首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
International instruments of fisheries governance have set the core principles for the management of highly migratory fishes. We evaluated the progress of tuna Regional Fisheries Management Organizations (tRFMOs) in implementing the ecological component of ecosystem‐based fisheries management (EBFM). We first developed a best case tRFMO for EBFM implementation. Second, we developed criteria to evaluate progress in applying EBFM against this best case tRFMO. We assessed progress of the following four ecological components: target species, bycatch species, ecosystem properties and trophic relationships, and habitats. We found that many of the elements necessary for an operational EBFM are already present, yet they have been implemented in an ad hoc way, without a long‐term vision and a formalized plan. Overall, tRFMOs have made considerable progress monitoring the impacts of fisheries on target species, moderate progress for bycatch species, and little progress for ecosystem properties and trophic relationships and habitats. The tRFMOs appear to be halfway towards implementing the ecological component of EBFM, yet it is clear that the “low‐hanging fruit” has been plucked and the more difficult, but surmountable, issues remain, notably the sustainable management of bycatch. All tRFMOs share the same challenge of developing a formal mechanism to better integrate ecosystem science and advice into management decisions. We hope to further discussion across the tRFMOs to inform the development of operational EBFM plans.  相似文献   

2.
Climate change is projected to affect the productivity of global fisheries. Management based on maximum sustainable yield (MSY) has been effective at eliminating overfishing in many regions. However, continuing to use yield-maximizing targets under climate-driven changes in productivity can result in higher anthropogenic pressure on populations subject to climate-related stress than maintaining status quo management targets. We demonstrate this effect using a theoretical example and case studies from snow crab in the eastern Bering Sea and a global marine fisheries database. In these examples, the conservation gain (i.e. biomass in the ocean) of maintaining status quo management targets is larger than the small gain in harvest made through climate adaptation in MSY-based management. The aggregate conservation gain of maintaining management targets increases as the harmful impacts of climate change on productivity worsen. Instead of climate-adaptive MSY-based targets, new management tools are needed to balance conservation and food production in ecosystems of populations displaying non-stationary productivity.  相似文献   

3.
Reconciling food security, economic development and biodiversity conservation is a key challenge, especially in the face of the demographic transition characterizing many countries in the world. Fisheries and marine ecosystems constitute a difficult application of this bio‐economic challenge. Many experts and scientists advocate an ecosystem approach to manage marine socio‐ecosystems for their sustainability and resilience. However, the ways by which to operationalize ecosystem‐based fisheries management (EBFM) remain poorly specified. We propose a specific methodological framework—viability modelling—to do so. We show how viability modelling can be applied using four contrasted case‐studies: two small‐scale fisheries in South America and Pacific and two larger‐scale fisheries in Europe and Australia. The four fisheries are analysed using the same modelling framework, structured around a set of common methods, indicators and scenarios. The calibrated models are dynamic, multispecies and multifleet and account for various sources of uncertainty. A multicriteria evaluation is used to assess the scenarios’ outcomes over a long time horizon with different constraints based on ecological, social and economic reference points. Results show to what extent the bio‐economic and ecosystem risks associated with the adoption of status quo strategies are relatively high and challenge the implementation of EBFM. In contrast, strategies called ecoviability or co‐viability strategies, that aim at satisfying the viability constraints, reduce significantly these ecological and economic risks and promote EBFM. The gains associated with those ecoviability strategies, however, decrease with the intensity of regulations imposed on these fisheries.  相似文献   

4.
While there has been a growing concern for the adverse ecological impacts of fishing, progress on incorporating these into operational fisheries management has been slow. Many fisheries management organizations have addressed the problem of overharvesting and over‐capitalization first. In this domain, the question of access regulation has gained growing recognition as a key dimension of fisheries sustainability, leading to recommendation and progressive implementation of rights‐based systems, in particular Individual Transferrable Quotas (ITQs). While adjustments in fishing capacity resulting from the implementation of these systems may entail a reduction in some unwanted ecosystem impacts of fishing, it is also recognized that they will not be sufficient to achieve the ecological outcomes increasingly demanded by the global community. There is thus a need to examine the possibilities for a common management framework for dealing with both over‐capitalization of fisheries and adverse ecological effects of fishing. In this paper, we examine the feasibility of incorporating greater ecosystem goods and services into ITQ policy instruments initially designed with a narrow focus on commercial target species. We consider the advantages and limitations of alternative approaches in this respect and identify some of the practical issues associated with the different alternatives, in particular the underpinning knowledge requirements. We argue that given the need for increasingly streamlined management processes, further investigation into practical ways forward in this domain is crucial if management of fisheries is to achieve economic efficiency while fully encompassing the ecologically sustainable development objectives of ecosystem‐based fisheries management.  相似文献   

