首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the Mediterranean, blue whiting, Micromesistius poutassou, constitutes a traditional fisheries resource. Over several decades, blue whiting landings in the Catalan coast (northwestern Mediterranean) have displayed cyclical variations, of c. 6 yrs, slightly decreased to five in the last two decades, as shown through wavelet analysis. These fluctuations have persisted under very different levels of fishing effort. This study evaluates the hypothesis that deep‐water formation in the adjacent Gulf of Lions, and the enhanced primary productivity related to it, determines recruitment strength in blue whiting that results ultimately in the observed periodicity of the blue whiting landings. The link between landings and environmental drivers was explored using lagged cross‐correlations, with 0‐ and 1‐yr lag. The variables considered included large‐scale indices [North Atlantic Oscillation (NAO) and the Atlantic Multi‐decadal Oscillation (AMO)], Mediterranean climate indices [MO and Western Mediterranean Oscillation (WeMO)], and variables defining the local environmental conditions in the northwestern Mediterranean (sea‐air heat flux, winter air temperature anomaly and Rhône river runoff). Significant correlations were only found between landings (1961–2011) and sea‐air heat flux, which is generally taken as an indicator of processes of deep water convection, at 0 and 1‐yr lag. These results suggest that the observed fluctuations in blue whiting landings respond to oceanographic processes taking place in the Gulf of Lions.  相似文献   

2.
Climate has been linked to variation in marine fish abundance and distribution, but often the mechanistic processes are unknown. Atlantic croaker (Micropogonias undulatus) is a common species in estuarine and coastal areas of the mid‐Atlantic and southeast coasts of the U.S. Previous studies have identified a correlation between Atlantic croaker abundance and winter temperatures in Chesapeake Bay, and have determined thermal tolerances of juveniles. Here we re‐examine the hypothesis that winter temperature variability controls Atlantic croaker population dynamics. Abundance indices were analyzed at four life history stages from three regions along the east coast of the U.S. Correlations suggest that year‐class strength is decoupled from larval supply and is determined by temperature‐linked, overwinter survival of juveniles. Using a relation between air and water temperatures, estuarine water temperature was estimated from 1930 to 2002. Periods of high adult catch corresponded with warm winter water temperatures. Prior studies indicate that winter temperature along the east coast is related to the North Atlantic Oscillation (NAO); variability in catch is also correlated with the NAO, thereby demonstrating a link between Atlantic croaker dynamics, thermal limited overwinter survival, and the larger climate system of the North Atlantic. We hypothesize that the environment drives the large‐scale variability in Atlantic croaker abundance and distribution, but fishing and habitat loss decrease the resiliency of the population to periods of poor environmental conditions and subsequent weak year classes.  相似文献   

3.
Time series of commercial landings from the Algarve (southern Portugal) from 1982 to 1999 were analyzed using min/max autocorrelation factor analysis (MAFA) and dynamic factor analysis (DFA). These techniques were used to identify trends and explore the relationships between the response variables (annual landings of 12 species) and explanatory variables [sea surface temperature, rainfall, an upwelling index, Guadiana river (south‐east Portugal) flow, the North Atlantic oscillation, the number of licensed fishing vessels and the number of commercial fishermen]. Landings were more highly correlated with non‐lagged environmental variables and in particular with Guadiana river flow. Both techniques gave coherent results, with the most important trend being a steady decline over time. A DFA model with two explanatory variables (Guadiana river flow and number of fishermen) and three common trends (smoothing functions over time) gave good fits to 10 of the 12 species. Results of other models indicated that river flow is the more important explanatory variable in this model. Changes in the mean flow and discharge regime of the Guadiana river resulting from the construction of the Alqueva dam, completed in 2002, are therefore likely to have a significant and deleterious impact on Algarve fisheries landings.  相似文献   

