首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Seven wild diploid potato species, Series Tuberosa, representing 1023 clones were screened for resistance to the potato cyst nematode, Globodera pallida. Over 25% of the clones were resistant to pathotype P4A and almost 30% were resistant to pathotype P5A. The resistance in hybrid progenies of these and other resistant species with cultivated potatoes was evaluated, and over 2200 seedlings were screened. High frequencies of resistance (>50%) to P4A were found in progenies with Solanum leptophyes, S. vernei, S. gourlayi and S. capsicibaccatum, whereas resistance to P5A was found in these species as well as S. sparsipilum. The importance of nematode resistant wild species for potato breeding is discussed.  相似文献   

2.
Summary Sixty-two 2x families were generated by intermating 16, 2x clones and evaluated for resistance to potato tuber moth (PTM), Phthorimaea operculella under natural infestation in a storage at San Ramon, Peru and in laboratory tests. The following conclusions could be drawn: (1) relatively simple inheritance was observed for resistance derived from Solanum sparsipilum (spl), (2) the high level of resistance of the original spl has been transferred, undiminished, into an advanced 2x population, (3) simple phenotypic selection was successfully applied to transfer resistance into an improved 2x population, (4) there was a strong indication of reciprocal effects, however spl cytoplasm is not essential for the expression of nuclear resistance genes, (5) antibiosis and antixenosis are the mechanism of PTM resistance in this population, and (6) 4x × 2x crosses could be used to transfer the resistance into commercial cultivars.  相似文献   

3.
Summary Resistance toMeliodogyne chitwoodi races 1 (MC1) and 2 (MC2) andM. hapla (MH) derived fromSolanum bulbocastanum was introduced into the cultivated potato gene pool through somatic fusion. The initial F1 hybrids showed resistance to the three nematodes. Resistance to reproduction on roots by MC1 was accompanied by resistance to tuber damage in F1 clones. Tuber damage sometimes occurred, however, in hybrids of BC1 progeny resistant to reproduction on roots when MC2 and MH were the challenging nematodes. Resistance to reproduction was transferred into BC1 individuals, but a greater proportion of BC1 progeny was resistant to MC1 than to MC2 or MH. Resistance to MC1 appears to be dominant and discretely inherited. F1 and BC1 progeny were pollen sterile, but seed were produced from crosses using cultivated tetraploid pollen sources. Approximately 11 and 33 per cent of pollinations produced berries on F1 and BC1 pistillate parents, respectively. Seed yield increased fourfold overall in crosses with F1 compared to BC1 individuals.Abbreviations MC1 Meloidogyne chitwoodi race 1 - MC2 Meloidogyne chitwoodi race 2 - MH Meloidogyne hapla - Rf Reproductive factor  相似文献   

4.
Summary Verticillium wilt (V. albo-atrum Reinke & Berthold or V. dahliae Kleb) threatens potato (Solanum tuberosum L.) production in most growing areas of the world. Genetic resistance offers the most cost-effective and environmentally-sound control measure. However, there is a dearth of genetic and breeding information on resistance to verticillium wilt in potato, because of obscure parentage of some standard cultivars and the complex segregation at the tetraploid level. The wide range of genetic variability in wild relatives of potatoes can be potentially useful as a source of disease resistance, such as verticillium wilt resistance. Six diploid, wild, interspecific Solanum hybrids involving resistant x resistant and susceptible x resistant crosses, were assayed for verticillium wilt resistance under greenhouse conditions to evaluate their potential as sources of verticillium wilt resistance. The cross between S. gourlayi Oka. and S. chacoense Bitt. and its reciprocal had the most resistant progenies based on mean colony counts. No simple mode of inheritance can be proposed based on the observed segregation ratios. However, the continuous distributions observed on verticillium wilt disease response among hybrid families indicate that inheritance of resistance may be polygenic and complex. In addition, skewness of colony count distributions toward the resistance parents were characteristic of all resistant x susceptible crosses suggesting that resistance may be dominant. By contrast, the susceptible x susceptible cross showed a more normal distribution. Overall, the cross between S. gourlayi and S. chacoense showed the most potential as a source of verticillium wilt resistance.  相似文献   

