首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Understanding drivers of freshwater fish assemblages is critically important for biodiversity conservation strategies, especially in rapidly developing countries, which often have environmental protections lagging behind economic development. The influences of natural and human factors in structuring fish assemblages and their relative contributions are likely to change given the increasing magnitude of human activities. To discriminate natural and human drivers of fish diversity and assemblage patterns in developing countries with rapid socio‐economic development, a dataset of 908 freshwater fish species and 13 metrics including three categories of both natural (i.e., biogeographic) and human drivers (i.e., economic growth, inland fisheries) in China were analysed with machine learning algorithms (i.e., self‐organizing map, random forest). Here, we found that biogeographic drivers explained 21.8% of the observed fish assemblage patterns in China and remained stronger predictors when compared to human drivers (i.e., 15.6%, respectively). Freshwater fish species richness was positively correlated to rainfall, air temperature, surface water area and inland fisheries production but negatively correlated with urbanization. In addition, the strong structuring effects of climatic variables on Chinese fish richness patterns suggested that the fish assemblages could be particularly vulnerable to climate change. Our results showed that natural biogeographic factors still dominate in driving freshwater fish assemblage patterns despite increased human disturbances on aquatic ecosystems in a rapidly developing country. These findings consequently suggested that we should consider both natural (e.g., climate) and human (e.g., urbanization, inland fisheries) factors when establishing aquatic conservation strategies and priorities for developing countries that are experiencing rapid socio‐economic changes.  相似文献   

4.
5.
While environmental alterations have made Homo sapiens the hyperkeystone species of the globe, biotic homogenization initiated a new era, the “Homogenocene.” Still, some terrestrial and aquatic ecosystems in South America are considered pristine and wild, which can lead to a general faith that economic progress is consistent with conservation strategies, even without scientific support. We compiled anthropogenic threats to fish biodiversity in a hierarchical meta‐analysis, along with an evidence synthesis of threats related to biological invasions, based on peer‐reviewed research with the aim to represent the actual conservation status of the South American ichthyofauna. We highlighted human‐related threats and synergistic effects of biological invasions, climate change, environmental alterations (e.g., pollution, aquaculture and damming) and fisheries. Considering measures that reinforce novel alien fish (e.g., artificial hybrids or genetically modified) introductions, it became clear why an eventual increase in local or regional species richness is not always beneficial to aquaculture, biodiversity, human well‐being or nature. In fact, citizens in all societal roles, including scientists, should revise their concepts about threats to fish biodiversity. Environmental policies require more than taxonomic diagnostics to achieve conservation goals under an incompatible scenario of a multiplying number of fish species and biotic homogenization. We advocate for countries in South America using science‐based strategies useful to maintain their social and economic growth along with their “remaining nature.” We live a crucial moment when the government overlooks threats to biodiversity and uses agribusiness as the most acceptable manner of fuelling the economy.  相似文献   

6.
7.
The Neotropical freshwater fish fauna is very rich—according to the most recent catalogue 71 families and 4,475 species have been described. However, only a small amount of general information is available on the composition of Neotropical marine fishes. In Brazil, 1,298 marine species have been recorded. General analysis of available cytogenetic and population genetic data clearly indicates research has been mainly concentrated on freshwater fishes. Thus, today, cytogenetic information is available for 475 species of Characiformes, 318 species of Siluriformes, 48 species of Gymnotiformes, 199 freshwater species that do not belong to the superorder Ostariophysi, and only 109 species of marine fishes. For the species studied, only about 6% have sex chromosomes and about 5% have supernumerary or B chromosomes. A review of the cytogenetic studies shows that these data have provided valuable information about the relationships between fish groups, the occurrence of cryptic species and species complexes, the mechanism of sex determination and sex chromosome evolution, the distribution of nucleolus organizer regions, the existence supernumerary chromosomes, and the relationship between polyploidy and evolution. In relation to populations in Neotropical marine waters, the studies have shown the presence of cryptic species, which has important implications for fishery management. Different levels of genetic structuring can be found among Neotropical freshwater migratory fish species. This raises important implications for fish population genetic diversity and consequently its sustainable utilization in inland fisheries and aquaculture, specifically for conservation of ichthyo-diversity and survival.  相似文献   