4.
The identification of anthropogenic and environmental drivers on length‐at‐age of fish stocks is important to understanding ecosystem dynamics and harvest intensity. We evaluated coastwide annual growth of n = 187,115 Atlantic Menhaden (Brevoortia tyrannus) and n = 299,185 Gulf Menhaden (B. patronus), using samples collected from the North, Mid‐, and South Atlantic from 1961 to 2016 and across the Gulf of Mexico from 1977 to 2016. Using hierarchical models of age 1 growth and age 2 growth, we evaluated a suite of candidate predictors including fishery landings, easterly (U) and northerly (V) wind velocity, river discharge, juvenile abundance, and the Atlantic Multi‐decadal Oscillation (AMO). We found age 2 growth rates were smaller than age 1 growth rates for both species and that Atlantic Menhaden growth rates were 3–4 times greater than Gulf Menhaden. Age 1 growth rate of Atlantic Menhaden was positively affected by landings lagged by one year, indicating a density‐dependent mechanism. In addition, AMO (negative effect), and wind U (positive effect) and wind V (negative effect) in the North Atlantic region were significant factors influencing coastwide age 1 Menhaden growth. Wind V (negative effect) and AMO (positive effect) influenced age 1 Gulf Menhaden growth. No environmental factors were found to have an effect on age 2 Atlantic Menhaden growth, and AMO was the only significant predictor (weak negative effect) of age 2 Gulf Menhaden growth. Fishing pressure was the primary influence on age 1 Atlantic Menhaden growth, whereas age 1 Gulf Menhaden growth was primarily influenced by environmental conditions.  相似文献   

5.
Recent large fluctuations in an index of relative abundance for the silky shark in the eastern Pacific Ocean have called into question its reliability as a population indicator for management. To investigate whether these fluctuations were driven by environmental forcing rather than true changes in abundance, a Pacific‐wide approach was taken. Data collected by observers aboard purse‐seine vessels fishing in the equatorial Pacific were used to compute standardized trends in relative abundance by region, and where possible, by shark size category as a proxy for life stage. These indices were compared to the Pacific Decadal Oscillation (PDO), an index of Pacific Ocean climate variability. Correlation between silky indices and the PDO was found to differ by region and size category. The highest correlations by shark size category were for small (<90 cm total length [TL]) and medium (90–150 cm TL) sharks from the western region of the equatorial eastern Pacific (EP) and from the equatorial western Pacific. This correlation disappeared in the inshore EP. Throughout, correlations with the PDO were generally lower for large silky sharks (>150 cm TL). These results are suggestive of changes in the small and medium silky indices being driven by movement of juvenile silky sharks across the Pacific as the eastern edge of the Indo‐Pacific Warm Pool shifts location with ENSO events. Lower correlation of the PDO with large shark indices may indicate that those indices were less influenced by environmental forcing and therefore potentially less biased with respect to monitoring population trends.  相似文献   

6.
The objective of this study was to assess the effect of environmental variations on the abundance of Sardinella aurita and Sardinella maderensis in Senegalese waters in the upwelling system. Monthly data indicating the abundance of sardinella were first estimated from commercial statistics, using Generalized Linear Model from 1966 to 2011. Abundance indices (AIs) were then compared with environmental indices, at the local scale, a Coastal Upwelling Index (CUI) and a coastal Sea Surface Temperature (SST) index, and on a large scale, the North Atlantic Oscillation (NAO), the Atlantic Multidecadal Oscillation (AMO) and the Multivariate El Niño Southern Oscillation Index (MEI), using correlations and times series analyses. The results showed that the abundance of sardinella is determined by a strong seasonal pattern and inter‐annual fluctuations. The abundance of S. aurita peaked in spring and in autumn, whereas that of S. maderensis peaked in the warm season (July–September). The trend of the sardinella abundance was significantly correlated with the CUI, especially in autumn and spring. Interannual fluctuations of S. maderensis and S. aurita abundance are, respectively, driven by the precocity and the duration of the upwelling season that is attributed to distinct migration patterns. Both sardinella species also respond with a delay of around 4 years to the winter NAO index and the autumn CUI, and the AMO index, respectively, both related to migration patterns. The wide variations in sardinella biomass are caused by variations in environmental conditions, which should be considered in the implementation of an ecosystem‐based approach in sardinella stocks management.  相似文献   