5.
Summary Over 2400 pollinations were made to investigate the crossability relationships between cultivated potatoes, and wild diploid species from Series Tuberosa and Circaeifolia, as well as wild polyploid species in Series Tuberosa and Longipedicellata resistant to potato cyst nematode, Globodera pallida pathotypes P4A and P5A. Wild diploids in Series Tuberosa crossed easily with cultivated diploid species, except with Solanum lignicaule where most pollinations failed, and seed set was extremely low (0.2 seeds per pollination or less). It is suggested that this species is 1EBN. S. capsicibaccatum is clearly isolated from Series Tuberosa, but can form hybrids with S. lignicaule, which can act as a bridging species to S. tuberosum haploids. S. gourlayi and S. oplocense can be crossed with both subspecies of S. tuberosum, but S. papita, Series Longipedicellata is reproductively isolated from the tetraploid cultigens. The crossability data are discussed in the light of germplasm utilisation for breeding potato varieties resistant to potato cyst nematode.  相似文献   

6.
Hypersensitive resistance to RKN was observed in infested roots from ex- S. sparsipilum material hybridised with S. tuberosum in F1 and in their BC F2 progeny. This resistance acts against M. incognita, M. javanica and M. arenaria and their isolates virulent against the Mi gene. It does not act against M. mayaguensis. This resistance protects the potatoes from galling on the roots and on the tubers. Like in the case of the Mi gene, this resistance decreases with high temperatures. Results from the F1 segregation confirm the hypothesis of a single dominant gene, here after called Mh. A pre-breeding program was carried out in order to cumulate both heat stable resistance and commercial traits. This program produced 48 genotypes selected for resistance and tolerance to high temperatures which were evaluated in the Souss Sahara in naturally infested conditions. Resistance was confirmed in year 2000 and 15 genotypes selected for agronomic traits in year 2001. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Summary Resistance to potato leafroll virus (PLRV) was detected in an accession of Solanum chacoense. Inoculations with viruliferous aphids and subsequent graft challenges using Datura tatula and potato as PLRV sources determined that resistance appears to be of an extreme type. Virus was not detectable using enzyme-linked immunosorbent assay (ELISA) in S. chacoense, and in resistant F1 and BC1 progenies after attempts to transmit the virus through grafting. The segregation ratios of BC1 progenies for positive and negative ELISA tests are consistent with simple dominant inheritance.  相似文献   

8.
Summary The past 25 years, 1686 potato accessions, representing 100 species in the genus Solanum L., subgenus Potatoe, section Petota, were evaluated for field resistance to one or more of the following insect pests: green peach aphid, Myzus persicae (Sulzer); potato aphid, Macrosiphum euphorbiae (Thomas); Colorado potato beetle, Leptinotarsa decemlineata (Say); potato flea beetle, Epitrix cucumeris (Harris); and potato leafhopper, Empoasca fabae (Harris). Accessions highly resistant to green peach aphid were identified within 36 species, to potato aphid within 24 species, to Colorado potato beetle within 10 species, to potato flea beetle within 25 species, and to potato leafhopper within 39 species. Resistance levels were characteristic within Solanum species. Insect resistance appears to be a primitive trait in wild potatoes. Susceptibility was most common in the primitive and cultivated Tuberosa. Insect resistance was also characteristic of the most advanced species. The glycoalkaloid tomatine was associated with field resistance to Colorado potato beetle and potato leafhopper. Other glycoalkaloids were not associated with field resistance at the species level. Dense hairs were associated with resistance to green peach aphid, potato flea beetle, and potato leafhopper. Glandular trichomes were associated with field resistance to Colorado potato beetle, potato flea beetle, and potato leafhopper. Significant correlations between insect score and altitude of original collection were observed in six of thirteen species. Species from hot and arid areas were associated with resistance to Colorado potato beetle, potato flea beetle, and potato leafhopper. Species from cool or moist areas tended to be resistant to potato aphid.Abbreviations EBN Endosperm Balance Number  相似文献   