5.
唐议  盛燕燕  陈园园 《水产学报》2014,38(5):759-768
以底拖网为代表的深海底层渔业对深海脆弱海洋生态系统的危害受到国际社会的热切关注。2003年以来联合国大会多次通过决议,呼吁各国各自并通过RFMO/As采取行动,根据预防性原则,采用基于生态系统的管理方法,评估深海底层渔业对脆弱海洋生态系统的影响,若评估表明确有重大不利影响,则应采取有效措施限制深海底层渔业以降低这种影响;FAO主要从技术角度制定了《公海深海渔业管理国际指南》,为管理公海深海渔业和保护脆弱海洋生态系统提出了技术标准和管理框架;RFMO承担着具体执行深海底层渔业管理措施和监督管理的责任,在北大西洋、地中海、南太平洋的公海和南极水域,相关RFMO已采取了暂停部分区域底拖网渔业活动、收集数据、评估底拖网对脆弱海洋生态系统的影响等措施,在北太平洋,新成立的北太平洋渔业管理委员会将公海底层渔业管理作为首要目标。环保非政府组织和部分科学家呼吁禁止公海深海底层渔业,但各国对此的立场尚不一致,产业界大多持反对立场。近期来看,尚难以全面禁止公海的深海底层渔业。中国正在发展公海大洋渔业,需对此密切关注,加强跟踪研究以支撑决策,并应发展和使用选择性渔具和对生态环境无害的作业方式,防止对脆弱海洋生态系统产生损害性影响。  相似文献   

6.
Ecosystem‐based management of fisheries aims to allow sustainable use of fished stocks while keeping impacts upon ecosystems within safe ecological limits. Both the FAO Code of Conduct for Responsible Fisheries and the Aichi Biodiversity Targets promote these aims. We evaluate implementation of ecosystem‐based management in six case‐study fisheries in which potential indirect impacts upon bird or mammal predators of fished stocks are well publicized and well studied. In particular, we consider the components needed to enable management strategies to respond to information from predator monitoring. Although such information is available in all case‐studies, only one has a reference point defining safe ecological limits for predators and none has a method to adjust fishing activities in response to estimates of the state of the predator population. Reference points for predators have been developed outside the fisheries management context, but adoption by fisheries managers is hindered a lack of clarity about management objectives and uncertainty about how fishing affects predator dynamics. This also hinders the development of adjustment methods because these generally require information on the state of ecosystem variables relative to reference points. Nonetheless, most of the case‐studies include precautionary measures to limit impacts on predators. These measures are not used tactically and therefore risk excessive restrictions on sustainable use. Adoption of predator reference points to inform tactical adjustment of precautionary measures would be an appropriate next step towards ecosystem‐based management.  相似文献   

7.
As a dominant paradigm, ecosystem‐based fisheries have to come to terms with uncertainty and complexity, an interdisciplinary visioning of management objectives, and putting humans back into the ecosystem. The goal of this article is to suggest that implementing ecosystem‐based management (EBM) has to be ‘revolutionary’ in the sense of going beyond conventional practices. It would require the use of multiple disciplines and multiple objectives, dealing with technically unresolvable management problems of complex adaptive systems and expanding scope from management to governance. Developing the governance toolbox would require expanding into new kinds of interaction unforeseen by the mid‐twentieth‐century fathers of fishery science – governance that may involve cooperative, multilevel management, partnerships, social learning and knowledge co‐production. In addition to incorporating relatively well‐known resilience, adaptive management and co‐management approaches, taking EBM to the next stage may include some of the following: conceptualizing EBM as a ‘wicked problem’; conceptualizing fisheries as social‐ecological systems; picking and choosing from an assortment of new governance approaches; and finding creative ways to handle complexity.  相似文献   

8.
Fisheries provide nutrition and livelihoods for coastal populations, but many fisheries are fully or over‐exploited and we lack an approach for analysing which factors affect management tool performance. We conducted a literature review of 390 studies to assess how fisheries characteristics affected management tool performance across both small‐scale and large‐scale fisheries. We defined success as increased or maintained abundance or biomass, reductions in fishing mortality or improvements in population status. Because the literature only covered a narrow set of biological factors, we also conducted an expert elicitation to create a typology of broader fishery characteristics, enabling conditions and design considerations that affect performance. The literature suggested that the most commonly used management tool in a region was often the most successful, although the scale of success varied. Management tools were more often deemed successful when used in combination, particularly pairings of tools that controlled fishing mortality or effort with spatial management. Examples of successful combinations were the use of catch limits with quotas and limited entry, and marine protected areas with effort restrictions. The most common factors associated with inadequate biological performance were ‘structural’ issues, including poor design or implementation. The expert‐derived typologies revealed strong local leadership, high community involvement and governance capacity as common factors of success across management tool categories (i.e. input, output and technical measures), but the degree of importance varied. Our results are designed to inform selection of appropriate management tools based on empirical data and experience to increase the likelihood of successful fisheries management.  相似文献   

