首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Plant Production Science》2013,16(3):324-335
Abstract

Soil water regimes under field conditions inevitably tend to fluctuate ranging from drought to waterlogging. Genotypes that adapt better to such changing hydrologic conditions are assumed to have the ability to maintain root system development under such conditions. This study aimed to evaluate the responses of root system development based on lateral root production to transient moisture stresses, and the contribution of the elongation of seminal and nodal root axes and their lateral, root branching, and aerenchyma development in the seminal root axis, to root system development. The seedlings of two aerobic genotypes (UPLRi7 and NSICRc9) and one irrigated-lowland genotype (PSBRc82), and two parental genotypes (Nipponbare and Kasalath) of chromosome segment substitution lines (CSSLs) were grown by hydroponics. The seedlings were exposed to a drought condition by adding polyethylene glycol to the solution for 7 days and then to an O2-deficient stagnant condition for 7 days (drought-to-stagnant condition), or to reverse successive conditions (stagnant-to-drought condition). Under both conditions, the aerobic genotypes showed greater ability to produce lateral roots than the irrigated-lowland genotype. Under the transient stagnant-to-drought condition, the root traits that contributed to greater lateral root production in the aerobic genotypes were faster seminal root elongation that was closely associated with branching of lateral roots, and greater nodal root production. Under transient drought to stagnant condition; these were faster seminal root elongation mediated by higher aerenchyma formation, and greater nodal root production. Kasalath showed much greater ability to produce lateral roots under both transient moisture stress conditions than Nipponbare. This indicates the potential utility of the CSSLs for precise identification of desirable root traits with less genetic confounding.  相似文献   

2.
《Plant Production Science》2013,16(3):205-216
Abstract

Enhanced aerenchyma development in rice under transient drought-to-waterlogged (TD-W) stress promotes root system development by promoting lateral root production. This study analyzed the quantitative trait loci (QTLs) associated with the plasticity in aerenchyma development under TD-W stress. A mapping population of 60 F2 genotypes of chromosome segment substituted lines (CSSL) derived from CSSL47 and Nipponbare crosses were grown in rootboxes and evaluated for shoot and root growth, and aerenchyma development (expressed as root porosity). The TD-W stress was imposed starting with water saturated soil condition at sowing and then to progressive drought from 0 to 21 days after sowing (DAS) prior to exposure to sudden waterlogging for another 17 days (21 to 38 DAS). We performed simple and composite interval mapping to identify QTLs for aerenchyma development. QTL associated with aerenchyma development was mapped on the short-arm of chromosome 12 and designated as qAER-12. The effect of qAER-12 on the plasticity in aerenchyma development under TD-W was significantly associated with the increase in lateral root elongation and branching. This resulted in greater root system development as expressed in total root length and consequently contributed to higher dry matter production. This qAER-12 is probably the first reported QTL associated with aerenchyma development in rice under TD-W and is a useful trait for the improvement of the adaptive capability under fluctuating soil moisture conditions.  相似文献   

3.
In rainfed lowland rice ecosystem, rice plants are often exposed to alternating recurrences of waterlogging and drought due to erratic rainfall. Such soil moisture fluctuation (SMF) which is completely different from simple or progressive drought could be stressful for plant growth, thereby causing reduction in yield. Root plasticity is one of the key traits that play important roles for plant adaptation under such conditions. This study aimed to evaluate root plasticity expression and its functional roles in dry matter production and yield under SMF using Nipponbare, KDML 105 and three backcross inbred lines (BILs) and to identify QTL(s) associated with root traits in response to SMF at two growth stages using Nipponbare/KDML105 F2 plants. A BIL, G3-3 showed higher shoot dry matter production and yield than Nipponbare due to its greater ability to maintain stomatal conductance concomitant with greater root system development caused by promoted production of nodal and lateral roots under SMF. QTLs were identified for total nodal root length, total lateral root length, total root length, number of nodal roots, and branching index under SMF at vegetative and reproductive stages. The QTLs detected at vegetative and reproductive stages were different. We discuss here that relationship between root system of G3-3 and the detected QTLs. Therefore, G3-3 and the identified QTLs could be useful genetic materials in breeding program for improving the adaptation of rice plants in target rainfed lowland areas.  相似文献   

