首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
1981~1987年对737份种质进行了抗大豆孢囊线虫病(SCN)、大豆花叶病毒病(SMV)接种鉴定,结果表明,不同原生地、不同类型野生大豆对病害的反应显著不同,两种病害的免疫和高抗资源仅占0.68%与1.08%,野生大豆虽蕴藏有抗性基因,但必须经过接种鉴定,筛选出抗源,才能有针对性地提供育种应用,发挥其潜在价值。  相似文献   

2.
我国从美国、俄罗斯、日本等26个国家或地区共引进大豆种质3218份, 仅对部分种质进行了大豆胞囊线虫病(Soybean cyst nematode, SCN)、大豆花叶病毒病(Soybean mosaic virus, SMV)和盐敏感性的抗性鉴定, 但基因型的系统分析尚未见报道。本研究针对大豆抗胞囊线虫病3个基因(rhg1Rhg4SCN3-11)和耐盐基因(GmSALT3)开发KASP标记5个, 结合与大豆花叶病毒抗性相关的1个SCAR标记(SCN11), 对1489份大豆引进种质进行基因型鉴定。结果表明, 具有优异等位基因的种质共1084份; 携带3个位点优异等位基因的种质19份, 包括抗胞囊线虫病3个位点(rhg1Rhg4SCN3-11)叠加(Peking型)种质3份, 聚合抗胞囊线虫病基因和抗花叶病毒病标记7份, 聚合抗胞囊线虫病和耐盐基因2份, 聚合抗胞囊线虫病、抗花叶病毒病和耐盐基因7份; 携带4个位点优异等位基因的种质9份, 包括聚合抗胞囊线虫病基因和抗花叶病毒病标记6份, 聚合抗胞囊线虫病和耐盐基因2份, 聚合抗胞囊线虫病、抗花叶病毒病和耐盐7份; 携带5个位点优异等位基因8份, 聚合了抗胞囊线虫病、抗花叶病毒病和耐盐优异等位变异。在这些携带优异等位变异的种质中, 44份已由前人证明具有相应的抗性。携带3个或3个以上优异等位基因的36份种质中, 有52.78%种质的一种或两种特性已被报道。在不携带抗性优异等位变异的种质中, 93份已证明有耐盐性或对SMV3号株系抗性, 这些种质可能存在新的抗性(等位)基因。本研究利用高通量分子标记筛选出的携带抗病、抗逆优异等位基因的种质为我国大豆资源表型鉴定、抗源的快速筛选及利用提供理论依据和新思路。  相似文献   

3.
应县小黑豆对大豆孢囊线虫4号生理小种抗性的遗传分析   总被引:9,自引:0,他引:9  
大豆孢囊线虫(Heterodera glycine Ichinohe)是大豆生长过程中最具破坏力的病害之一,我国大豆孢囊线虫以4号生理小种危害最为严重.研究其抗性的遗传机理,对我国大豆抗病育种具有重要意义.应县小黑豆是我国山西省农家品种,对大豆孢囊线虫4号生理小种表现为良好的抗性,本研究以应县小黑豆×晋豆23组合的后代群体为试验材料,利用塑料钵柱法对F2和F3群体进行抗性鉴定,采用两种抗病性评价标准,对大豆孢囊线虫4号生理小种抗性进行遗传分析.结果表明采用标准品种法评价应县小黑豆对大豆孢囊线虫4号生理小种的抗性时,由1对隐性基因控制,而采用绝对孢囊数评价应县小黑豆对大豆孢囊线虫4号生理小种的抗性时,由2对隐性基因控制.显然,在晋豆23与应县小黑豆的杂交组合中,大豆孢囊线虫4号生理小种的抗性表现为隐性遗传,由1~2对隐性基因控制.研究结果还表明,利用F3代株系进行大豆孢囊线虫抗性鉴定比对F2代单株直接进行大豆孢囊线虫抗性鉴定具有更好的稳定性和可靠性.  相似文献   

4.
本项研究筛选出来的抗源和品质优良的资源已部分用于大豆育种,并取得良好结果。黑龙江省农科院大豆所利用抗孢囊线虫病三号生理小种的哈尔滨小黑豆,杂交育成抗病的黄大豆品系龙抗scn84-783、龙抗scn84-793等中间材料,并以此转育出一批  相似文献   

