首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study explores the ecological and economic impacts of interactions between escaped farmed and wild Atlantic salmon (Salmo salar, Salmonidae) over generations. An age‐ and stage‐structured bioeconomic model is developed. The biological part of the model includes age‐specific life‐history traits such as survival rates, fecundity and spawning successes for wild and escaped farmed salmon, as well as their hybrids, while the economic part takes account of use and non‐use values of fish stock. The model is simulated under three scenarios using data from the Atlantic salmon fishery and salmon farming in Norway. The social welfare is derived from harvest and wild salmon while the economic benefits of fishing comprise both sea and river fisheries. The results reveal that the wild salmon stock is gradually replaced by salmon with farmed origin, while the total social welfare and economic benefit decline, although not at the same rate as the wild salmon stock.  相似文献   

2.
Laffaille P. Impact of stocked Atlantic salmon (Salmo salar L.) on habitat use by the wild population.
Ecology of Freshwater Fish 2011: 20: 67–73. © 2010 John Wiley & Sons A/S Abstract – We investigated the summer habitat occupied by populations of young‐of‐the‐year wild and stocked (farmed populations released into the native range) Atlantic salmon under allopatric and sympatric conditions. Under allopatric conditions, farmed and wild salmon occupied habitats with the same characteristics. The salmon preferentially occupied the riffle areas. However, under sympatric conditions, the fish occupied meso‐ and micro‐habitats with different characteristics. Wild salmon avoided habitats used by farmed salmon and preferred glide areas with considerable vegetation cover. This study suggests that differences in the pattern of habitats used by young Atlantic salmon were both size‐ and origin‐dependent and may result from intra‐species competition between farmed and wild populations. Given that stocking with farmed Atlantic salmon is carried out intensively to enhance recreational angling or to conserve salmon populations, this study warns that this can have a negative impact on the extant wild Atlantic salmon population.  相似文献   

3.
Offshore net pen fish farming provides a cost‐efficient means for production of marine finfish, and there is great interest in development of net pen operations in domestic waters. However, there are concerns over the possible genetic and ecological impacts that escaped fish may have on wild populations. We used individual‐based simulations, with parameter values informed by life history and genetic data, to investigate the short‐term (50 yr) impacts of net pen failures on the genetic composition of cobia, Rachycentron canadum, stocks in the Gulf of Mexico. Higher net pen failure rates resulted in greater genetic impacts on the wild population. Additionally, the use of more genetically differentiated source populations led to larger influxes of non‐native alleles and greater temporal genetic change in the population as a result of net pen failure. Our results highlight the importance of considering the appropriate source population for broodstock collection in net pen aquaculture systems and help to provide a general set of best management practices for broodstock selection and maintenance in net pen aquaculture operations. A thorough understanding of the genetic diversity, stock structure, and population demography of target species is important to determine the impact escapees can have on wild populations.  相似文献   

4.
Many studies have identified the importance of local adaptation in Atlantic salmon (Salmo salar) and the strong genetic differences that exist between allopatric or parapatric resident and anadromous populations. However, as truly sympatric migratory phenotypes of Atlantic salmon have not been studied, it remains unclear whether distinct genotypes previously associated with life history differences are maintained through reproductive isolation and subsequent genetic drift or through natural selection induced by different life history requirements. In this study, sympatric anadromous and resident Atlantic salmon were sampled from three Newfoundland (Canada) watersheds to evaluate the genetic divergence of these life history forms. Eight microsatellite loci were used to quantify genetic variation within and among populations. Metrics of genetic differentiation (exact tests for population differentiation, pairwise θ values) provide no evidence of genetic differentiation between some sympatric anadromous and resident phenotypes within a system with no history of segregation. In the remaining two watersheds, the observed differentiation appears to be a consequence of historical segregation rather than life history form. Nonetheless, these differences have been maintained in contemporary times for several generations. At broader spatial scales, resident salmon were more genetically divergent from one another than anadromous life history forms and were more closely related to anadromous salmon from within their watershed than to resident salmon from other watersheds. The study indicates that both life history forms can be maintained within a single population, but that sympatric populations of different life histories can maintain genetic differences for at least several generations after being reconnected.  相似文献   

