首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 52 毫秒
1.
大豆机收清选筛田间性能试验与分析   总被引:6,自引:6,他引:0  
针对现阶段谷物联合收获机清选筛对大豆清选适用性较低以及大豆机收田间性能试验研究较少的现状,以久保田联合收获机PRO688D为试验机具,濉科20大豆为试验品种,以常规鱼鳞筛、加长鱼鳞筛、错位鱼眼筛、线性鱼眼筛和贝壳筛为上筛,网筛、圆孔筛和六棱孔筛为下筛,鱼鳞尾筛和栅格尾筛为尾筛,以清选损失率和含杂率为清选筛对大豆清选作业水平的评价指标,进行了大豆机收清选筛田间性能试验。利用模糊综合评价法对田间性能试验的数据进行了分析与评价,完成鱼鳞筛筛片开度、上筛、下筛、尾筛以及清选筛组合在大豆机收清选适用性方面的优化工作。清选作业水平评价结果表明,大豆机收清选适用性最佳的鱼鳞筛筛片开度是28 mm。进一步对不同尾筛、上筛、下筛和清选筛组合的清选作业水平进行评价,得出不同清选筛对大豆清选适用性情况为:栅格尾筛优于鱼鳞尾筛;贝壳筛和六棱孔筛是大豆机收清选适用性最好的上筛和下筛。大豆机收清选适用性最佳的上筛、下筛和尾筛组合为贝壳筛、六棱孔筛、鱼鳞尾筛,此时大豆机收田间性能试验的清选损失率为2.04%,含杂率为0.53%。试验结果表明,应用模糊综合评价法综合评价不同清选筛对大豆机收的清选损失率和含杂率,并进行清选作业水平的优选,可有效提高谷物联合收获机清选筛对大豆的清选适用性。该研究可为解决谷物联合收获机清选筛对大豆低适用性问题提供实际依据,对降低大豆联合收获机清选损失率和含杂率的田间试验研究起到推进作用,为研发适用于大豆收获的联合收获机清选装置提供参考。  相似文献   

2.
半喂入四行花生联合收获机弹指筛结构运行参数优化   总被引:7,自引:7,他引:0  
针对4HLB-4型半喂入四行高效花生联合收获清选环节含杂率高、损失率大、杂物堵塞等难题,创新设计了1种搭接式弹指振动筛,并开展3种传统筛体冲孔筛、编织筛、栅条筛和弹指筛的对比试验,试验结果表明弹指筛在大喂入量高效收获工况下清选效果较好。在单因素试验基础上,运用Box-Benhnken的中心组合试验方法,以弹指筛振动频率、弹指直径、弹指筛振幅和安装倾角作为影响因素,开展四因素三水平二次回归正交试验,运用响应曲面法来分析各因素对含杂率和损失率的影响效应,并对影响因素进行了优化。试验结果表明:含杂率影响显著性顺序为弹指筛振动频率(29)弹指直径(29)弹指筛振幅(29)安装倾角;损失率影响显著性顺序为弹指筛振幅(29)安装倾角(29)弹指筛振动频率(29)弹指直径;最优工作参数组合为弹指筛振动频率6 Hz、弹指直径3 mm、弹指筛振幅7 mm、安装倾角2.8?,对应的含杂率和损失率分别为2.41%、0.711%,且各评价指标与其理论优化值的相对误差均小于5%。研究结果可为4HLB-4型半喂入四行高效花生联合收获清选机构的完善设计和作业参数优化提供参考。  相似文献   

3.
为了改变国内大豆联合收获机田间作业时因清选装置的参数调节缺乏相应理论指导,造成清选参数调控不及时与不精确而导致大豆机收清选损失率和含杂率均较高的现状,该研究利用多参数可调可测式清选系统进行了大豆机收清选参数优化田间试验,分析了大豆机收时清选参数(作业速度、鱼鳞筛筛片开度、风门开度、风机转速和振动筛曲柄转速)对清选指标(清选损失率和含杂率)的影响规律,求解出最佳清选参数组合,完成大豆机收最佳清选参数组合的田间验证试验。试验结果表明,清选参数对清选损失率影响大小排序为振动筛曲柄转速、风机转速、作业速度、风门开度、鱼鳞筛筛片开度,清选参数对含杂率影响大小排序为鱼鳞筛筛片开度、风门开度、风机转速、作业速度、振动筛曲柄转速。求解出清选损失率偏小和含杂率偏小且喂入量偏大时最佳清选参数组合为作业速度6 km/h、鱼鳞筛筛片开度32 mm、风门开度17°、风机转速1 310 r/min和振动筛曲柄转速410 r/min,此时清选损失率为0.25%,含杂率为0.61%,与模型优化值的相对误差分别是0.250%和0.113%,对比常用清选参数条件下大豆联合收获机田间试验的清选指标,清选损失率下降了0.05%,含杂率下降了2.09%。研究结果可为大豆联合收获机田间作业时清选参数的设定与调控以及自适应清选系统调控策略的研发提供理论依据。  相似文献   