4.
《Plant Production Science》2013,16(3):335-343
Abstract

Developmental plasticity in lateral roots may be one of the key traits for the growth of rice plants under soil moisture fluctuations. We aimed to examine responses in seminal root system development to changing soil moisture for diverse rice cultivars. Special attention was paid to the two different types of lateral roots ; the generally long, thick L type capable of branching into higher orders, and the non-branching S type. Plants were grown in half-split polyvinyl chloride tubes fixed with transparent acrylic plate for root observation under glasshouse conditions. When plants were grown first under drought conditions, then rewatered, the seminal root system development in terms of dry weight and total length was promoted as compared with plants grown under continuously well-watered conditions in IR AT 109 and Dular, drought tolerant cultivars. Promoted production of L type lateral roots mainly contributed to the development of the longer seminal root system. Plants exposed to soil submergence before they were grown under drought conditions did not show such promoted responses in these two cultivars. However, in KDML 105, a drought tolerant cultivar, the production of especially L type laterals was substantially promoted under drought and rewatered conditions. Honenwase was characterized by the shallow root system and great reduction in root system length when soil moisture becomes limited. These facts show that genotypic variations exist in the plastic response of rice seminal root system and that the L type lateral root plays a key role in manifestation of this plasticity.  相似文献   

5.
《Plant Production Science》2013,16(3):183-190
Abstract

We investigated whether drought resistant rice cultivars exhibit higher dry-matter production under wet and dry compacted soil conditions in the vegetative stage and determined the dominant factors governing resistance to soil compaction. Three rice cultivars, a drought-sensitive Nipponbare, and drought-resistant Senshou and Dular, were grown in pots at four soil bulk densities (SBD) ranging from 1300 to 1600 dry soil kg m?3. Root and shoot dry matter productions was slightly smaller in Nipponbare over the 29 days after sowing under irrigated conditions than in the other cultivars at all SBDs. Senshou and Dular also maintained a higher dry matter production, both in relative and absolute values, than Nipponbare under the condition of withheld irrigation from days 29 — 39 after sowing. The higher stomatal conductance and leaf water potential of these two cultivars were supported by a larger root system which was mostly accompanied by lower top-root ratios in the irrigated and compacted soils. The higher plant growth rate under the non-irrigated condition might have been a result of both the higher water absorption rate and water use efficiency, which in turn were supported by the larger root biomass. We conclude that the ability of rice to rapidly develop a root system in the early vegetative phase under compacted soils facilitates plant production under subsequent soil desiccated conditions.  相似文献   

6.
《Plant Production Science》2013,16(3):164-173
Abstract

Morphological adaptation of roots is critical for plants to survive under waterlogging. In this study, we evaluated the capacity of wheat to form aerenchyma in seminal roots in combination with the growth angle of the roots. We used five Japanese cultivars from the waterlogging-prone Kanto-Kyushu region in Japan, and a non-Japanese cultivar, Bobwhite for comparison. Seedlings in pot culture were waterlogged at a 3-cm depth for 7 days. The first adverse effect of waterlogging on plant growth was a significant reduction of root dry mass. The reduction rate varied with the cultivar, and it was 19.2% in cv. Shiroganekomugi and 40.0% in cv. Norin 61. Root aerenchyma was initially observed on the 2nd day of waterlogging and developed until the 7th day, in all 6 cultivars. Quantitative analysis of the aerenchyma development revealed no significant difference in radial distribution among the cultivars, whereas a slight difference was found in the axial distribution. As a consequence, the heavier root weight of Shiroganekomugi was not related to either the radial or axial developing capacity of aerenchyma but might be due to the effect of its shallow root angle in the soil. These results suggest that the capacity to form aerenchyma in the seminal root is not sufficient for expression of waterlogging tolerance in the Japanese wheat cultivars.  相似文献   

7.

Background

Root architectural and anatomical phenotypes are important for adaptation to drought. Many rice-growing regions face increasing water scarcity. This study describes drought responses of 11 Egyptian rice cultivars with emphasis on plastic root responses that may enhance drought adaptation.

Results

Eleven Egyptian rice cultivars were phenotyped for root architectural and anatomical traits after 6 weeks growth in soil mesocosms under well-watered conditions. Four of these cultivars were more intensively phenotyped under progressive drought stress in mesocosms, using a system where more moisture was available at depth than near the surface. In response to drought stress, all cultivars significantly reduced nodal root number while increasing large lateral root branching density and total lateral root length in the deepest portions of the mesocosm, where moisture was available. Nodal root cross-sectional area, but not stele area, was reduced by drought stress, especially in the basal segments of the root, and the number of late metaxylem vessels was reduced in only one cultivar. Alterations in deposition of lignin were detected by UV illumination from laser ablation tomography, enhanced by digital staining, and confirmed with standard histochemical methods. In well-watered plants, the sclerenchyma and endodermis were heavily lignified, and lignin was also visible throughout the epidermis and cortex. Under drought stress, very little lignin was detected in the outer cell layers and none in the cortex of nodal roots, but lignin deposition was enhanced in the stele. Root anatomical phenes, including cross-section area and metaxylem vessel number and lignin deposition varied dramatically along large lateral root axes under drought stress, with increasing diameter and less lignification of the stele in successive samples taken from the base to the root apex.