8.
Recreational angling has been implicated in population declines of some marine and freshwater fish, but this activity is rarely considered as a threat or even halted when endangered species are targeted. Indeed, in some cases, anglers are drawn to fish for rare or endangered species. Conservation‐oriented behaviours such as catch‐and‐release are often practiced voluntarily due to the ethics of anglers, yet even in these cases, some fishing mortality occurs. Nonetheless, there are many indirect conservation benefits associated with recreational angling. Here, we present a series of case‐studies and consider whether catch‐and‐release angling for endangered fish is a conservation problem or a conservation action. If recreational angling activities contribute to population‐level consequences that are contrary to recovery strategies, then angling for endangered species would seem to be a poor option. However, as revealed by several case‐studies, there is much evidence that anglers are vocal and effective proponents of fish and habitat conservation, and for endangered species, they are often the only voice when other stakeholders are not engaged. Anglers may contribute directly to conservation actions via user fees (e.g. licences), philanthropic donations or by volunteering in research, education and restoration activities. However, it is important to quantify post‐release mortality as well as understand the full suite of factors influencing a given population or species to know the potential risks. A risk assessment approach outlined in the paper may be used by managers to determine when the benefits of angling for endangered species outweigh the risks.  相似文献   

9.
Introduction of non‐native freshwater fish: is it all bad?   总被引:3,自引:3,他引:0  
Risk perceptions are important to the policy process, but there is often a well‐established pattern of small risks being over assessed. This is also true with the issue of non‐native freshwater fish introductions, where a great majority of research focuses on the few negative cases. The attitude towards ‘non‐natives’ is a continually evolving process and varies according to current societal values. Here I show that on the global scale, the majority of freshwater fish introductions are not identified as having an ecological impact while having great societal benefits. Case studies from the African lakes are discussed in order to illustrate contrasting outcomes following fish introductions. Looking into the future, the environmental changes that freshwater ecosystems may encounter will have inevitable implications on the distribution of our native freshwater fish species and the need to rely on non‐native introductions may become a growing reality. Aquaculture production is regularly increasing and our dependence on it is likely to become greater as it provides an important substitute for the declining production of capture fisheries. With it the number of freshwater fish introductions will increase and a more realistic attitude, albeit controversial, will need to be debated. This would mean protecting some introductions that present beneficial outcomes for biodiversity alongside a more systematic ban of species or families of fish presenting a higher historical ecological risk. The public perception of risk is something which cannot be ignored by any government or ruling body, but in order to gain public support in the fight for conservation of freshwater fish biodiversity, the message needs to be clear, detailed and educational.  相似文献   

10.
11.
12.
13.
  1. The paper ‘Biodiversity values of remnant freshwater floodplain lagoons in agricultural catchments: evidence for fish of the Wet Tropics bioregion, northern Australia’, published in Aquatic Conservation: Marine and Freshwater Ecosystems in 2015, has contributed in several ways to the integration of freshwater wetland science within new catchment management policies and practices for Great Barrier Reef (GBR) sustainability.
  2. The Tully–Murray biodiversity study developed novel protocols to sample larval, juvenile, and adult fish life‐history stages in floodplain lagoons using a combination of boat‐based backpack electrofishing and fyke netting. In addition, hydrological and hydrodynamic models were applied in a completely new way to quantify the timing, extent, and duration of water connectivity across floodplain streams, cane drains, and wetlands. Combining the two novel approaches enabled an analysis of lagoon fish assemblage patterns in relation to environmental gradients, especially floodplain hydrology, connectivity patterns, and measures related to agricultural land use.
  3. In demonstrating the importance of different levels of connectivity for different biodiversity outcomes in freshwater floodplain lagoons of the Tully–Murray catchment, the subject paper established that floodplain connectivity needs to be taken into consideration in wetland management practices.
  4. The timing of the subject publication was fortuitous. It coincided with the preparation of the evidence‐based 2017 Scientific Consensus Statement on land‐based water quality impacts on the GBR. As one of the few freshwater wetland ecology publications for the catchments of the GBR at that time, this paper played an important role in demonstrating freshwater wetland values, fish conservation options, and management imperatives to sustain wetland ecological health and services in GBR catchments.
  5. By advancing the understanding of factors driving biodiversity patterns, and the importance of connectivity and ecohydrological processes in freshwater floodplain wetlands of the GBR catchment, the Tully–Murray study helped to drive new policy directives for the protection and restoration of catchment, floodplain, and estuary functions, and connectivity, now embedded in the Reef 2050 Long‐Term Sustainability Plan 2018, an overarching strategy for managing the GBR over the next 35 years, and complementary Queensland environmental legislation.
  相似文献   