5.
河北省推广大豆品种对六个SMV株系的抗性鉴定   总被引:4,自引:0,他引:4  
为调查河北省推广大豆对大豆花叶病毒的抗性情况,本研究对9份大豆品种,包括高蛋白品种:冀豆12号,冀豆7号;高油品种:冀黄13号,nf37,nf58;兼性品种:冀豆15号,鉴15;以及无腥大豆品种:五星1号,五星2号,均采用人工汁液摩擦法分别接种6个SMV株系进行抗性鉴定。鉴定结果表明,五星1号、冀豆12号和五星2号是3个较理想的抗SMV品种,适合推广种植。  相似文献   

6.
为了研究大豆广谱抗源对我国大豆花叶病毒优势株系SC3和SC7的遗传方式及抗源材料对SMV抗性基因间的等位性关系,利用广谱抗源科丰1号和齐黄1号与感病材料南农1138-2配制抗感及抗抗杂交组合,通过人工摩擦接种法进行鉴定。结果发现,接种株系SC3和SC7后,科丰1号和齐黄1号与南农1138-2配制抗感组合的F1均表现抗病,经卡方测验,F2抗感分离比例符合3∶1,F2∶3家系分离比例为1(抗)∶2(分离)∶1(感),说明这2个广谱抗源均有1对显性基因控制株系SC3和SC7的抗性;等位性测验结果表明2个抗抗组合的F1对SC3和SC7优势株系均表现抗病,F2分离比符合15(抗)∶1(感),说明科丰1号和齐黄1号对株系SC3和SC7的抗性基因不等位且独立遗传。进一步分析2个广谱抗源携带的抗性基因可以发现,科丰1号对株系SC3的抗性基因RSC3和齐黄1号对SC7株系的抗性基因RSC7Q可能位于大豆的2号和13号染色体上,为利用大豆广谱抗源进行抗SMV育种奠定了很好的基础。  相似文献   

7.
利用大豆分子连锁图定位大豆孢囊线虫4号生理小种抗性QTL   总被引:28,自引:0,他引:28  
大豆孢囊线虫 (SCN ,HeteroderaglycinesIchinohe)是一种土传的定居性内寄生线虫 ,是引起大豆黄萎病的病原 ,是大豆生产上危害最大的病害之一。SCN的生理小种多达十几种 ,在我国大豆孢囊线虫病原主要为 4号生理小种 ,它是现有生理小种中致病力最强的小种。经典遗传学研究已经确定大豆孢囊线虫抗性基因由 1- 4对核基因控制 ,估计有 10个以上的抗性座位。近年来分子标记技术及QTL定位方法的发展为深入研究该病害的抗性遗传规律提供了有效的手段 ,这对加速我国抗大豆抗孢囊线虫新品种培育具有重要意义。本研究以晋豆 2 3×ZDD2 315组合F2 群体 (2 5 3个单株 )为试验材料 ,其中灰布支黑豆 (ZDD2 315 )是我国山西省农家品种 ,对大豆孢囊线虫 4号生理小种表现为高抗。利用塑料钵柱法进行SCN抗性鉴定 ,构建大豆孢囊线虫抗性主座位所在区域的分子图谱 ,并进行SCN的QTL定位及遗传效应分析。根据已发表的大豆A和G连锁群的分子遗传图谱 ,应用BSA法 ,获得了 8个与SCN4号生理小种抗性基因相关的SSR标记 ,它们是Satt0 38(176bp/ 182bp) ,Satt30 9(130bp/ 135bp) ,Satt6 10 (2 4 0bp/ 2 2 2bp) ,Sat_14 1(189bp/ 184bp) ,Satt187(30 0bp/ 2 5 0bp) ,Satt315 (2 5 3bp/ 2 4 8bp) ,Satt6 32 (2 86bp/ 2 90bp)和Sat_16 2(2  相似文献   

8.
<正> 一、大豆病毒病大豆病毒病是一种病毒性病害,病株矮化、花叶、结荚少、子粒变褐,影响大豆的产量和品质。防治措施:(1)做好种子检疫工作,严禁将带毒种子调入无病区;(2)选用抗病品种如皖豆16号、合豆1号、中豆20等;(3)及时有效防治蚜虫;二、大豆孢囊线虫病孢囊线虫病是一种毁灭性病害,俗称"烧地火"。大豆受害后,结荚少,豆粒不饱满,一般减产10%-20%,严重的减产50%以上,甚至绝产失收。防治措施:(1)轮作。与禾本科作物连续轮作3-5年有较好的防病效果,水、旱轮作效果更好;(2)选用抗,耐病品种如皖豆16号、鲁豆4  相似文献   