Conclusions

Root architectural and anatomical traits varied significantly among a set of Egyptian cultivars. Most traits were plastic, i.e. changed significantly with drought treatment, and, in many cases, plasticity was cultivar-dependent. These phenotypic alterations may function to enhance water uptake efficiency. Increased large lateral root branching in the deep soil should maintain water acquisition, while water transport during drought should be secured with a more extensively lignified stele.
  相似文献   

8.
《Plant Production Science》2013,16(4):307-317
Abstract

Root traits that can contribute to drought resistance have not been clearly indentified. We examined the role of root system development in enhancing water uptake and contribution to dry matter production by using the root box-pinboard method, with which quantitative assessment of root system development and the water uptake of root are possible. Chromosome segment substitution lines CSSL45 and CSSL50, and the recurrent parent Nipponbare were grown under continuously waterlogged conditions (control), and various intensities of water deficit in root boxes. There was no significant difference among the genotypes in shoot growth and root development, while CSSL45 and CSSL50 showed greater shoot dry weight than Nipponbare under water deficit conditions. This was due to their abilities to promote root system development as compared with Nipponbare, which facilitated greater water extraction than Nipponbare, especially under the mild water deficit condition of 20–25% w/w soil moisture contents. Furthermore, the increased root length density did not exceed the estimated critical value for water uptake, which indicates that plastic root system development was functionally effective and efficient for the enhancement of water uptake under mild water deficit conditions.  相似文献   

9.
《Plant Production Science》2013,16(2):122-130
Abstract

The effects of the amount of nitrogen fertilizer on the starch metabolism of rice leaf sheath during the heading period in the japonica rice variety, cv. Nipponbare were compared with those in the indica varieties, cv. Tetep and Johna. The rice plants were grown under a low- (similar to the standard nitrogen level in paddy field) or high-nitrogen condition, and the starch content of the second leaf sheaths below the flag leaf was analyzed from the second leaf stage (growth stage 1) until 21 days after the heading (growth stage 7). The starch content of the plants grown under the high-nitrogen condition at the heading stage (growth stage 4) was lower than that under a low-nitrogen condition in all the varieties. The decrease in the activity of starch branching enzyme (SBE) was considered to be important for the repression of starch accumulation under a high-nitrogen condition. Under the high-nitrogen condition, Nipponbare accumulated more starch in the second leaf sheath than indica varieties at the heading stage. However, the phenomenon could not be accounted for by the activities of AGPase and SBE. Semi-quantitative RT-PCR analysis suggested that the lower activities of SBE in the second leaf sheath under the high-nitrogen condition may be due to, at least in part, the decrease in the expression level of RBE4.  相似文献   

10.
ABSTRACT

This study evaluated the effect of three N fertilization levels 60 (low), 120 (medium), and 180 (high) kg N ha?1 and soil moisture content gradients created by a line-source sprinkler on the expression of plasticity in lateral root branching and dry matter production (DMP) of upland new rice for Africa (NERICA) 1 and 4. There were no significant differences in DMP between NERICA 1 and 4 under well-watered, mild drought, and severe drought conditions regardless of N level. In contrast, under moderate drought (12–21% v/v of soil moisture content [SMC] in 2011 and 16–24% v/v of SMC in 2012), NERICA 1 had significantly higher shoot dry weight, total root length (TRL), lateral root length, and branching index than NERICA 4 at medium and high N; however, there was no significant difference between the two NERICAs in DMP at low N. TRL of NERICA 1 was significantly higher under moderate drought than well-watered conditions, but only with medium and high N. Regardless of N level, moderate drought did not enhance NERICA 4’s root system. Thus, NERICA 1’s root system exhibited plastic development, promoting lateral root branching at medium and high N. These morphological changes were associated with the greater DMP in NERICA 1 than NERICA 4 under moderate drought, whereas the lack of such plasticity at low N meant genotypic differences in DMP were obscured. Our findings implied that N application can improve upland NERICA productivity under moderate drought conditions, but differences in variety and field conditions may influence efficacy.  相似文献   