4.
针对食葵机械化收获清选环节损失率和含杂率均偏高等问题,该研究设计了一种双层振动风筛式食葵清选装置,主要由风机、导料齿板式上筛体、阶梯抖动板式下筛体及驱动机构等组成。根据不同品种食葵籽粒大小,清选装置上下筛分别配套筛孔尺寸为20、18 mm和18、16 mm的两组编织筛网。通过清选过程物料动力学分析,获得影响该装置工作性能的主要因素为气流方向角、曲柄转速及筛面倾角。应用Fluent-EDEM耦合技术仿真模拟食葵清选过程,验证清选装置结构合理性。以大籽粒“三瑞10号”和小籽粒“葵花363”两种食葵为试验对象,气流方向角、曲柄转速及筛面倾角为影响因素,含杂率和损失率为评价指标,在自制清选装置台架上分别开展正交试验,利用综合分析法得出影响清选性能的主次因素依次为曲柄转速、筛面倾角、气流方向角,较优参数组合为气流方向角21°、曲柄转速250 r/min、筛面倾角4°,此时含杂率低于3%,损失率低于2%,满足食葵机械化收获标准,且作业性能优于已有食葵清选装置。该研究可为食葵机械化收获过程中清选系统的改进优化提供技术支撑。  相似文献   

5.
为了高效完成再生稻脱出物的清选工作,有效利用气流对物料进行吹散分层,并提高水稻籽粒透筛效率,该研究对沃得旋龙4LZ-3.0E型水稻联合收获机清选装置进行了改进,改进的清选装置采用六叶片离心风机作为清选风机,振动筛上筛使用百叶窗筛,其筛片为平整未经冲压的平板状结构。首先运用CFD软件对风机转速1050 r/min、筛片开度分别为20、25和30 mm工作参数下的清选装置内部气流场进行了数值模拟和对比分析,数值模拟结果表明筛片开度为20 mm时筛面上方气流速度的分布均匀,筛片开度越大,筛片之间越容易产生小型涡流,从而造成气流混乱;使用热线式风速仪在试验样机上进行了气流速度测量,对比实测气流速度和仿真的气流波动规律一致,验证了数值模拟结果的准确性;进一步通过田间试验对静态的模拟试验结果进行了补充,分别选取清选筛振动频率为6、7、8 Hz,得出清选筛振动频率6 Hz配合筛片最佳开度20 mm时清选效果最好的结论,其籽粒含杂率为1.52%,损失率为1.11%;且由结果分析可知,百叶窗筛筛片开度大小对清选损失率的影响无主效应。该研究表明百叶窗筛适用于针对再生稻的清选工作,提出了针对再生稻物料的风筛清选装置的设计思路,为进一步研究打下了基础。  相似文献   

6.
单纵轴流谷物联合收获机清选装置内部流场对筛面风速分布和清选效果具有显著影响。该研究以雷沃重工RG-60型联合收获机为研究对象,通过田间试验测试了清选装置上筛面风速分布情况,结果表明上筛面右侧的风速大于左侧,风速分布均匀性差,造成振动筛左侧的脱出混合物堆积现象,不利于清选作业。为解决上述问题,对清选装置内部脱出混合物的受力和运动速度进行分析,利用HyperWorks软件对清选装置内部的风速分布进行仿真,结果表明风机前出风口和尾筛中部的风速最大值为8.6 m/s,筛面右侧风速偏大,左右两侧风速平均差值为2.6 m/s,试验和仿真结果的各测点风速变化规律一致。对清选装置的结构进行仿真优化,并进行优化后联合收获机田间试验,结果表明当清选装置右侧挡风板逆时针转动30°时上筛面风速分布最均匀,风速最大值为8.7 m/s;左右两侧流场对称分布,筛面各测点的风速比优化前平均提高2m/s;小麦籽粒损失率为0.89%,含杂率为0.37%;水稻籽粒损失率为1.85%,含杂率为0.51%,清选效果良好。研究结果为单纵轴流收获机清选装置结构设计提供了参考。  相似文献   