5.
Genetic diversity between three farmed and four wild populations of Atlantic salmon from Ireland and Norway were analysed using 15 microsatellite markers. High levels of polymorphism were observed over all populations with the average number of alleles and average heterozygosity at 17.8 and 0.70, respectively. Farmed salmon showed less genetic variability than wild salmon in terms of allelic diversity but not necessarily in terms of overall heterozygosity. Between farmed populations significant differences were observed in expected heterozygosity suggesting that more intensive breeding practices may have resulted in a further erosion of genetic variability. Phylogenetic analysis using either populations or individuals as nodes show a clustering of populations into two groups, farmed and wild. This suggests that founder effects and subsequent selection have had more effect on the genetic differentiation between these strains than geographical separation. This technology has great potential for use in aquaculture situation where levels of genetic variation could be monitored and inbreeding controlled in a commercial breeding progra.  相似文献   

6.
Farmed Atlantic salmon, Salmo salar, frequently escape from the aquaculture industry and interact with wild populations. The impact of these interactions on the wild populations will depend, in part, on differences in their performances. This study compared the swimming and cardiac performance of farmed salmon (Aquagen) with their founder population from the River Namsen both before and after gamete stripping. Cardiac output (CO), heart rate (HR), and stroke volume (SV), which were measured by placing Doppler flow probes around the ventral aorta of the fish, increased with exercise, but the response did not significantly differ between farmed and wild salmon. Similarly, the swimming performance of wild salmon never significantly differed from the farmed salmon. The overall similarity in swimming and cardiac performance between farmed and wild Atlantic salmon observed in the present study suggests that cultured salmon may have the ability to be competitive with the wild salmon in native waters.  相似文献   

7.
A previous study described genetic changes in a wild Atlantic salmon , Salmo salar L., population resulting from the spawning of escaped farmed salmon in the Glenarm River, Northern Ireland, in 1990. This study reports an extension of the original investigation with a further follow-up sample that was taken from the river in 1997 to assess the genetic status of the wild population two generations after the original hybridization between the wild population and the farmed strain. Overall genetic variation across eight polymorphic allozyme loci indicated that the wild population remains significantly different from the pre-escape population and from the immediate post-escape population, the presence of an allele not having been previously detected in this population ( GPI-1,2*140 ), suggesting that further incursion(s) of farmed salmon may have taken place.  相似文献   

8.
Abstract  The prevalence of escaped farmed Atlantic salmon, Salmo salar L., in the River Ewe, western Scotland, was assessed. After the establishment of smolt cages in the catchment and marine cages near the river mouth during 1986–1987, approximately 425 000 parr and smolts, and 122 000 growers have escaped. Between 1987 and 2001, farmed salmon occurred in the rod fishery in 13 of the 15 years, contributing at least 5.8% of the total catch, with a maximum annual frequency of 27.1%. It was estimated that <1% of fish escaping from the marine cages entered the river, but contributed at least 27% of potential anadromous spawners in 1997. Radiotagged, farmed fish in 2001 probably spawned in three subcatchments also used by tagged wild fish. Despite the likelihood of hybridisation there was no change in the median weight or marine age of wild fish, but smolt age decreased significantly ( P  < 0.02). The Ewe has a depleted wild salmon population (≤900 anadromous adults), and further genetic introgression by escapees should be prevented.  相似文献   

9.
  1. Atlantic salmon populations have declined in recent decades. Many of the threats to the species during its freshwater and coastal residency periods are known, and management approaches are available to mitigate them. The global scale of climate change and altered ocean ecosystems make these threats more difficult to address.
  2. Managers need to be aware that promoting strong, healthy, and resilient wild populations migrating from rivers is the optimal approach currently to reduce the impacts of changing ecosystems and low marine survival. We argue that a fundamental strategy should be to ensure that the highest number of wild smolts in the best condition leave from rivers and coastal areas to the ocean. There is great scope for water quality, river regulation, migration barriers, and physical river habitat improvements.
  3. Maintenance of genetic integrity and diversity of wild populations by eliminating interbreeding with escaped farmed salmon, eliminating poorly planned stocking, and reducing impacts that reduce population sizes to dangerously low levels will support the ability of Atlantic salmon to adapt to changing environments. Reducing the impacts from aquaculture and other human activities in coastal areas can greatly increase marine survival in affected areas.
  4. As most of the threats to wild salmon are the result of human activities, a focus on human dimensions and improved communication, from scientific and management perspectives, needs to be increasingly emphasized. When political and social will are coupled with adequate resources, managers often have the tools to mitigate many of the threats to wild salmon.
  相似文献   