9.
大豆胞囊线虫病(Soybean cyst nematode)严重危害我国大豆生产。我国大豆胞囊线虫有8个生理小种,其中,4号生理小种致病力最强,主要分布在黄淮海大豆产区。了解抗源的遗传模式有助于抗病基因的定位和分子标记的开发。以对大豆胞囊线虫4号生理小种高抗抗源CBL黑豆为父本、高感材料品75-14为母本,构建了F1、F2和F2∶3 3个世代群体,利用植物数量性状主基因+多基因混合遗传模型的联合分离分析方法,分析CBL黑豆抗大豆胞囊线虫4号生理小种的遗传效应。结果表明:CBL黑豆对胞囊线虫4号生理小种的抗性受2对加性-显性-上位性主基因和加性-显性-上位性多基因控制,F2世代主基因遗传率为64.47%,F2∶3世代主基因遗传率为75.99%。主基因遗传率较高,育种可以在早代选择。  相似文献   

10.
大豆是主要的油料作物,起源于中国,在我国种质资源十分丰富。大豆孢囊线虫(SCN)(HeteroderoglycinesIchinohe)是一种土传的定居性内寄生线虫,不易防治,常引起大豆黄萎病等病害,是大豆生产上危害最大的病害之一。大豆孢囊线虫病生理小种多达十几种,在我国,大豆孢囊线虫病病原主要为3、4号生理小种。大豆抗孢囊线虫的研究一直是世界上大豆抗病育种研究的热点之一。在本课题的前期研究中,根据已克隆的植物抗孢囊线虫病基因的保守序列设计引物,对经常规鉴定为抗(感)孢囊线虫3号生理小种的15个大豆品种基因组DNA进行PCR扩增,在大豆抗病品种中获得一条大豆抗孢囊线虫的特异条带。本研究在此基础上利用该对引物,对高抗孢囊线虫3号小种的北京小黑豆基因组DNA进行扩增,并克隆了特异扩增片段,命名为RSCN3,经测序及BLAST分析,发现其DNA序列与GenBank、EMBL、DDBJ、PDB中的大豆似受体激酶RHG4、水稻TMK(leucinerichprotein,receptor-likekinase)基因等均有80%以上的同源性。根据该DNA序列推测其氨基酸序列,在其序列中共找到21个亮氨酸,将该序列与蛋白质序列同源性进行比较,结果发现与植物中的受体激酶、富含亮氨酸重复的蛋白激酶有较高的同源性。因此推测RSCN3克隆片断为一个与受体激酶有类似作用的抗病相关基因的RGA,并将该序列登录到GenBank中,登录号为:AY580161。  相似文献   

11.
重组型大豆花叶病毒(recombined soybean mosaic virus,SMV-R)是一种新SMV类型,在我国多个大豆产区广泛流行。本研究对一个重组型SMV河北分离物(HB-RS)进行全基因组测序,比较与非重组型SMV在侵染4个大豆品种后病毒浓度积累的差异。结果显示,除poly-A尾巴外,HB-RS(NCBI登录号为KR065437)由9993个核苷酸组成,包含一个开放阅读框(open reading frame,ORF),翻译后形成3202个氨基酸,系统进化分析结果显示HB-RS分离物与另外两个重组型SMV分离物聚在一组。抗性鉴定结果显示,4个品种对HB-RS和Sc6平均病情指数分别为59.5和60.5,相同大豆品种对不同的株系(分离物)可能呈现不同的症状和抗性表现,其中冀豆17对Sc6和HB-RS分别表现高抗和中抗,表明大豆对SMV的抗性存在一定的株系(分离物)专化性。此外,HB-RS在4个品种中的浓度积累均高于Sc6,在南农1138-2病毒浓度最高,达522 U,其次为五星1号(471 U)和冀黄13(199 U),最低为冀豆17,仅90 U。说明HB-RS在寄主体内更具有生存适应性,不同品种对SMV存在抗性差异。冀豆17可作为抗性品种和亲本进一步推广。  相似文献   