14.
Assessing the ecological integrity of freshwater ecosystems has become a priority to protect the threatened biodiversity they hold and secure future accessibility to the services they provide. Some of the most widespread applications of biological indicators are fish‐based indices. These have mostly mirrored the approach proposed by Karr 30 years ago (Index of Biotic Integrity; IBI), based on the comparison of observed and expected composition and structure of local fish assemblages in the absence of major perturbations, using the so‐called reference condition approach. Despite the notable success of the implementation of fish‐based indices, most of them overlook non‐native species as a source of ecosystem degradation, and evaluations are focused on the physico‐chemical condition of freshwater ecosystems and their effects on freshwater biodiversity. Almost 90% of 83 reviewed IBIs did not consider non‐native species when defining reference conditions. Most IBIs used non‐native species in conjunction with native ones to construct the metrics that conform to the index. The response of the IBI to the effect of non‐native species has hardly ever been tested. When developing and evaluating IBIs, attention was mostly directed to ensuring the correct response of the index to physico‐chemical parameters, which could otherwise be characterized more effectively using alternative methods. Current application of IBIs entails a misuse of biological indicators by overlooking some types of degradation that cannot be otherwise evaluated by traditional methods. This constrains the capacity to adequately respond to one of the most challenging and common threats to the conservation of freshwater fish diversity.  相似文献   

15.
16.
1. Development of effective conservation strategies for freshwater biodiversity must take account of the trade‐off between species preservation and human use of ecosystem goods and services. The latter cannot be prevented, and attempts to manage ecosystems that focus solely on maximizing biodiversity will fail. 2. A compromise position of management for ecosystem functioning and human livelihoods — rather than preservation of every species — will provide a better basis for biodiversity conservation. This has implications for the management of exotic species. 3. There are some situations, in lentic habitats in Sri Lanka, for example, where the establishment of exotics has increased fishery yields without apparent detriment to native biodiversity. The Sepik River in Papua New Guinea provides another illustration of potential compromises between human livelihoods and biodiversity conservation. 4. The Sepik supports a relatively unproductive fishery. Two fish stocking projects (in 1987–93 and 1993–97), representing a partnership between the Papua New Guinea Government and the United Nations (UNDP/FAO), led to the introduction of a suite of exotic fish into the Sepik. Species were selected on the basis of their potential to occupy niches not filled by native fish. Unfortunately, the outcomes of these introductions are poorly documented, although there is preliminary evidence both of increased human use of exotic fish as well as declines of some native species associated with the spread of exotics. 5. Better understanding of the results of the Sepik fish introductions is important, because the pressures of burgeoning human populations in most of tropical Asia make it impossible to preserve near‐pristine environments such as the Sepik. While attempts to conserve natural or near‐natural systems must remain a priority, there is a need to develop strategies for the management of damaged or degraded ecosystems, which may contain exotics, with the aim of maintaining ecosystem functioning and, if possible, maximizing the persistence of native biodiversity. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Overfishing may seriously impact fish populations and ecosystems. Marine protected areas (MPAs) are key tools for biodiversity conservation and fisheries management, yet the fisheries benefits remain debateable. Many MPAs include a fully protected area (FPA), restricting all activities, within a partially protected area (PPA) where potentially sustainable activities are permitted. An effective tool for biodiversity conservation, FPAs, can sustain local fisheries via spillover, that is the outward export of individuals from FPAs. Spillover refers to both: “ecological spillover”: outward net emigration of juveniles, subadults and/or adults from the FPA; and “fishery spillover”: the fraction of ecological spillover that directly benefits fishery yields and revenues through fishable biomass. Yet, how common is spillover remains controversial. We present a meta‐analysis of a unique global database covering 23 FPAs worldwide, using published literature and purposely collected field data, to assess the capacity of FPAs to export biomass and whether this response was mediated by specific FPA features (e.g. size, age) or species characteristics (e.g. mobility, economic value). Results show fish biomass and abundance outside FPAs was higher: (a) in locations close to FPA borders (<200 m) than further away (>200 m); (b) for species with a high commercial value; and (c) in the presence of PPA surrounding the FPA. Spillover was slightly higher in FPAs that were larger and older and for more mobile species. Based on the broadest data set compiled to date on marine species ecological spillover beyond FPAs' borders, our work highlights elements that could guide strategies to enhance local fishery management using MPAs.  相似文献   