10.
Invasive species often exhibit a suite of life‐history traits that promote rapid population growth, including early age and small size at maturation, and high reproductive investment. The common expression of these “fast” life‐history traits in invasive populations could be the result of plastic and/or genetic responses to the non‐native environment, or in response to the process of range expansion. To determine the relative importance of plastic and genetic contributions to the expression of life‐history traits, we reared two native Canadian and two invasive Spanish populations of Pumpkinseed sunfish (Lepomis gibbosus) in a common environment in central Ontario, Canada. In the wild, European Pumpkinseed tend to exhibit faster juvenile growth rates, younger age and smaller size at maturity, and higher reproductive investment than native North American populations. When reared in a common environment, both native and invasive populations exhibited similar juvenile growth rates, and similar age and size at maturity, suggesting that the differences seen among wild populations are a plastic response to the warmer non‐native environment. However, reproductive investment was consistently higher in the Spanish populations regardless of rearing environment, suggesting a genetic difference in reproductive investment between native and invasive populations. Selection for greater reproductive investment in non‐native Pumpkinseed may have contributed to their widespread success in Europe.  相似文献   

11.
Straying between wild anadromous salmon populations is a natural process, and it is likely that the amount of gene migration from straying fish results from and reflects coadaptation between local populations. In contrast, introgression from cultured or transplanted fish may be disruptive. Data used to describe the genetic structure of populations usually come from biochemical genetic traits which may not reflect the strong selection that affects life-history characteristics. Simulations of a simple model of populations which included selection, genetic exchange and gene sampling error were conducted to examine the influences of these processes on population structure within the system. Results of these simulations indicate that data from loci not influenced by natural selection may provide a very different picture of population structure than data from loci subject to dispersive selection. Even relatively small decreases in average population fitness (0.0075) that accompany relatively weak selection can produce divergence between populations in the presence of local immigration rates of between 1 and 10%. Because of natural or anthropogenic causes, many population systems may not be in genetic equilibrium. Estimates from these simulations of parameters such as Ne, GST, Nem, and the G-statistic for heterogeneity, which are used to describe population genetic structure, may differ substantially from equilibrium values and from expectations for neutral loci. Statistically significant divergence between populations can occur even in the presence of 10 immigrants per generation. Results of simulations provide a means to examine potential results of introgression of alien fish into natural populations; but without knowing the extent of gene migration which occurs among wild populations and the magnitude of loss in average fitness of populations which results from introgression, it is not possible to predict what the impact will be.  相似文献   

12.
As with any other intensively farmed animal species, the Atlantic salmon has been selectively bred and cross-bred to maximize desirable traits. Selection tends to diminish genetic diversity in target populations, which among other negative effects is hypothesized to decrease their capacity to confront a broad variety of pathogens. We have analyzed mitochondrial (mtDNA) as well as major histocompatibility complex (MHC) DNA sequences from individuals collected from a single aquaculture cage in southern Chile. Interestingly, only two mtDNA haplotypes were obtained; however, several different MH alleles were detected, with divergence values that were compared with those of natural populations of salmonids. Thus, it seems evolutionary processes responsible of keeping MH diversity in the wild managed to retain MH variability in farmed Atlantic salmon, maintaining high immune diversity despite the generally lower levels of observed neutral genetic diversity.  相似文献   