11.
《Plant Production Science》2013,16(3):155-159
Summary

A greenhouse experiment was conducted to compare root system development of two upland rice cultivars, IRAT 13 and Senshou, during recovery from drought stress and to identify the plant traits that confer drought resistance. From 62 days after sowing (62 DAS), drought stress was given for 6 d followed by rewatering for 14 d. Root length density (RLD) and root diameter (thickness) were measured at the end of the stress and rewatering periods. Control plants were well-watered throughout the study. Gultivar IRAT 13 had thicker roots and higher relative RLD (ratio of RLD in drought-stressed plants to that in control plants) than under drought stress, and significantly higher root growth recovery after rewatering cultivar Senshou. Related plant traits such as evapotranspiration (ET), leaf and stem dry weights and weight of senescent leaves (dead leaves) in IRAT 13 were significantly more favorable for drought resistance compared to Senshou.  相似文献   

12.
《Plant Production Science》2013,16(4):462-474
Abstract

Soil moisture condition is a major factor that affects root system development and thus, crop production. This study aimed to evaluate genotypic variations of cassava in root system structures and their responses to different soil moisture conditions by examining various root traits including production and elongation of adventitious roots and their laterals. Four pot experiments were conducted and different genotypes of various backgrounds were grown under well-watered, droughted, droughted to rewatered conditions. One field experiment was also conducted with selected genotypes till maturity. Results showed that substantial genotypic variations exist in root system structure, and the effects of the soil moistures were significant for most of the root traits. The principal component analysis (PCA) showed that the lateral root development mainly accounted for the variations in root system structure regardless of soil moisture conditions. The PCA on the differences between droughted and well-watered control, and droughted-rewatered and the control further indicated that the branching ability of adventitious roots was mainly responsible for the root system responses to drought as well as rewatering. Genotypic ranking in root system responses to drought was almost consistent among the pots and field experiments. Genotypicvariations in rooting depth were relatively small while those in horizontal spread were apparent in the field experiment.The ability to maintain adventitious root elongation under drought, resulting in relatively large horizontal spread of root system and to recover sharply from drought by lateral root branching may be related to good growth and yield performance under field.  相似文献   

13.
《Plant Production Science》2013,16(4):453-461
Abstract

Effects of NaCl on the growth, ion content, root cap structure and Casparian band development were examined in four rice (Oryza sativa L.) cultivars with different salt resistance (salt-sensitive indica-type IR 24 and japonica-type Nipponbare and salt-resistant indica-type Nona Bokra and Pokkali). Experiments were conducted to find the differences in salinity resistance during early seedling and developed seedling stages among the cultivars. For salinity treatment, sodium chloride (NaCl) was added to nutrient solution at concentrations of 0, 25 and 50 mM for 7 days from germination to the 7th day (early seedling stage) or from the 7th day to 14th day (developed seedling stage). Growth inhibition by salinity was more prominent in the early seedling stage than in the developed seedling stage. Based on the growth, the order of the sensitivity was IR24 > Nipponbare > Nona Bokra > Pokkali. The growth of NaCl-treated rice cultivars relative to control was significantly and negatively correlated with the Na+ content and Na+/K+ ratio in roots and shoots in both stages. Scanning electron microscopic observation revealed that the root cap tissues proliferated and extended to the basal part of the root tip by salinity. The length of root cap was, however, reduced by 50 mM NaCl in sensitive cultivars due to peeling off. An endodermal Casparian band was formed in the basal region of the root tip. Development of the Casparian band was more prominent in sensitive cultivars than in tolerant cultivars. Root cap proliferation might be related to NaCl resistance in rice seedlings, but the Casparian band may not function efficiently in Na+ exclusion. Essentially the present results suggest that exclusion of Na+ from roots plays a critical role in expression of Na+ resistance in rice seedlings and the root cap is important for Na+ exclusion.  相似文献   