7.
小麦联合收获机双出风口多风道清选作业试验   总被引:4,自引:4,他引:0  
针对小麦联合收获机双出风口多风道清选装置由于主要作业参数调整不当而导致清选损失率、含杂率、二次含杂率高的问题,该文通过台架试验分别对双出风口多风道清选装置主要作业参数(喂入量、风门开度、风机转速、上、下导风板角度)进行单因素与多因素优化试验,探究各试验因素对清选损失率、含杂率、二次含杂率的影响规律,寻找最优参数组合。参考市场上小麦收获机拥有量较大的久保田988机型相关参数,搭建联合收获机双出风口多风道试验台。双出风口4风道时,小麦清选损失率、含杂率最低,分别为0.78%与0.48%,通过单因素试验,得出喂入量4.5~5.8 kg/s、风门开度0°~20°、风机转速1 200~1 600 r/min、上、下导风板角度0~20°。利用Box-Behnken中心组合试验设计理论,进行五因素三水平正交试验。结果表明:对清选损失率影响较显著的因素有风机转速、喂入量、上导风板角度;对含杂率影响较显著的因素有风机转速、上、下导风板角度;对二次含杂率影响较大的因素有上导风板角度、风机转速、喂入量,通过对目标参数优化得到最优作业参数为喂入量4.5 kg/s、风门开度10.2°、风机转速1 548 r/min、上、下导风板角度分别为20°和0°,此时清选损失率、含杂率、二次含杂率分别为0.79%、0.40%与0.82%。台架试验验证得到清选损失率、含杂率、二次含杂率分别为0.75%、0.38%与0.76%,与优化结果误差分别为5.1%、5.0%与7.3%。此研究结果可为小麦联合收获机多风道清选装置作业参数调整提供理论参考。  相似文献   

8.
切流式花生全喂入联合收获机清选机构设计   总被引:4,自引:3,他引:1  
针对切流式花生全喂入联合收获机清选环节果杂分离不清、损失率高、缠膜挂秧、筛面堵塞等难题,该文设计了一种风筛组合、无阻滞、大小杂并除的清选机构,其主要由上层筛(杆筛)、下层筛(多阶弹性筛和后筛)、抖草轮、偏心套、风机等组成。该文运用动态静力学方法研究了筛面物料的相对运动,分析了物料相对筛面上滑、下滑、从筛面跃起的极限条件,确定了振动筛主要运动参数的理论值域;运用达朗伯原理开展了交变载荷下筛体的受力分析,确定了筛体关键结构参数。该文对影响清选作业质量主要因素开展了试验研究,试验结果表明:影响清选机构综合作业质量的主次作用因素为主风机转速、振动筛振幅、振动频率,较优参数组合为主风机转速2 100 r/min、振动筛振幅12.5 mm、振动频率9Hz,此时清选损失率5.03%、荚果含杂率5.39%;清选机构作业顺畅性较好,较少出现缠膜挂秧、筛面堵塞现象。研究结论可为切流式花生全喂入联合收获机清选机构的设计提供理论参考。  相似文献   

9.
大豆脱粒机气力清选循环装置研制与性能试验   总被引:5,自引:5,他引:0  
为提高大豆脱粒机的清选效果、降低脱粒损失与含杂率,该文利用农业物料漂浮速度试验台测得了大豆脱出物的漂浮速度:完好豆粒9.18~11.61m/s,瘪粒及豆瓣6.14~7.74m/s,未脱净豆荚3.81~5.48m/s,短硬茎杆2.53~4.04m/s,碎秸秆和荚壳1.95~3.75m/s;并根据漂移速度试验结果研制了气力式清选装置和旋风式杂余分离、循环装置并进行了性能试验。性能试验表明,改进的大豆脱粒机最佳风机转速526~611r/min、振动筛频率276~320Hz时,大豆清选后秸秆含杂率和清选损失率分别为0.70%和0.30%~0.32%。研究结果为优化大豆脱粒机气力清选系统设计、提高大豆脱粒机性能提供参考。  相似文献   

10.
为提高食葵联合收获机清选系统适应性和作业性能,该研究基于食葵脱出物物料特性,分析了圆筒清选筛筛孔尺寸、筛体安装倾角范围、助流螺旋叶片结构参数和圆筒筛转速范围,借助EDEM探究了筛体内物料运动特性及籽粒透筛特性。以“葵花363”为对象进行台架试验,通过单因素试验探究了筛体安装倾角、圆筒筛转速及喂入量对清选效果的影响,确定了各因素优选区间。根据单因素试验结果,以清洁率和损失率为评价指标开展正交试验,通过综合评分法分析得出影响圆筒筛清选效果的主次因素顺序为筛体安装倾角、圆筒筛转速、喂入量;清选装置较优参数组合为喂入量0.6 kg/s,筛网安装倾角3°,转速25 r/min,清洁率为98.92%,损失率为1.97%。以优化参数进行田间试验,清洁率为96.53%,损失率为2.08%,较风扇振动筛的清洁率提升3.32个百分点,损失率减少4.11个百分点。研究结果可为食葵机械化收获清选装置的结构设计和优化改进提供理论参考。  相似文献   