12.
中品95-5117抗大豆花叶病毒基因源分析   总被引:1,自引:0,他引:1  
中品95-5117和中品95-5383是以中品661为亲本选育的抗东北花叶病毒病3号株系(SMV3)的大豆新品系。中品95-5383抗病基因的SCAR标记已被定位于大豆F连锁群(Chr.13),与抗病基因Rsv1紧密连锁。利用大豆F连锁群的34个对SSR标记引物及与抗病基因紧密连锁的SCAR标记SCN11及Rsv1候选基因标记Rsv1-f/r,对中品95-5117系谱亲本进行检测,结合对SMV3的抗性鉴定结果进行分析,旨在明确抗SMV3基因在系谱中的传递规律,为利用分子标记辅助选择培育抗SMV3新品种提供依据。通过SSR标记分析发现,中品95-5117和中品95-5383与亲本中品661的相似性最高,而与另外一个亲本鲁豆4号关系较远。SCAR标记SCN11检测表明,只有1份材料Mangnolid(F-53)B为感病基因型。系谱的Rsv1-f/r标记分析表明,Williams82是中品95-5117中Rsv1基因的供体亲本。抗病性鉴定发现鲁豆4号高抗SMV3,但它并不携带Rsv1基因。据上述结果推测中品95-5117中不仅含有Rsv1,还具有来自鲁豆4号的抗病基因,证明该品系比其亲本中品661具有对SMV3更强的抗性。  相似文献   

13.
大豆抗胞囊线虫4号生理小种新品系SSR标记分析   总被引:2,自引:1,他引:1  
培育抗病品种是大豆胞囊线虫(Soybean Cyst Nematode, SCN)病经济、有效的防治方法。利用130个SSR标记对26份抗SCN 4号生理小种(SCN 4)新品系和15份感病品系进行基因型分析, 旨在明确抗病品系与SCN 4抗性相关联的SSR标记, 提出抗性基因分子标记鉴定方法, 以提高抗病品系在育种中的利用效率。研究表明, Hartwig与晋品系亲本具有不同的SCN 4抗病基因, 其遗传相似系数为0.362。与抗性显著关联的22个SSR位点分布在11个连锁群(LG), 推测LG D1b上分布的SSR标记附近存在1个新的SCN 4抗病基因; 而Satt684、Sat_230、Sat_222、Satt615和Satt231位点, 来自亲本Hartwig等位基因与抗病相关联, 而来自晋品系的等位基因与感病相关联, 在Sat_400、Satt329和Satt557等其他17个SSR位点, 来自Hartwig等位基因与感病相关联, 来自晋品系亲本的等位基因与抗病相关联。利用非连锁不平衡SSR标记Satt684和Sat_400可对供试品系进行有效的抗性辅助选择。  相似文献   

14.
Soybean plants react differentially to soybean mosaic virus (SMV) strains because of interactions among different resistant genes in the soybean genome. Three independent genes resistant to SMV have been identified by inheritance studies and linkage analyses. To develop durable SMV-resistant soybean cultivars, it is necessary to determine which soybean SMV resistance genes can be readily transferred from resistant to susceptible cultivars in a breeding system. Here, we report the type and number of resistance gene(s) in four Korean elite soybean cultivars using a combination of disease reaction symptoms, inheritance studies, and molecular marker mappings. The disease reactions of Sowonkong and Keunolkong soybean varietals in response to infection with SMV strains suggested that both cultivars most likely harbor the Rsv1 gene similar to that in York. Subsequent inheritance studies confirmed that Sowonkong has the Rsv1 gene. The inheritance studies suggested that Sinpaldalkong harbored the Rsv1 gene, which was then confirmed by molecular marker mapping. The inheritance studies also suggested that Jinpumkong 2, which is the most resistant to SMV infection among the four cultivars, contained the Rsv1 and Rsv3 genes; this was confirmed by molecular marker mapping. Our approach, which combined inheritance studies and molecular linkage analyses, allowed the efficient identification of resistance gene(s) in four Korean soybean cultivars.  相似文献   