9.
Marine ecosystems evolve under many interconnected and area‐specific pressures. To fulfil society's intensifying and diversifying needs while ensuring ecologically sustainable development, more effective marine spatial planning and broader‐scope management of marine resources is necessary. Integrated ecological–economic fisheries models (IEEFMs) of marine systems are needed to evaluate impacts and sustainability of potential management actions and understand, and anticipate ecological, economic and social dynamics at a range of scales from local to national and regional. To make these models most effective, it is important to determine how model characteristics and methods of communicating results influence the model implementation, the nature of the advice that can be provided and the impact on decisions taken by managers. This article presents a global review and comparative evaluation of 35 IEEFMs applied to marine fisheries and marine ecosystem resources to identify the characteristics that determine their usefulness, effectiveness and implementation. The focus is on fully integrated models that allow for feedbacks between ecological and human processes although not all the models reviewed achieve that. Modellers must invest more time to make models user friendly and to participate in management fora where models and model results can be explained and discussed. Such involvement is beneficial to all parties, leading to improvement of mo‐dels and more effective implementation of advice, but demands substantial resources which must be built into the governance process. It takes time to develop effective processes for using IEEFMs requiring a long‐term commitment to integrating multidisciplinary modelling advice into management decision‐making.  相似文献   

10.
Fishery ecosystems are complex and influenced by various drivers that operate and interact at different levels and over multiple scales. Here, we propose a holistic methodology to determine the key mechanisms of fisheries, trophodynamics, and environmental drivers of marine ecosystems, using a multilevel model fitted to data on global catch, effort, trophic level, primary production, and temperature for 130 ecosystems from 1950 to 2012. The model describes the spatial‐temporal dynamics of world fisheries very well with a pseudo R2 = 0.75 and estimates the effects of key drivers of fishery production. The results demonstrate the integrative operation of bottom‐up and top‐down regulated trophic interactions at the global level and great variations in their relative importance among different types of ecosystem. The estimation of key drivers’ effects on marine ecosystems provides practical mechanisms for informed ecosystem‐based fisheries management to achieve the sustainable objectives that are consistent with the needs of specific fisheries.  相似文献   

11.
In this paper, I argue that we have at hand what is needed to provide scientific advice for ecosystem‐based management of small pelagics and other species groups now. The ingredients for this advice are (i) large marine ecosystems as spatial management units; (ii) maintaining ecosystem productivity and exploiting at multispecies maximum yield as overarching management objectives; (iii) assessment of ecosystems by evaluating changes in primary productivity; (iv) an operational management procedure in which single‐species catch proposals are adjusted to ecosystem productivity using a set of control rules. Inspection of historic landings for small pelagics and other small species in the Northeast Atlantic (ICES area) reveals that most likely fisheries exploitation does not, and never did, exceed system productivity in most LMEs and is therefore overall sustainable, although not necessarily for individual stocks.  相似文献   

12.
Ecosystem‐based management is an emerging paradigm influencing the management of commercial fisheries. Increasingly, developed nations are adopting explicit legislation and policy governing the assessment and management of their fisheries against criteria of ecological sustainability. Yet the ability to evaluate ecosystem impacts of fisheries is compromised by a general lack of understanding of marine ecosystem function (beyond the population level) and a lack of robust and practical indicators for ecosystem health and management. Recent technological advances can assist in developing criteria, including structural analyses of seafloor communities potentially impacted by fishing gears (e.g. demersal trawling). Similarly, advances in fishing gear technology, including improved selectivity and the development of gears which have a more benign environmental impact, can mitigate some of the ecological impacts of fishing. Such technological advances are summarized in the context of contemporary fisheries management.  相似文献   

13.
苏萌 《水产学报》2015,39(8):1264-1272
考虑到生态系统状态对渔业的重要影响,渔业生态系统方法(Ecosystem Approach to Fisheries,EAF)把对生态的关注加入渔业管理框架中,并以生态系统管理和渔业管理2个理论为基础,扩展了传统渔业管理的框架:以生态系统健康与人类福利的依存关系为基础,关注多物种管理,均衡生态、人文和制度3个维度的目标,实现渔业的可持续发展。本研究介绍了EAF的由来、定义、基本原则以及功能要素,概述了EAF的实践基础和模型构建的技术路径,对比了EAF与EBFM的异同。虽然EAF的理论和实践仍处于完善和发展阶段,但确为渔业管理的发展方向,介绍EAF对促进我国渔业可持续发展具有重要意义。  相似文献   