7.
Meta‐analysis of marine biological resources can elucidate general trends and patterns to inform scientists and improve management. Crustacean stocks are indispensable for European and global fisheries; however, studies of their aggregate development have been rare and confined to smaller spatial and temporal scales compared to fish stocks. Here, we study the aggregate development of 63 NE Atlantic and Mediterranean crustacean stocks of six species (Nephrops norvegicus, Pandalus borealis, Parapenaeus longirostris, Aristeus antennatus, Aristaeomorpha foliacea and Squilla mantis) in 1990–2013 using biomass index data from official stock assessments. We implemented a dynamic factor analysis (DFA) to identify common underlying trends in biomass indices and investigate the correlation with the North Atlantic Oscillation (NAO) index. The analysis revealed increasing and decreasing trends in the northern and southern NE Atlantic, respectively, and stable or slowly increasing trends in the Mediterranean, which were not related to NAO. A separate meta‐analysis of the fishing mortality (F) and biomass (B) of 39 analytically assessed crustacean stocks was also carried out to explore their development relative to MSY. NE Atlantic crustacean stocks have been exploited on average close to FMSY and remained well above BMSY in 1995–2013, while Mediterranean stocks have been exploited 2–4 times above FMSY in 2002–2012. Aggregate trends of European crustacean stocks are somewhat opposite to trends of fish stocks, suggesting possible cascading effects. This study highlights the two‐speed fisheries management performance in the northern and southern European seas, despite most stocks being managed in the context of the European Union's Common Fisheries Policy.  相似文献   

8.
We report results from 28 yr of a midwater trawl survey of pelagic juvenile rockfish (Sebastes spp.) conducted off the central California coast. The fishery‐independent survey is designed to provide pre‐recruit indices of abundance for use in groundfish stock assessments. Standardized catch rate time series for 10 species were developed from delta‐generalized linear models that include main effects for year, station, and calendar date. Results show that interannual fluctuations of all 10 species are strongly coherent but highly variable, demonstrating both high‐ and low‐frequency components. A similarly coherent result is observed in the size composition of fish, with large fish associated with elevated catch rates. In contrast, spatial and seasonal patterns of abundance show greater species‐specific differences. A comparison of the shared common trend in pelagic juvenile rockfish abundance, derived from principal components analysis, with recruitments from five rockfish stock assessments shows that the time series are significantly correlated. An examination of oceanographic factors associated with year‐to‐year variability indicates that a signature of upwelled water at the time of the survey is only weakly related to abundance. Likewise, basin‐scale indices (the Multivariate El Niño‐Southern Oscillation Index, the Pacific Decadal Oscillation, the North Pacific Gyre Oscillation, and the Northern Oscillation Index) are poorly correlated with abundance. In contrast, sea level anomalies in the months preceding the survey are well correlated with reproductive success. In particular, equatorward anomalies in the alongshore flow field following the spawning season are associated with elevated survival and poleward anomalies with poor survival.  相似文献   

9.
  1. Sharks are a priority for conservation because numerous species, including small-sized coastal species, are being heavily exploited by commercial and recreational fisheries. Understanding the genetic population structure of sharks is key to effective management, maximizing their evolutionary potential in a rapidly changing environment and preventing population declines.
  2. Limited dispersal is an important factor promoting population divergence for several coastal shark species. The genetic variation in 14 microsatellite loci and 21,006 single nucleotide polymorphisms genotyped using restriction-site-associated DNA sequencing was analysed to assess the genetic structure of the bonnethead shark, Sphyrna tiburo, in the western North Atlantic.
  3. Genetic differences were identified among three well-defined regions: the western Florida coast, the south-eastern US Atlantic coast, and the southern Gulf of Mexico. Results support previous studies based on mitochondrial DNA sequences in defining differences among these regions and suggest limitations of bonnethead sharks in routinely performing long-distance migrations.
  4. The limited connectivity among regions explains the pattern of genetic divergence but also reported divergence at the species/subspecies level. These genetically discrete bonnethead populations have independent evolutionary histories that may include local adaptations to specific areas.
  5. Bonnethead sharks are currently managed as two stocks in the USA owing to recent genetic, tagging, and life history studies; however, no stock assessments or management plans exist for Mexico. These results not only serve to reinforce US management strategies and provide critical data about the extent of gene flow and sex dispersal among populations, but also begin the process of effective management in the waters of Mexico to ensure the long-term productivity and resilience of this species. With an absence of gene flow between populations from US waters and the southern Gulf of Mexico, there is a need for management plans based upon independent biological and population dynamics data since limited or no opportunities for populations to interchange individuals may occur to re-establish population viability.
  相似文献   

10.
The UK coastal trap fisheries target two key species, European lobster Homarus gammarus (L.) and brown crab Cancer pagurus L. Their stock status is assessed periodically using size‐based, yield‐per‐recruit analysis. Fishery trends are described using landings and, where available, effort data to estimate catch per unit of effort (CPUE), nominally proportional to abundance. Despite being caught together, assessments assume that concurrent capture of these species does not distort their individual CPUE estimates. Here, an in situ experiment tested impacts of inter‐specific and intra‐specific interactions by pre‐loading baited traps with different species and observing subsequent catches. Pre‐loaded European lobster significantly reduced brown crab catches, whereas, other species produced no such effects. The findings highlight the likely inconsistency of using CPUE as an index of abundance if landings data originate from a mixed‐species fishery in which species interactions and targeting behaviour of fishers are unknown or un‐quantified.  相似文献   