14.
《Plant Production Science》2013,16(4):451-459
Abstract

Soil compaction often creates combined physical stresses of drought, anaerobiosis, and mechanical impedance in field soil. This paper aims to analyze the effect of combined and independent soil physical stresses on crop root growth to find out the species-specific response to the physical stresses, which has not been reported before. Drying stress without the increase of mechanical impedance was evaluated in a very loose pot soil environment. This drying stress did not modify the root elongation rates of rice and pea by the 48 h exposure to the stress environment. For maize and cotton, however, mild drying stress (?80 kPa Ψw) enhanced root elongation by 17-18%, but severe drying stress (?900 kPa Ψw) reduced it by 17-21% as compared with the control environment (?10 kPa Ψw). The combined stress of drying and mechanical impedance nearly stopped the root elongation in all the species, while that of anaerobiosis and mechanical impedance did not stop the elongation of rice and cotton; cotton elongated about 32% of control environment. In maize, root diameter was reduced by the severe drying stress due to the reduction in the number of cortical cell layer and diameters of both central cylinder and xylem vessel. In contrast, cotton showed a significant increment of cortex diameter, although overall diameter was not statistically increased by the severe drying stress. The ability of cotton to continue elongation under anaerobiosis and mechanical stress implied the higher penetration ability to the hard pan layer under the anaerobic condition just after the heavy rainfall.  相似文献   

15.
《Plant Production Science》2013,16(3):285-292
Abstract

Effects of nitrogen (N) deficiency on photosynthetic gas exchange and photosystem II (PSII) photochemistry of flag leaves during grain-filling stage were investigated in six rice cultivars, Kasalath (a conventional indica), IR36 (an improved indica), Shirobeniya (a conventional japonica), Nipponbare (an improved japonica), Akenohoshi (an improved japonica-indica intermediate type) and BSI429 (an improved tropical japonica, a new plant type line) grown hydroponically in N-sufficient (NS) and N-deficient (ND) solution. From 3 to 24 days after heading (DAH), net photosynthetic rate (Pn), maximum quantum yield of photosystem II (PSII) (Fv/Fm), quantum yield of PSII electron transport ( Φpsii), and contents of chlorophyll (Chl) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in the flag leaves decreased, particularly under the ND condition in all six cultivars. A substantial difference was observed among the ND plants for the sustainability index (SI, the ratio of the value at 24 DAH to that at 3 DAH) of Pn, Fv/Fm, Φpsii, Chl content and Rubisco content; SIs of those parameters of Akenohoshi, BSI429, Nipponbare and Shirobeniya were higher than those of IR36 and Kasalath. The SI of Pn showed significant positive correlations with those of Fv/Fm, Φpsii, and the contents of Chl and Rubisco under the ND condition. It was concluded that the sustainability of photosynthesis in the flag leaves was mainly due to those of PSII photochemistry and electron transport, which was associated with the maintenance of Chl and Rubisco under the ND condition.  相似文献   

16.
To identify differences in root plasticity patterns of two upland New Rice for Africa (NERICA) varieties, NERICA 1 and 4, in response to drought under conditions with contrasting soil profile characteristics, soil moisture gradients were imposed using a sloping bed system with depths ranging 30–65 cm and a line-source sprinkler system with a uniformly shallow soil layer of 20 cm depth. Varietal differences in shoot and root growths were identified only under moderate drought conditions, 11–18% v/v soil moisture content. Further, under moderate drought soil conditions where roots could penetrate into the deep soil layer, deep root development was greater in NERICA 4 than in NERICA 1, which contributed to maintaining dry matter production. However, under soil conditions with underground impediment to deep root development, higher shoot dry weight was noted for NERICA 1 than for NERICA 4 at 11–18% v/v soil moisture content, which was attributed to increased lateral root development in the shallow soil layer in NERICA 1. Enhanced lateral root development in the 0–20-cm soil layer was identified in NERICA 1 even under soil conditions without an impediment to deep root development; however, this did not contribute to maintaining dry matter production in upland rice. Thus, we show different root developmental traits associated with drought avoidance in the two NERICA varieties, and that desirable root traits for upland rice cultivation vary depending on the target soil environment, such as the distribution of soil moisture and root penetration resistance.  相似文献   

17.
Rainfed lowland rice fields are characterized by soil moisture fluctuations (SMF) and the presence of hardpan that impedes deep rooting and thus limits water extraction from deep soil layer during the periods of drought. In this study, we used rootboxes with three layers; shallow layer, artificial hardpan, and deep and wet layer below the hardpan, to evaluate differences in the plasticity of nodal roots elongation through the hardpan and promote root branching below the hardpan in response to SMF among four rice varieties; Sasanishiki, Habataki, Nipponbare, and Kasalath. Experiments were conducted during the summer and autumn seasons. Plasticity was computed as the difference in root traits within each variety between the SMF and continuously well-watered treatments. In both experiments, Habataki consistently tended to exhibit higher root plasticity than the other three varieties by increasing number of nodal roots that penetrated the hardpan during rewatering period in SMF, when the soil moisture increased and penetration resistance decreased. This root plasticity then contributed to greater water use at the deeper soil during the subsequent drought period and overall shoot dry matter production. Habataki had significantly higher δ13C value in roots at deep layer than roots at the shallow and hardpan layers under SMF, which may indicate that these were relatively newly grown roots as a consequence of root plasticity. This study also indicates that CSSLs derived from Sasanishiki and Habataki varieties may be suitable for the analysis of QTLs associated with root plasticity expression in rainfed lowland with hardpan and experiencing SMF.  相似文献   