14.
A performance assessment was conducted of regional fisheries management organizations’ (RFMOs’) bycatch governance, one element of an ecosystem approach to fisheries management. Obtaining a mean score of 25%, with a 64% CV, collectively the RFMOs have large governance deficits. Individually, there has been mixed progress, with some RFMOs having made substantial progress for some governance elements. There has been nominal progress in gradually transitioning to ecosystem‐based fisheries management: controls largely do not account for broad or multispecies effects of fishing, and cross‐sectoral marine spatial planning is limited. Regional observers collect half of minimum information needed to assess the efficacy of bycatch measures. Over two‐thirds of RFMO‐managed fisheries lack regional observer coverage. International exchange of observers occurs in one‐third of programmes. There is no open access to research‐grade regional observer data. Ecological risk assessments focus on effects of bycatch removals on vulnerable species groups and effects of fishing on vulnerable benthic marine ecosystems. RFMOs largely do not assess or manage cryptic, generally undetectable sources of fishing mortality. Binding measures address about one‐third of bycatch problems. Eighty per cent of measures lack explicit performance standards against which to assess efficacy. Measures are piecemeal, developed without considering potential conflicts across vulnerable groups. RFMOs employ 60% of surveillance methods required to assess compliance. A lack of transparency and limited reporting of inspection effort, identified infractions, enforcement actions and outcomes further limits the ability to assess compliance. Augmented harmonization could help to fill identified deficits.  相似文献   

15.
Climate change is projected to redistribute fisheries resources, resulting in tropical regions suffering decreases in seafood production. While sustainably managing marine ecosystems contributes to building climate resilience, these solutions require transformation of ocean governance. Recent studies and international initiatives suggest that conserving high seas biodiversity and fish stocks will have ecological and economic benefits; however, implications for seafood security under climate change have not been examined. Here, we apply global‐scale mechanistic species distribution models to 30 major straddling fish stocks to show that transforming high seas fisheries governance could increase resilience to climate change impacts. By closing the high seas to fishing or cooperatively managing its fisheries, we project that catches in exclusive economic zones (EEZs) would likely increase by around 10% by 2050 relative to 2000 under climate change (representative concentration pathway 4.5 and 8.5), compensating for the expected losses (around ?6%) from ‘business‐as‐usual’. Specifically, high seas closure increases the resilience of fish stocks, as indicated by a mean species abundance index, by 30% in EEZs. We suggest that improving high seas fisheries governance would increase the resilience of coastal countries to climate change.  相似文献   

16.
Following implementation in a range of other resource sectors, a number of credit‐like systems have been proposed for fisheries. But confusion exists over what constitutes these nascent ‘fisheries credit’ systems and how they operate. Based on a review of credit systems in other sectors, this study fills this gap by defining how credit systems function and what credits add to prevailing fisheries management. In doing so, we distinguish ‘mitigation’ and ‘behavioural’ fishery credits. Mitigation credits require resource users to compensate for unsustainable catches of target species, by‐catch species or damaging practices on the marine environment by investing in conservation in a biologically equivalent habitat or resource. Behavioural credit systems incentivize fishers to gradually change their fishing behaviour to more sustainable fishing methods by rewarding them with, for instance, extra fishing effort to compensate for less efficient but more sustainable fishing methods. The choice of credit system largely depends on the characteristics of specific fisheries and the management goals agreed upon by managers, scientists and the fishing industry. The study concludes that fisheries credit systems are different but complimentary to other forms of management by focusing on ‘catchability’ or gear efficiency in addition to effort or catch quota, affecting overall economic efficiency by setting specific goals as to how fish are caught. Credit systems therefore incentivize specific management interventions that can directly improve stock sustainability, conserve habitat and endangered species, or decrease by‐catch.  相似文献   