11.
Abundance of marine stocks fluctuates in response to both internal processes (e.g., density dependence) and exogenous drivers, including the physical environment, fishing, and trophodynamic interactions. In the United States, research investigating ecosystem drivers has been focused in data‐rich systems, primarily in the North Atlantic and North Pacific. To develop a more holistic understanding of important ecosystem drivers in the Southeast U.S. continental shelf Large Marine Ecosystem, we applied generalized linear and dynamic linear modeling to investigate the effects of climate and fishing covariates on the relative abundance trends of 71 demersal fish and invertebrate species sampled by a coastal trawl survey during 1990–2013. For the assemblage as a whole, fishing effects predominated over climate effects. In particular, changes in trawling effort within the penaeid shrimp fishery governed abundance trends of bony fishes, invertebrates, and elasmobranchs, a likely result of temporal changes in bycatch mortality. Changes in trawling intensity induced changes in overall community composition and appear to have altered trophic interactions among particular species. Among climate indices investigated, the Pacific Decadal Oscillation and the Western Bermuda High Index were most prevalent in well‐supported dynamic linear models. Observed annual abundance trends were synchronous among some taxonomically related species, highlighting similar responses to exogenous influences based on life history. This study strengthens the foundation for generating hypotheses and advancing ecosystem‐based fisheries research within the region.  相似文献   

12.
We applied dendrochronology (tree‐ring) methods to develop multidecadal growth chronologies from the increment widths of yelloweye rockfish (Sebastes ruberrimus) otoliths. Chronologies were developed for the central California coast, a site just north of Vancouver Island, British Columbia, and at Bowie Seamount west of the Queen Charlotte Islands, British Columbia. At each site, synchronous growth patterns were matched among otoliths via the process of cross‐dating, ensuring that the correct calendar year was assigned to all increments. Each time series of growth‐increment measurements was divided by the values predicted by a best‐fit negative exponential function, thereby removing age‐related trends. These detrended time series were averaged into a master chronology for each site, and chronologies were correlated with monthly averages of sea surface temperatures, upwelling, the Northern Oscillation Index, and the Pacific Decadal Oscillation. The two northern growth chronologies positively correlated with indices of warm ocean conditions, especially from the prior summer through the spring of the current year. During the same period, the California chronology positively correlated with indices of cool ocean conditions, indicating an opposing productivity regime for yelloweye rockfish between the California Current and the Gulf of Alaska. Overall, this study demonstrates how tree‐ring techniques can be applied to quickly develop annually resolved chronologies and establish climate–growth relationships across various temporal and spatial scales.  相似文献   

13.
The consequence of elevated ocean temperatures on commercial fish stocks is addressed using time series of commercial landings (1906–2004) and juvenile survey catch data (1904–2006) collected around Denmark. We analyze (i) whether warm‐water sole (Solea solea) has increased relative to Boreal plaice (Pleuronectes platessa) and (ii) whether two related warm‐water species (turbot, Psetta maxima and brill, Scophthalmus rhombus) show similar responses to increasing temperature or, alternatively, whether turbot (which has a broader juvenile diet) has been favored. Since the early 1980s, both sole and turbot have constituted an increasing part of the commercial landings and survey catches, as compared with plaice and brill, respectively. These changes in species composition were linked to sea surface temperatures, Northern Hemisphere temperature anomalies (NHA) and the North Atlantic Oscillation. NHA was closely related and explained 43% of the observed variation in sole survey catches relative to the plaice catches and almost 38% of the observed variation in the sole landings relative to the plaice landings. For the less common species, turbot and brill, none of the global change indicators explained more than 15% of the variation, although all showed a positive relationship. Survey catch per unit effort increased significantly for both sole and turbot around the early 1980s, whereas catch per unit effort for plaice and brill remained constant. The results indicate that the abundance of warm‐water species is likely to increase with increasing temperature but also that species with similar life histories might react differently according to degree of specialization.  相似文献   