18.
The invasion of non‐indigenous freshwater fish species is one of the most important threats to aquatic biodiversity. Similar to other Mediterranean countries, Greece is considered a hot spot for freshwater biodiversity, with many range‐restricted endemics of high conservation concern. The aim of this study was to undertake a risk screening assessment to evaluate the invasive potential of non‐native, translocated and traded aquarium fishes in Greece by applying the Fish Invasiveness Screening Kit (FISK). In total, 73 freshwater fish species were evaluated by two assessors. FISK was able to discriminate reliably between invasive and non‐invasive species with a threshold of 15.25. Based on mean scores, 30 species were classified as ‘high risk’, of which 17 as ‘moderately high risk’, six as ‘high risk’ and seven as ‘very high risk’. There was a high coincidence rate for the species categorisation between the two assessors, but significant differences in certainty. The results suggest that FISK is a useful tool for assessing risks posed by non‐native, translocated and traded aquarium fish species in Greece.  相似文献   

19.
20.
  • 1. To conserve biodiversity in a human‐dominated landscape, a science‐based inventory and monitoring plan is needed that quantifies existing resources, isolates drivers that maintain natural communities, determines harmful stressors, and links ecological drivers and human stressors. A tactical approach is proposed for conservation planning using freshwater fish at the Cape Cod National Seashore.
  • 2. Freshwater fish are well studied and occur across environmental gradients. The lentic systems at the national park are relatively pristine yet are enveloped by a region of high population density. Using fish community data, three steps were taken for tracking anthropogenic impacts in a human dominated landscape. First, fish and potential drivers were sampled intensively along a gradient to determine which fish metrics reflect natural communities and which abiotic and biotic factors structure them. Second, emerging and existing regional human threats were identified. Third, these human threats were linked to the potential drivers that maintain natural communities to identify the most informative metrics to monitor and track change.
  • 3. Fish communities, water quality, habitat, and food resources were sampled concurrently in 18 ponds in 1999 and 2000. Three common fish species explained 98% of variation in numbers across systems. Based on ecological relationships, pH, depth, vegetation, prey, and community complexity were determined to maintain biodiversity of freshwater fish communities.
  • 4. The primary human threats here included: development‐related, land‐use changes; non‐point source pollution; eutrophication from septic systems; and introduced species that are a byproduct of high human visitation. These are common threats in many rapidly urbanized areas and are likely to have relevance to many sites.
  • 5. To track the impact of emerging threats to freshwater ponds related to increased human population, monitoring changes in water quality, vegetated habitat, fish diversity, and trophic interactions are recommended.
Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号