9.
Internal discoloration of tubers resulting from impact damage (blackspot bruise) is a serious quality problem in potato production and utilization, reducing profits to growers and increasing costs for processors. Resistance to blackspot bruise has been identified in the wild species Solanum hjertingii and is therefore a potential germplasm resource for genetic resistance to this problem. A bridging cross between S. hjertingii and a cultivated diploid clone was used to produce a triploid hybrid population that exhibited very low tuber browning potential, indicating a dominant pattern of inheritance for this trait. The triploid progeny were subjected to in vitrochromosome doubling and the resulting hexaploid clones were screened for browning potential. A hexaploid clone selected for low browning was reciprocally crossed with cultivated S. tuberosum cultivars exhibiting high susceptibility to blackspot bruise. Tubers obtained from the seed progeny of these 4x-6x crosses (hereafter referred to as the BC1 populations) were evaluated for browning potential and polyphenol oxidase (PPO) activity. Tubers from the BC1 populations displayed a very low potential for melanin production, while PPO activity was quite variable. The low Pearson correlation coefficient (r2 = 0.45), between browning potential and PPO activity suggests that the mechanism of blackspot bruise resistance derived from S. hjertingii cannot be explained simply as a reduction in the initial PPO activity. The expression of substantial resistance to browning and dominant expression pattern in these BC1 progeny indicate that utilizing genetic elements derived from S. hjertingii provides a robust approach for developing blackspot bruise resistant potato varieties. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
The wild non-tuberous species Solanumetuberosum is resistant to biotic andabiotic stresses, but is very difficult tocross with cultivated potato. Therefore,interspecific somatic hybrids between adihaploid clone of potato S.tuberosum (2n=2x=24, AA genome) and thediploid species S. etuberosum(2n=2x=24, EE genome) were produced byprotoplast fusion. Among the 7 fertilefusion hybrids analysed by genomic insitu hybridisation (GISH), three groups ofplants were found with the genomicconstitution of AAEE, AAEEEE and AAAAEE.Four fusion hybrids had exactly theexpected chromosome composition, while eachof the three aneuploid hybrids had lost twochromosomes of S. etuberosum. Twobackcross progenies were developed, andGISH analysis was applied to analysetransmission of the parental chromosomesinto the sexual generations. BC1hybrids derived from the crosses of thehexaploid somatic hybrids with tetraploidpotato were pentaploid with thetheoretically expected genomic compositionor with slight deviation from thisexpectation. In the three BC2 hybridsanalysed by GISH seven to 12 chromosomes ofS. etuberosum were detected in thepredominant S. tuberosum background.No recombinant chromosomes in the hybridswere detected. Genome dosage affects tuberformation in hybrids and their progenies,but has less effect on resistance to potatovirus Y (PVY) in fusion hybrids. Severalgenotypes of the fusion hybrids andBC1 progeny did not show viralinfection even in the graftingexperiments.  相似文献   

11.
Summary This study investigated the possibility of recombining anew the genomes of the wild and cultivated progenitors of triploid S. juzepczukii and pentaploid S. curtilobum by following the known evolutionary pathway of these two species. Before starting the actual breeding work, the natural variation of S. juzepczukii, S. curtilobum and their wild progenitor S. acaule was studied from the point of view of morphology, quantitative and qualitative tuber glycoalkaloid content and frost resistance. The morphological study was supplemented by a study of the soluble tuber proteins employing polyacrylamide slab-electrophoresis. From 137 accession of S. juzepczukii only 19 morphotypes were identified, 18 of which were also different in their protein spectra. The only red-tubered S. juzepczukii revealed a protein spectrum identical to that of the largest white-tubered group. On phylogenetic grounds, the occurrence of a red-tubered S. juzepczukii cannot be explained. It is concluded that this red clone is a somatic mutant for tuber colour which arose from a whitetubered clone. S. curtilobum was restricted in its variation to just two morphotypes differing only in tuber colour which are, however, identical chemotypes. This would be the case if one of the clones was a somatic mutant for tuber colour from the other one. The glycoalkaloids -solanine, -chaconine, tomatine, demissine and - and -solamarine are shown to be useful taxonomic characters which confirm earlier hypotheses on the origin of S. juzepczukii and S. curtilobum. Laboratory tests showed the two cultivated species to be resistant to about –3°C whereas S. acaule is resistant to temperatures sometimes below–5°C. The diploid progenitor of S. juzepczukii, S. stenotomum, also has forms resistant to –3°C. The results of this study demonstrate that the proposed breeding scheme is possible.  相似文献   

12.
Summary A combination of compatible second pollinations and embryo rescue was applied for systematic production of true tetraploid hybrids from crosses between disomic tetraploid Solanum acaule and tetrasomic tetraploid potato, S. tuberosum. Several genotypes of tetraploid potatoes were pollinated with S. acaule, and the compatible second pollinations were made on the following day, with a genotype of S. phureja, IvP 35 to promote fruit development. Embryo rescue was carried out in 21 families, 14 to 27 days after the first pollination. A total of eight plants were obtained from the embryo rescue and their chromosome numbers were counted in the root tips. Three of the eight plants were identified as tetraploid, and five others as diploid. Morphology, isozyme banding patterns, and pollen stainability, as well as potato spindle tuber viroid (PSTVd) resistance, indicated the hybrid nature of the three plants. This is the first report of successful tetraploid hybrid production between disomic tetraploid S. acaule (4x) and tetrasomic tetraploid potatoes. Seed set from the crosses between one of hybrids and diploid potatoes indicated workable levels of both male and female fertility for introgression of valuable genes from S. acaule into the cultivated potato gene pool. The methodology used may be applied to other disomic tetraploid tuber-bearing Solanum species and with some modifications also to distantly related solanaceous species and genera.  相似文献   