13.
The role of escaped farmed salmon in spreading infectious agents from aquaculture to wild salmonid populations is largely unknown. This is a case study of potential disease interaction between escaped farmed and wild fish populations. In summer 2012, significant numbers of farmed Atlantic salmon were captured in the Hardangerfjord and in a local river. Genetic analyses of 59 of the escaped salmon and samples collected from six local salmon farms pointed out the most likely source farm, but two other farms had an overlapping genetic profile. The escapees were also analysed for three viruses that are prevalent in fish farming in Norway. Almost all the escaped salmon were infected with salmon alphavirus (SAV) and piscine reovirus (PRV). To use the infection profile to assist genetic methods in identifying the likely farm of origin, samples from the farms were also tested for these viruses. However, in the current case, all the three farms had an infection profile that was similar to that of the escapees. We have shown that double-virus-infected escaped salmon ascend a river close to the likely source farms, reinforcing the potential for spread of viruses to wild salmonids.  相似文献   

14.
15.
Microparasites play an important role in the demography, ecology and evolution of Pacific salmonids. As salmon stocks continue to decline and the impacts of global climate change on fish populations become apparent, a greater understanding of microparasites in wild salmon populations is warranted. We used high‐throughput, quantitative PCR (HT‐qRT‐PCR) to rapidly screen 82 adult Chinook salmon from five geographically or genetically distinct groups (mostly returning to tributaries of the Fraser River) for 45 microparasite taxa. We detected 20 microparasite species, four of which have not previously been documented in Chinook salmon, and four of which have not been previously detected in any salmonids in the Fraser River. Comparisons of microparasite load to blood plasma variables revealed some positive associations between Flavobacterium psychrophilum, Cryptobia salmositica and Ceratonova shasta and physiological indices suggestive of morbidity. We include a comparison of our findings for each microparasite taxa with previous knowledge of its distribution in British Columbia.  相似文献   

16.
Piscine orthoreovirus genotype 1 (PRV‐1) is widespread in farmed Atlantic salmon (Salmo salar L.) populations in northern Europe, Canada and Chile. PRV‐1 occurs in wild fish in Norway and Canada; however, little information of its geographical distribution in wild populations is currently available, and the effect of PRV‐1 infection in wild populations is currently unknown. In this study, we present the findings of a survey conducted on 1,130 wild salmonids sampled in Denmark, Sweden, Ireland, Faroe Islands, France, Belgium and Greenland between 2008 and 2017. PRV‐1 is reported for the first time in wild salmonids in Denmark, Sweden, Faroe Island and Ireland. The annual PRV‐1 prevalence ranged from 0% in France, Belgium and Greenland to 43% in Faroe Islands. In total, 66 samples tested positive for PRV‐1, including Atlantic salmon broodfish returning to spawn and Atlantic salmon collected at the feeding ground north of Faroe Islands. The phylogenetic analysis of S1 sequences of the PRV‐1 isolates obtained in this survey did not show systematic geographical distribution. This study sheds light on the spread and genetic diversity of the virus identified in populations of free‐living fish and provides rationale for screening wild broodfish used in restocking programmes.  相似文献   

17.
Run timing of escaped farmed Atlantic salmon Salmo salar vs. wild fish was compared by the use of video camera surveillance in 15 rivers over several years, covering 1600 km of the Norwegian coastline (from 58°N to 69°N). Annual runs of wild salmon varied among rivers from <200 fish to more than 10 000. During the surveillance period that for most rivers extended from late May to early October, larger‐sized salmon (fish ≥ 65 cm) generally entered the rivers earlier than small fish. The percentage of salmon identified as escaped farmed fish ranged from 0.1% to 17% across rivers with an average of 4.3%. Estimates of escapees are, however, assumed to represent minimum values because an unknown number of farmed fish passing the video cameras may have been misclassified as wild fish. By the use of a linear mixed model and generalised additive mixed models, it was found that the relationship between run timing and fish length differed significantly between farmed and wild salmon. While small‐sized farmed and wild fish (<65 cm) entered the river at about the same time, wild large salmon returned on average 1–2 weeks earlier than similarly sized escapees. The proportion of large‐sized farmed escapees also increased until late August and decreased thereafter. In contrast, there was a relatively constant and lower proportion of small‐sized escapees throughout the season. Within the surveillance period, there was no evidence of any exceptionally late runs of fish classified as escaped farmed salmon.  相似文献   

