进行PCR检测,得到14个T1代转基因阳性植株,32个T2代转基因阳性植株和27个T3代转基因阳性植株。Southern杂交结果表明,外源酸性蛋白酶基因已经整合进玉米基因组中。RT-PCR结果表明,酸性蛋白酶基因在受体玉米中获得表达,获得外源酸性蛋白酶pepB基因遗传表达的T3代转基因玉米株系。通过对T2、T3代转基因玉米各品系农艺性状的分析结果表明,转基因玉米各品系在株高、茎粗、穗长等农艺性状上与受体亲本没有差异,但生育期均有不同程度的缩短。  相似文献   

19.
为深入探讨小麦再生分子机制、给建立高效的小麦遗传转化受体系统奠定基础,通过电子拼接、RT-PCR及RACE等方法在小麦品种郑麦7698中分离到一个与小麦愈伤组织再生相关的候选基因TaTCP-1A。序列分析表明,该基因的cDNA序列全长为2 163bp,其中包含了一个1 623bp的开放阅读框,编码540个氨基酸。qRT-PCR结果表明,该基因具有组织表达特异性,在愈伤组织中表达量最高;在愈伤组织形成阶段,随诱导时间的延长,其表达量逐渐上升,当诱导11d时表达量达到峰值,随后呈下降趋势;此外,TaTCP-1A基因在胚性愈伤组织中的表达量高于非胚性愈伤组织。基因沉默结果表明,转TaTCP-1A RNAi小麦植株的再生率比对照降低了85.09%,这一结果初步证明该基因对小麦愈伤组织再生有一定的促进作用。  相似文献   

20.
The receptor for activated C-kinase 1 (RACK1) is a highly conserved scaffold protein with versatile functions, and plays important roles in the regulation of plant growth and development. Transgenic rice plants, in which the expression of RACK1 gene was inhibited by RNA interference (RNAi), were studied to elucidate the possible functions of RACK1 in responses to drought stress in rice. Real-time PCR analysis showed that the expression of RACK1 in transgenic rice plants was inhibited by more than 50%. The tolerance to drought stress of the transgenic rice plants was higher as compared with the non-transgenic rice plants. The peroxidation of membrane and the production of malondialdehyde were significantly lower, and the superoxide dismutase activity in transgenic rice plants was significantly higher than those in non-trangenic rice plants. It is suggested that RACK1 negatively regulated the redox system-related tolerance to drought stress of rice plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号