13.
Summary Dihaploids were produced from tetraploids resistant to potato cyst nematode (Globodera pallida (Stone)). High levels of resistance were found in the dihaploids and three were used to produce tetraploid progenies by crossing them with susceptible tetraploid cultivars. One dihaploid, PDH505, produced more highly resistant offspring than the other two, PDHs 417 and 418. The latter gave progenies whose levels of resistance were similar to those obtained from susceptible dihaploids crossed with resistant tetraploids.The differences between the progenies of the resistant dihaploids were probably due to different modes of unreduced gamete formation (PDH505 producing gametes by first division restitution (FDR) and PDHs 417 and 418 by second division restitution (SDR)) although cytological studies would be necessary to confirm this. The methods by which dihaploids could be utilised in a tetraploid potato breeding programme are discussed in relation to the mode of unreduced gamete formation.  相似文献   

14.
Summary F1 hybrid true potato seed progenies with multiple sources of specific resistance to Pseudomonas solanacearum and adaptation were evaluated under tropical greenhouse conditions for resistance to a race 1 isolate of P. solanacearum. Results indicated that genes for adaptation are involved in conferring resistance to bacterial wilt. The effect of a particular resistant parent clone on the resistance level of its progeny depended on the resistance, adaptation or the combination of both characteristics of its mate. A heat tolerant parent gave a higher frequency of resistant offspring in combination with an ascertained source of resistance. Combining ability was an apparent feature of resistance to bacterial wilt and resistance was highest in the majority of the crosses that had a wide genetic background for both resistance and adaptation. The possible genetic nature of the resistance to bacterial wilt is discussed.  相似文献   

15.
Potato leafroll virus (PLRV; Genus Polerovirus; Family Luteoviridae) is one of the most important virus pathogens of potato worldwide and breeders are looking for new sources of resistance. Solanum etuberosum Lindl., a wild potato species native to Chile, was identified as having resistances to PLRV, potato virus Y, potato virus X, and green peach aphid. Barriers to sexual hybridization between S. etuberosum and cultivated potato were overcome through somatic hybridization. Resistance to PLRV has been identified in the BC1, BC2 and BC3 progeny of the somatic hybrids of S. etuberosum (+) S. tuberosum haploid × S. berthaultii Hawkes. In this study, RFLP markers previously mapped in potato, tomato or populations derived from S. palustre (syn S. brevidens) × S. etuberosum and simple sequence repeat (SSR) markers developed from tomato and potato EST sequences were used to characterize S. etuberosum genomic regions associated with resistance to PLRV. The RFLP marker TG443 from tomato linkage group 4 was found to segregate with PLRV resistance. This chromosome region has not previously been associated with PLRV resistance and therefore suggests a unique source of resistance. Synteny groups of molecular markers were constructed using information from published genetic linkage maps of potato, tomato and S. palustre (syn. S. brevidens) × S. etuberosum. Analysis of synteny group transmission over generations confirmed the sequential loss of S. etuberosum chromosomes with each backcross to potato. Marker analyses provided evidence of recombination between the potato and S. etuberosum genomes and/or fragmentation of the S. etuberosum chromosomes.  相似文献   

16.
Early blight (Alternatia solani) is a fungal disease in hot and humid environments, which causes leaf, stem and tuber lesions. Early blight resistance should be incorporated into potato cultivars because the fungicide spraying is an expensive solution for developing countries. The diploid cultivated species Solanum tuberosum group Phureja and group Stenotomum are sources of resistance alleles. The elucidation of the inheritance for early blight resistance must help to decide what could be the best breeding procedure to improve this diploid germplasm and transfer the resistance to the tetraploid level. Three experiments were carried out under controlled and field conditions to determine the heritability of this trait using nested and diallel mating designs with haploid, species and haploid-species hybrids. The narrow-sense heritability estimates were relatively high (0.64–0.78). This means that additivity was the most important type of gene action for determining resistance to early blight at the diploid level. The results suggested that diploid parents showing highest levels of resistance, throughout the cycle of disease development, can be used in 4x×2x crosses to obtain resistant tetraploid progenies to this fungal disease.  相似文献   