18.
Salmon from different locations in a watershed can have different life histories. It is often unclear to what extent this variation is a response to the current environmental conditions an individual experiences as opposed to local‐scale genetic adaptation or the environment experienced early in development. We used a mark–recapture transplant experiment in the Shasta River, CA, to test whether life‐history traits of juvenile Chinook salmon Oncorhynchus tshawytscha varied among locations, and whether individuals could adopt a new life history upon encountering new habitat type. The Shasta River, a Klamath River tributary, has two Chinook salmon spawning and juvenile rearing areas, a lower basin canyon (river km 0–12) and upper basin spring complex (river km 40–56), characterised by dramatically different in‐stream habitats. In 2012 and 2013, we created three experimental groups: (i) fish caught, tagged and released in the upper basin; (ii) fish caught at the river mouth (confluence with the Klamath River, river km 0), tagged and released in the upper basin; and (iii) fish caught at the river mouth, tagged and released in the lower basin. Fish released in the upper basin outmigrated later and at a larger size than those released in the lower basin. The traits of fish transplanted to the upper basin were similar to fish originating in the upper basin. Chinook salmon juvenile life‐history traits reflected habitat conditions fish experienced rather than those where they originated, indicating that habitat modification or transportation to new habitats can rapidly alter the life‐history composition of populations.  相似文献   

19.
The loss of variability in farmed populations and the risks of interactions with wild populations support the need for the genetic monitoring of species farmed throughout the world. In Brazil, the tambaqui is the most widely farmed native fish species. Despite this, there are no data on the pedigree of the farmed stocks, and the potential for interactions with wild populations in the Amazon basin has raised concerns with regard to the genetic variability of these stocks. The present study analysed sequences of the mitochondrial Control Region and 12 microsatellites to characterize the genetic variability of seven historically important commercial tambaqui breeding centres located in four different regions of Brazil, and compared these sequences with those obtained from individuals collected from a wild population. High levels of genetic diversity were found in the wild population, whereas genetic diversity was reduced in both markers in most captive populations, except for the broodstock located near the Amazon River. High FST and DEST indices were recorded between the wild population and most of the captive stocks analysed. The drastic reduction in genetic diversity found in most captive stocks and the difference between these stocks and the wild population may have been the result of the small size of the founding populations and the absence of breeding management. The renewal of the broodstocks and the application of breeding management techniques are recommended. In the Amazon region, in addition, the use of broodstocks that are genetically very different from local wild populations should be avoided.  相似文献   

20.
Conservation of migratory salmonids requires understanding their ecology at multiple scales, combined with assessing anthropogenic impacts. We present a case‐study from over 100 years of data for the endemic landlocked Atlantic salmon (Salmo salar, Salmonidae) and brown trout (Salmo trutta, Salmonidae) in Lake Vänern, Sweden. We use this case‐study to develop life history‐based research and monitoring priorities for migratory salmonids. In Vänern, small wild populations of salmon and trout remain only in the heavily regulated Rivers Klar (Klarälven) and Gullspång (Gullspångsälven), and commercial and sport fisheries are maintained by hatchery stocking. These populations represent some of the last remaining large‐bodied (up to 20 kg) landlocked salmon stocks worldwide. We found that one of four stocks of wild fish has increased since 1996; the other three remain critically low. Hatchery return rates for three of four stocks appear stable at roughly 1% and annual fisheries catch is roughly 75 metric tons, with an estimated 7.5% of hatchery smolts being recruited to the fishery; this also appears relatively stable since 1990. Our analysis reveals much uncertainty in key data requirements, including both river return and fisheries catch rates, estimates of wild smolt production and survival, and hatchery breeding and genetics protocols. These uncertainties, coupled with a lack of information on their riverine and lacustrine ecology, preclude effective management of these unique populations. We conclude with a framework for a life history‐based approach to research and monitoring for Vänern salmon and trout, which should be applicable for all endemic, migratory salmonid populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号