15.
大豆花叶病毒(Soybean mosaic virus,SMV)是马铃薯Y病毒组(Potyvirus)成员之一,大豆花叶病毒病可造成大豆10%~30%的产量损失,并严重影响大豆的品质。不同株系间致病力差异源于它们在碱基序列上的差异。采用传统的抗病育种技术育成的抗病品种抗谱窄,品种抗性可因病毒株系的变异而丢失。依靠RNA引发的基因沉默改善植物的抗病毒能力是基于RNA i(RNA inference)原理建立的植物抗病毒新策略,本研究对来源于武汉SMV分离物的CP基因和Nib基因进行了克隆,通过对保守区域的扩增,采用Gateway技术构建了大豆抗花叶病毒的RNA干扰载体。为防治大豆花叶病毒新技术的探索奠定基础。  相似文献   

16.
Soybean mosaic virus (SMV) can cause serious yield losses in soybean. Soybean cultivar ‘RN‐9’ is resistant to 15 of 21 SMV strains. To well‐characterize this invaluable broad‐spectrum SMV‐resistance, populations (F1, F2 and F2:3) derived from resistant (R) × susceptible (S) and R × R crosses were tested for SMV‐SC18 resistance. Genetic analysis revealed that SC18 resistance in ‘RN‐9’ plus two elite SMV‐resistant genotypes (‘Qihuang No.1’ and ‘Kefeng No.1’) are controlled by independently single dominant genes. Linkage analysis showed that the resistance of ‘RN‐9’ to SMV strains SC10, SC14, SC15 and SC18 is controlled by more than one gene(s). Moreover, Rsc10‐r and Rsc18‐r were both positioned between the two simple sequence repeats markers Satt286 and Satt277, while Rsc14‐r was fine‐mapped in 136.8‐kb genomic region containing sixteen genes, flanked by BARCSOYSSR_06_0786 and BARCSOYSSR_06_0790 at genetic distances of 3.79 and 4.14 cM, respectively. Allelic sequence comparison showed that Cytochrome P450‐encoding genes (Glyma.06g176000 and Glyma.06g176100) likely confer the resistance to SC14 in ‘RN‐9’. Our results would facilitate the breeding of broad‐spectrum and durable SMV resistance in soybeans.  相似文献   

17.
Soybean mosaic virus (SMV) commonly affects soybean production worldwide, and the SC18 strain has been widespread in China. This study aimed to characterize and map the SC18 resistance genes present in soybean cultivars ‘Kefeng No. 1’ and ‘Qihuang 22’. Inheritance analysis revealed that two independent single dominant genes in Kefeng No. 1 and Qihuang 22 confer resistance to SC18. Using simple sequence repeat (SSR) markers and bulked segregant analysis, the Kefeng No. 1 and Qihuang 22 resistance genes were located on soybean chromosomes 2 and 13, respectively. We further screened two populations of recombinant inbred lines with 32 SSR markers in the target region, where the resistance gene in Kefeng No. 1 was fine mapped to an 80‐kb region containing six putative genes. Sequence and expression analyses of these genes revealed that SMV resistance in Kefeng No. 1 was probably attributable to three of the candidate genes (i.e. Glyma.02G127800, Glyma.02G128200 and Glyma.02G128300). Collectively, the results of this study will greatly facilitate the cloning of SC18 resistance genes and marker‐assisted breeding of SMV‐resistant soybean cultivars.  相似文献   

18.
大豆种粒斑驳抗性的遗传分析及基因定位   总被引:1,自引:0,他引:1  
运用SSR标记技术及分离群体组群分析法(BSA法), 对大豆品系3C624×东农8143的F2、F3代群体接种SMV1号株系鉴定种粒斑驳抗性, 并进行抗种粒斑驳基因的分子定位。结果表明, 东农8143对SMV1号株系的种粒斑驳抗性受1对显性基因控制。用Mapmaker/Exp 3.0b进行连锁分析, 抗种粒斑驳基因位于大豆染色体组的F连锁群上, 并获得了与抗种粒斑驳基因紧密连锁的5个SSR标记Sat_297、Sat_229、Sat_317、Satt335和Sct_188, 标记与抗病基因间的排列顺序和连锁距离为Sat_297–12.4 cM–Sat_229–3.6 cM–SRSMV1–1.7 cM–Sat_317–2.4 cM– Satt335–13.8 cM–Sct_188。其中近距离标记Sat_229(3.6 cM)、Sat_317(1.7 cM)和Satt335(4.1 cM)可用于标记辅助选择育种和抗源筛选。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号