17.
Susan J. Turner 《Euphytica》1989,42(1-2):145-153
Summary Accessions obtained from the Commenwealth Potato Collection were evaluated for resistance to European populations of potato cyst-nematodes (PCN). With over 36% of the current collection assessed, resistance to pathotypes of both Globodera rostochiensis and G. pallida were identified in 16 species from Argentina, Bolivia or Peru. Resistance to all PCN pathotypes was particularly prevalent in species from the Andean regions of Bolivia and North Argentina, supporting the hypothesis of co-evolution of the potato and PCN in these regions.  相似文献   

18.
C. M. Lu  W. Y. Yang  B. R. Lu 《Euphytica》2005,143(1-2):75-83
The devastating late blight pathogen Phytophthora infestans infects foliage as well as tubers of potato. To date, resistance breeding has often focused on foliage blight resistance, but tuber blight resistance is becoming more and more important in cultivated potatoes. In this study, a reliable tuber assay for resistance assessment was developed and foliage and tuber blight resistance (R) was compared in four mapping populations. In the RH4X-103 population, tuber blight resistance inherited independently from foliage blight resistance. Three specific R genes against P. infestans were segregating. The Rpi-abpt and R3a genes function as foliage-specific R genes, whereas the R1 gene acts on both foliage and tuber. In the segregating populations SHRH and RH94-076, tuber and foliage blight resistance correlated significantly, which suggests that resistance in foliage and tuber is conferred by the same gene (could be R3b) and quantitative trait loci (QTL), respectively. In the CE population neither tuber nor foliage resistance was observed.  相似文献   

19.
Solanum commersonii is a wild tuber-bearing species native to Uruguay with high potential for use in potato breeding programs. Little is known about the genetic diversity within this wild species and the relationship with the resistance to the bacterial pathogen Ralstonia solanacearum. We studied 30 S. commersonii clonal accessions, 20 of which were collected from geographically different areas across the country, while the other ten were grown from seeds from a single plant. Resistance against R. solanacearum was tested and different levels of resistance were found, ranging from delayed wilting to asymptomatic reactions. The genetic variation and the relationships among individuals in this germplasm collection were studied by different molecular markers: Random Amplified Polymorphic DNA (RAPD), Amplified Fragment Length Polymorphism (AFLP) and Microsatellites or Simple Sequence Repeats (SSR). AFLP markers generated the largest number of total and polymorphic fragments per assay unit while SSR revealed the highest frequency of polymorphic bands (100%), followed by AFLP (96.2%) and RAPD (89.4%). In contrast, when comparing the number of different genetic profiles generated, the SSR markers exhibited the lowest discriminatory power. The clustering pattern obtained with the three marker systems showed a similar distribution of the S. commersonii germplasm revealing a high correlation between the three methods employed. All three dendrograms grouped most of the accessions into two main clusters, containing the same accessions regardless of the marker type. Bacterial wilt resistant accessions were present in both clusters. Accessions originated from different seeds of the same plant were grouped within one of the major clusters, and differed in the response to R. solanacearum revealing segregation of resistance. Furthermore, the distribution in two main clusters showed high correspondence with the geographical origin of the accessions, from the north and south of the country, and with the subspecies malmeanum and commersonii morphologically identified.  相似文献   

20.
Summary Verticillium wilt is a serious disease of potato and is caused by the soil-borne fungi Verticillium dahliae and V. albo-atrum. No major cultivar is resistant to this disease. Two diploid interspecific potato clones, C287 and C545, were previously identified with consistently high levels of Verticillium wilt resistance and are thought to have the same genotype for the loci that confer resistance to V. dahliae stem colonization. The purpose of this study was to determine whether resistance to V. dahliae stem colonization could be transferred to the tetraploid level in potato via unilateral sexual polyploidization (USP). Progenies in eight families obtained by crossing C287 and C545 to two tetraploid breeding clones, S438 and S440, and the cultivar ‘Atlantic’ were planted in a V. dahliae-infested field and a field without a significant V. dahliae infestation. Resistance was evaluated relative to C545 and C287. There were differences among families for stem colonization and yield. No differences between the mean stem colonization of C545 and C287 progeny were detected. Family differences due to the tetraploid parents indicate that they contributed resistance to the progeny. Stem colonization data from this experiment were consistent with the proposed complementary two-gene model for Verticillium wilt resistance in the diploid parents. Unilateral sexual polyploidization is an effective method for transferring V. dahliae stem colonization resistance to the tetraploid level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号