18.
Global climate change will result in extreme environments, such as droughts and floods. We investigated the individual and combined effects of droughts and floods of varying duration on sugarcane (Saccharum spp.) growth using a pot experiment under glasshouse conditions with the following six treatments: drought for 15 d, prolonged drought for 30 d, flood for 15 d, prolonged flood for 30 d, short flood followed by prolonged drought, and prolonged flood followed by prolonged drought. Plants that were subjected to drought conditions, including drought after a flood, had reduced CO2 assimilation (through stomatal closure) and leaf areas, whereas flood conditions showed no effect. During flooding, some roots died, and adventitious roots with well-developed aerenchyma appeared from the submerged nodes. At the time of harvest, there were no significant differences in stem fresh weight, sucrose content, or sugar yield between the treatments. However, ion content analysis revealed that flood conditions caused an accumulation of sodium in the bottom of stems and adventitious roots. Therefore, under flood conditions, plants may develop adventitious roots, which may offset the negative effects of root death, helping them to maintain their growth and yield.  相似文献   

19.
Mechanisms for coping with submergence and waterlogging in rice   总被引:3,自引:0,他引:3  
Rice (Oryza sativa L.), unlike other cereals, can grow well in paddy fields and is highly tolerant of excess water stress, from either submergence (in which part or all of the plant is under water) or waterlogging (in which excess water in soil limits gas diffusion). Rice handles submergence stress by internal aeration and growth controls. A quiescence strategy based on Submergence-1A (SUB1A) or an escape strategy based on SNORKEL1 (SK1) and SNORKEL2 (SK2) is used for the growth controls. On the other hand, rice handles waterlogging stress by forming lysigenous aerenchyma and a barrier to radial O2 loss (ROL) in roots in order to supply O2 to the root tip. In this article, we summarize recent advances in understanding the mechanisms of responding to excess water stresses (i.e., submergence and waterlogging) in rice and other gramineous plants.  相似文献   

20.

Background

Fe toxicity occurs in lowland rice production due to excess ferrous iron (Fe2+) formation in reduced soils. To contribute to the breeding for tolerance to Fe toxicity in rice, we determined quantitative trait loci (QTL) by screening two different bi-parental mapping populations under iron pulse stresses (1,000 mg L−1 = 17.9 mM Fe2+ for 5 days) in hydroponic solution, followed by experiments with selected lines to determine whether QTLs were associated with iron exclusion (i.e. root based mechanisms), or iron inclusion (i.e. shoot-based mechanisms).

Results

In an IR29/Pokkali F8 recombinant inbred population, 7 QTLs were detected for leaf bronzing score on chromosome 1, 2, 4, 7 and 12, respectively, individually explaining 9.2-18.7% of the phenotypic variation. Two tolerant recombinant inbred lines carrying putative QTLs were selected for further experiments. Based on Fe uptake into the shoot, the dominant tolerance mechanism of the tolerant line FL510 was determined to be exclusion with its root architecture being conducive to air transport and thus the ability to oxidize Fe2+ in rhizosphere. In line FL483, the iron tolerance was related mainly to shoot-based mechanisms (tolerant inclusion mechanism). In a Nipponbare/Kasalath/Nipponbare backcross inbred population, 3 QTLs were mapped on chromosomes 1, 3 and 8, respectively. These QTLs explained 11.6-18.6% of the total phenotypic variation. The effect of QTLs on chromosome 1 and 3 were confirmed by using chromosome segment substitution lines (SL), carrying Kasalath introgressions in the genetic background on Nipponbare. The Fe uptake in shoots of substitution lines suggests that the effect of the QTL on chromosome 1 was associated with shoot tolerance while the QTL on chromosome 3 was associated with iron exclusion.

Conclusion

Tolerance of certain genotypes were classified into shoot- and root- based mechanisms. Comparing our findings with previously reported QTLs for iron toxicity tolerance, we identified co-localization for some QTLs in both pluse and chronic stresses, especially on chromosome 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号