14.
Time series of landings may provide information crucial to achieving a better understanding of temporal variations in the abundances and compositions of exploited species and ecosystems. The waters off northern Taiwan, located in the southern East China Sea, are one of the most important fishing grounds for Taiwan’s coastal and neritic fisheries. Temporal variations in the abundances of the species exploited in this region are rarely studied because of the multi-gear fisheries involved. In this study, trends in the landing per unit effort (LPUE) time series for 13 trawl-targeted species (groups) off northern Taiwan from 1976 to 2007 were explored using dynamic factor analysis (DFA). Potential effects of fishing effort (number of vessels) and environmental factors [Southern Oscillation Index, sea surface temperature (SST) near northern Taiwan, and river discharge] were examined. The optimum DFA model included three common trends and three explanatory variables (excluding SST). A general decreasing pattern was identified from among the common trends, and this was observed in the LPUE time series for most of the species. Fishing effort is an important explanatory variable in the model, suggesting that it plays a critical role in explaining LPUE variations of trawl-targeted species. The common trends identified here could lead to new strategies for fisheries management, particularly where multi-gear fisheries operate and multiple species are targeted.  相似文献   

15.
The undulate ray Raja undulata Lacepède is a coastal species common along the north‐eastern Atlantic Ocean and Mediterranean Sea and is highly accessible to coastal fisheries. Between 2009 and 2015, the species was under a European Union (EU) fisheries moratorium that hampered the collection of data to assess its stock status in Portuguese waters. After that period, a small experimental EU fishing quota was set for Portugal enabling collection of fishery data under a fishermen self‐sampling scenario. Based on the data collected, R. undulata abundance was estimated along the Portuguese continental coast through the application of a N‐mixture model and incorporating environmental factors. The results support the species coastal and patchy nature across the study area with higher abundances estimated in areas associated with shallow sandy bottoms as the Southwest region. The present work constitutes an important step for the management of this fishery resource, in particular concerns about its abundance trends over time and its spatial distribution and habitat requirements.  相似文献   

16.
Stock‐based and ecosystem‐based indicators are used to provide a new diagnosis of the fishing impact and environmental status of European seas. In the seven European marine ecosystems covering the Baltic and the North‐east Atlantic, (i) trends in landings since 1950 were examined; (ii) syntheses of the status and trends in fish stocks were consolidated at the ecosystem level; and (iii) trends in ecosystem indicators based on landings and surveys were analysed. We show that yields began to decrease everywhere (except in the Baltic) from the mid‐1970s, as a result of the over‐exploitation of some major stocks. Fishermen adapted by increasing fishing effort and exploiting a wider part of the ecosystems. This was insufficient to compensate for the decrease in abundance of many stocks, and total landings have halved over the last 30 years. The highest fishing impact took place in the late 1990s, with a clear decrease in stock‐based and ecosystem indicators. In particular, trophic‐based indicators exhibited a continuous decreasing trend in almost all ecosystems. Over the past decade, a decrease in fishing pressure has been observed, the mean fishing mortality rate of assessed stocks being almost halved in all the considered ecosystems, but no clear recovery in the biomass and ecosystem indicators is yet apparent. In addition, the mean recruitment index was shown to decrease by around 50% in all ecosystems (except the Baltic). We conclude that building this kind of diagnosis is a key step on the path to implementing an ecosystem approach to fisheries management.  相似文献   

17.
The timing of recurring biological and seasonal environmental events is changing on a global scale relative to temperature and other climate drivers. This study considers the Gulf of Maine ecosystem, a region of high social and ecological importance in the Northwest Atlantic Ocean and synthesizes current knowledge of (a) key seasonal processes, patterns, and events; (b) direct evidence for shifts in timing; (c) implications of phenological responses for linked ecological‐human systems; and (d) potential phenology‐focused adaptation strategies and actions. Twenty studies demonstrated shifts in timing of regional marine organisms and seasonal environmental events. The most common response was earlier timing, observed in spring onset, spring and winter hydrology, zooplankton abundance, occurrence of several larval fishes, and diadromous fish migrations. Later timing was documented for fall onset, reproduction and fledging in Atlantic puffins, spring and fall phytoplankton blooms, and occurrence of additional larval fishes. Changes in event duration generally increased and were detected in zooplankton peak abundance, early life history periods of macro‐invertebrates, and lobster fishery landings. Reduced duration was observed in winter–spring ice‐affected stream flows. Two studies projected phenological changes, both finding diapause duration would decrease in zooplankton under future climate scenarios. Phenological responses were species‐specific and varied depending on the environmental driver, spatial, and temporal scales evaluated. Overall, a wide range of baseline phenology and relevant modeling studies exist, yet surprisingly few document long‐term shifts. Results reveal a need for increased emphasis on phenological shifts in the Gulf of Maine and identify opportunities for future research and consideration of phenological changes in adaptation efforts.  相似文献   