11.
为实现国内大豆大田生产低损收获同时兼顾大豆育种小区收获,该研究设计了4LZ-1.5型大豆联合收获机,针对大豆成熟期易炸荚的特性,分析了大豆拨禾作业过程,建立了拨禾轮结构和运动参数求解模型,并对拨禾轮半径、拨禾速度比、拨禾轮转速等参数进行优化;针对大豆结荚低、收割易铲土的特性,分析了大豆籽粒尺寸参数统计规律,并对割台除土机构进行优化;针对大豆成熟期易脱粒、易破碎特性,对脱粒分离装置、清选装置和气力卸粮装置进行优化;针对育种小区收获要求,建立了清种装置曲柄摇杆机构数字化设计模型,确定了清种装置结构参数。分别进行大田生产和育种小区收获试验,结果表明,大豆大田生产收获的损失率<3.5%,破碎率<1.5%,含杂率<1%;大豆育种小区收获的损失率<3%,破碎率<1.5%,含杂率<1%,混种率<0.2%,清种时间200~270 s,满足大豆大田生产和育种小区收获作业要求。与现有大豆收获机械相比,4LZ-1.5型大豆联合收获机收获损失率降低1.5%~5%、破碎率降低3.5%~6.5%、含杂率降低2%~7%,研究结果可为后续大豆收获机结构改进和作业参数优化提供参考。  相似文献   

12.
大豆联合收获机作业参数优化   总被引:9,自引:9,他引:0  
现阶段国内大豆联合收获机收获作业时由于脱粒、清选系统作业参数调整不当而导致大豆机收损失率、破碎率、含杂率较高。为解决这一问题,该文对影响大豆机收作业质量的相关参数开展田间试验研究,探索各参数对大豆机收作业质量的影响规律,探寻最佳作业参数组合。以机收损失率、破碎率、含杂率为目标,选择脱粒清选系统对作业质量影响较大的前进速度、滚筒转速、脱粒段脱粒间隙、分离段脱粒间隙、导流板角度、分风板角度、风机转速、上筛前部开度、上筛后部开度共9个因素,利用Box-Behnken中心组合试验方法,进行九因素三水平响应面试验,使用Design-Expert对试验结果进行响应面分析,探索各因素对试验指标的影响规律,并构建相关数学模型。试验结果表明:对大豆收获损失率影响较为显著的因素为风机转速、脱粒段脱粒间隙、前进速度、脱粒滚筒转速;对破碎率影响较为显著的因素为脱粒滚筒转速、脱粒段脱粒间隙、前进速度、导流板角度;对含杂率影响较为显著的因素为导流板角度、风机转速、分风板角度、上筛后部开度。通过多目标参数优化,确定最佳工作参数组合为前进速度6 km/h、脱粒滚筒转速450 r/min、脱粒段脱粒间隙25 mm、分离段脱粒间隙20 mm、导流板角度26?、风机转速1 260 r/min、分风板角度11.5?、上筛前部开度19 mm、上筛后部开度11 mm,此时损失率为0.24%、破碎率为0.90%、含杂率为0.14%,田间试验实测损失率、破碎率和含杂率平均值分别为0.24%、0.90%和0.14%,与优化值相对误差分别为0、4.7%和7.7%。研究结果可为大豆联合收获机结构改进和作业参数控制提供参考。  相似文献   

13.
风筛选式油菜联合收割机清选机构参数优化与试验   总被引:2,自引:8,他引:2  
为分析油菜田间实际收获作业状态时风筛选式油菜联合收割机清选机构参数对清选损失率和籽粒含杂率的影响,基于双滚筒风筛选式可移动田间联合收获试验平台,对振动筛振幅、曲柄转速、风机转速和风机倾角4个参数进行了Plackett-Burman试验和响应面回归试验,试验分析表明振动筛振幅和曲柄转速是影响清选损失率的主要因素,风机转速是影响籽粒含杂率的主要因素。采用响应面试验方法分析了单因素和双因素对清选效果的影响,建立了清选损失率和籽粒含杂率的回归数学模型并优化求解了一组最优参数组合,以一组接近最优参数组合:振动筛振幅35 mm,曲柄转速392 r/min,风机转速1 750 r/min,风机倾角29°进行了试验验证,清选损失率和籽粒含杂率分别为0.90%和0.45%。理论求解的清选损失率和籽粒含杂率分别为0.38%和0.48%,与试验值的绝对误差分别为0.52%和-0.03%,籽粒含杂率误差较小,清选损失率误差较大。与该清选机构常用工作参数时的清选损失率和籽粒含杂率对比,清选损失率降低了61%,籽粒含杂率降低了58%。该研究结果和优化方法可为风筛选式油菜联合收割机清选机构的参数选择和优化提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号