17.
Catches are commonly misreported in many fisheries worldwide, resulting in inaccurate data that hinder our ability to assess population status and manage fisheries sustainably. Under‐reported catch is generally perceived to lead to overfishing, and hence, catch reconstructions are increasingly used to account for sectors that may be unreliably reported, including illegal harvest, recreational and subsistence fisheries, and discards. However, improved monitoring and/or catch reconstructions only aid in the first step of a fisheries management plan: collecting data to make inferences on stock status. Misreported catch impacts estimates of population parameters, which in turn influences management decisions, but the pattern and degree of these impacts are not necessarily intuitive. We conducted a simulation study to test the effect of different patterns of catch misreporting on estimated fishery status and recommended catches. If, for example, 50% of all fishery catches are consistently unreported, estimates of population size and sustainable yield will be 50% lower, but estimates of current exploitation rate and fishery status will be unbiased. As a result, constant under‐ or over‐reporting of catches results in recommended catches that are sustainable. However, when there are trends in catch reporting over time, the estimates of important parameters are inaccurate, generally leading to underutilization when reporting rates improve, and overfishing when reporting rates degrade. Thus, while quantifying total catch is necessary for understanding the impact of fisheries on businesses, communities and ecosystems, detecting trends in reporting rates is more important for estimating fishery status and setting sustainable catches into the future.  相似文献   

18.
Fisheries management and sustainability assessment of fisheries more generally have recently expanded their scope from single‐species stock assessment to ecosystem‐based approaches, aiming to incorporate economic, social and local environmental impacts, while still excluding global‐scale environmental impacts. In parallel, Life Cycle Assessment (LCA) has emerged as a widely used and recommended framework to assess environmental impacts of products, including global‐scale impacts. For over a decade, LCA has been applied to seafood supply chains, leading to new insights into the environmental impact of seafood products. We present insights from seafood LCA research with particular focus on evaluating fisheries management, which strongly influences the environmental impact of seafood products. Further, we suggest tangible ways in which LCA could be taken up in management. By identifying trade‐offs, LCA can be a useful decision support tool and avoids problem shifting from one concern (or activity) to another. The integrated, product‐based and quantitative perspective brought by LCA could complement existing tools. One example is to follow up fuel use of fishing, as the production and combustion of fuel used dominates overall results for various types of environmental impacts of seafood products, and is also often linked to biological impacts of fishing. Reducing the fuel use of fisheries is therefore effective to reduce overall impacts. Allocating fishing rights based on environmental performance could likewise facilitate the transition to low‐impact fisheries. Taking these steps in an open dialogue between fishers, managers, industry, NGOs and consumers would enable more targeted progress towards sustainable fisheries.  相似文献   

19.
Since the 1950s, invertebrate fisheries catches have rapidly expanded globally to more than 10 million tonnes annually, with twice as many target species, and are now significant contributors to global seafood provision, export, trade and local livelihoods. Invertebrates play important and diverse functional roles in marine ecosystems, yet the ecosystem effects of their exploitation are poorly understood. Using 12 ecosystem models distributed worldwide, we analysed the trade‐offs of various invertebrate fisheries and their ecosystem effects as well as ecological indicators. Although less recognized for their contributions to marine food webs, our results show that the magnitude of trophic impacts of invertebrates on other species of commercial and conservation interest is comparable with those of forage fish. Generally, cephalopods showed the strongest ecosystem effects and were characterized by a strong top‐down predatory role. Lobster, and to a lesser extent, crabs, shrimp and prawns, also showed strong ecosystem effects, but at lower trophic levels. Benthic invertebrates, including epifauna and infauna, also showed considerable ecosystem effects, but with strong bottom‐up characteristics. In contrast, urchins, bivalves, and gastropods showed generally lower ecosystem effects in our simulations. Invertebrates also strongly contributed to benthic–pelagic coupling, with exploitation of benthic invertebrates impacting pelagic fishes and vice versa. Finally, on average, invertebrates produced maximum sustainable yield at lower levels of depletion (~45%) than forage fish (~65%), highlighting the need for management targets that avoid negative consequences for target species and marine ecosystems as a whole.  相似文献   

20.
Marine protected areas (MPAs) have been increasingly proposed, evaluated and implemented as management tools for achieving both fisheries and conservation objectives in aquatic ecosystems. However, there is a challenge associated with the application of MPAs in marine resource management with respect to the consequences to traditional systems of monitoring and managing fisheries resources. The place‐based paradigm of MPAs can complicate the population‐based paradigm of most fisheries stock assessments. In this review, we identify the potential complications that could result from both existing and future MPAs to the science and management systems currently in place for meeting conventional fisheries management objectives. The intent is not to evaluate the effects of implementing MPAs on fisheries yields, or even to consider the extent to which MPAs may achieve conservation oriented objectives, but rather to evaluate the consequences of MPA implementation on the ability to monitor and assess fishery resources consistent with existing methods and legislative mandates. Although examples are drawn primarily from groundfish fisheries on the West Coast of the USA, the lessons are broadly applicable to management systems worldwide, particularly those in which there exists the institutional infrastructure for managing resources based on quantitative assessments of resource status and productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号