18.
The landings of Indian oil sardine (Sardinella longiceps, Clupeidae) along the south‐eastern Arabian Sea are about 43.8% of total Indian oil sardine production. The annual landings of this species exhibit large‐scale variability with prolonged years of surplus or deficit landings without identified reason. Evaluating Indian oil sardine landings along the Kerala coast during 1961–2017 in relation to environmental variations, we have elucidated a putative link between variability in landings versus environmental parameters and climate indices. The variables examined in this study, such as salinity and temperature along with physical indices such as upwelling and mixed layer depth (MLD) of the ocean help to propose a mechanism to temporal variability in the landings of Indian oil sardine. Colder temperature and timely intense upwelling lead to nutrient enrichment in the surface water, which promotes the growth of phytoplankton (chl‐a) and thereby food availability to Indian oil sardine are found during years with surplus catch. Less saline surface waters and shoaling of MLD at these times could lead to the aggregation of fish at particular depths and thereby a good catches. The reverse mechanism, such as more surface saline water, warm temperature, downwelling or weak upwelling, and less nutrient enrichment, leads to deficit landings. Further, it was noticed that the Pacific decadal oscillation and Atlantic multidecadal oscillation have a more pronounced impact on Indian oil sardine landings over the coast of south‐eastern Arabian Sea than previously reported ENSO associated impacts. All these point towards climate change implications for the Indian oil sardine fishery.  相似文献   

19.
Identifying factors that influence anadromous Pacific salmon (Oncorhynchus spp.) population dynamics is complicated by their diverse life histories and large geographic range. Over the last several decades, Chinook salmon (O. tshawytscha) populations from coastal areas and the Salish Sea have exhibited substantial variability in abundance. In some cases, populations within the Salish Sea have experienced persistent declines that have not rebounded. We analyzed a time series of early marine survival from 36 hatchery Chinook salmon populations spanning ocean entry years 1980–2008 to quantify spatial and temporal coherence in survival. Overall, we observed higher inter‐population variability in survival for Salish Sea populations than non‐Salish Sea populations. Annual survival patterns of Salish Sea populations covaried over smaller spatial scales and exhibited less synchrony among proximate populations relative to non‐Salish Sea populations. These results were supported by multivariate autoregressive state space (MARSS) models which predominantly identified region‐scale differences in survival trends between northern coastal, southern coastal, Strait of Georgia, and Puget Sound population groupings. Furthermore, Dynamic Factor Analysis (DFA) of regional survival trends showed that survival of southern coastal populations was associated with the North Pacific Gyre Oscillation, a large‐scale ocean circulation pattern, whereas survival of Salish Sea populations was not. In summary, this study demonstrates that survival patterns in Chinook salmon are likely determined by a complex hierarchy of processes operating across a broad range in spatial and temporal scales, presenting challenges to the management of mixed‐stock fisheries.  相似文献   

20.
Understanding large‐scale migratory behaviours, local movement patterns and population connectivity are critical to determining the natural processes and anthropogenic stressors that influence population dynamics and for developing effective conservation plans. Atlantic tarpon occur over a broad geographic range in the Atlantic Ocean where they support valuable subsistence, commercial and recreational fisheries. From 2001 through 2018, we deployed 292 satellite telemetry tags on Atlantic tarpon in coastal waters off three continents to document: (a) seasonal migrations and regional population connectivity; (b) freshwater and estuarine habitat utilization; (c) spawning locations; and (d) shark predation across the south‐eastern United States, Gulf of Mexico and northern Caribbean Sea. These results showed that some mature tarpon make long seasonal migrations over thousands of kilometres crossing state and national jurisdictional borders. Others showed more local movements and habitat use. The tag data also revealed potential spawning locations consistent with those inferred in other studies from observations of early life stage tarpon leptocephalus larvae. Our analyses indicated that shark predation mortality on released tarpon is higher than previously estimated, especially at ocean passes, river mouths and inlets to bays. To date, there has been no formal stock assessment of Atlantic tarpon, and regional fishery management plans do not exist. Our findings will provide critical input to these important efforts and assist the multinational community in the development of a stock‐wide management information system to support informed decision‐making for sustaining Atlantic tarpon fisheries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号