首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
J. T. Fletcher 《Euphytica》1992,63(1-2):33-49
Summary Cultivars of tomatoes, cucumbers, lettuce and peppers have been bred for resistance to one or more pathogens. Some tomato and cucumber cultivars have resistance to a wide range of diseases. Resistance has been transient in many cases and a succession of cultivars with new genes or new combinations of resistance genes has been necessary to maintain control. There has been a number of notable exceptions and these have included durable resistance to such pathogens asFulvia fulva and tomato mosaic virus. With lettuce the resistance situation is complicated by the occurrence of fungicide resistant pathotypes. There are no strains ofAgaricus bisporus purposely bred for disease resistance.In protected flower crops only resistance to Fusarium wilt in carnations has been purposely bred but differences in disease resistance are apparent in cultivars of many ornamental crops. This is particularly so in chrysanthemums where there are cultivars with resistance to many of the major pathogens. Similar situations occur with other flower crops and pot plants. Cultivars of some species have not been systematically investigated for resistance.The need for genetic resistance will increase with the further reduction, in the limits on pesticide use and an increasing public awareness and importance of pesticide pollution.ADAS is an executive agency of the Ministry of Agiculture, Fisheries and Food and the Welsh Office.  相似文献   

2.
S. M. Ali  B. Sharma  M. J. Ambrose 《Euphytica》1993,73(1-2):115-126
The economic importance and current progress made in studies of the host-parasite relationship and identification of sources of resistance and breeding strategies of some important biotic diseases of pea are reviewed in this paper. The root rot complex caused by Rhizoctonia solani, Fusarium solani, Aphanomyces euteiches, Pythium ultimum and Fusarium oxysporum f. sp. pisi, race 1 and 2 has been reported from all commercial pea growing areas of the world. Adequate sources of resistance have been identified and there has been impressive success in the control of the Fusarium wilt pathogen following the introduction of wilt-resistant cultivars. Leaf and stem diseases of pea caused by the Ascochyta complex, Peronospora viciae and Erysiphe pisi are prevalent in most temperate pea growing regions of the world. Several sources of resistance are available, some of which are surprisingly durable. The biochemical genetic parameters of phenolic content used for assaying resistance to Erysiphe pisi offers an alternative method of evaluating breeding material. Wild relatives of pea (Pisum fulvum and P. humile) are valuable additional sources of genetic variation and provide good sources of resistance to pests and diseases. In temperate rainfed pea growing areas of southern Australia, pea seed yield is more closely related to dry matter production than harvest index. Tall and leafy cultivars proved more productive than afila types.  相似文献   

3.
Roy Johnson 《Euphytica》1992,63(1-2):3-22
Summary This introductory chapter contains some general comments about plant breeding and breeding for disease resistance. The use of disease resistant crop plants is an environmentally favourable method of controlling disease but the process of breeding for disease resistance is subject to several constraints. Among them is the variability of pathogens in relation to host resistance. Some parts of this variation can be resolved into gene-for-gene interactions, but the boundaries within which such interactions can be detected are not sharp. The discussion of this variation is illustrated by reference to some important diseases of wheat, especially yellow rust, septoria and eyespot. The objective of obtaining durable resistance is discussed and some contributions of new genetical and molecular techniques to breeding for resistance are considered. It is suggested that new technology will enhance breeding for disease resistance but that established techniques of plant breeding will remain relevant and important.  相似文献   

4.
Molecular mapping of powdery mildew resistance genes in wheat: A review   总被引:40,自引:3,他引:40  
Powdery mildew, caused by Blumeria graminis f. sp. tritici (syn. Erysiphe graminis f. sp. tritici), is one of the most important diseases of common wheat (Triticum aestivum L.) worldwide. Molecular mapping and cloning of genes for resistance to powdery mildew in hexaploid wheat will facilitate the study of molecular mechanisms underlying resistance to powdery mildew diseases and help understand the structure and function of powdery mildew resistance genes, and permit marker-assisted selection in breeding programs. So far, 48 genes/alleles for resistance to powdery mildew at 32 loci have been identified and located on 16 different chromosomes, of which 21 resistance genes/alleles have been tagged by restriction fragment length polymorphisms (RFLPs), random-amplified polymorphic DNAs (RAPDs), amplified fragment length polymorphisms (AFLPs), sequence characterized amplified regions (SCARs), sequence-tagged sites (STS) or simple sequence repeats (SSRs). Several quantitative trait loci (QTLs) for adult plant resistance (APR) to powdery mildew have been associated with molecular markers. The detailed information on chromosomal location and molecular mapping of these genes has been reviewed. Isolation of powdery mildew resistance genes and development of valid molecular markers for pyramiding resistance genes in breeding programs is also discussed.  相似文献   

5.
Lentil production is limited by lack of moisture and unfavorable temperatures throughout its distribution. Waterlogging and salinity are only locally important. Progress has been made in breeding for tolerance to drought through selection for an appropriate phenology and increased water use efficiency and in breeding for winter hardiness through selection for cold tolerance.The diseases rust, vascular wilt, and Ascochyta blight, caused by Uromyces viciae-fabae, Fusarium oxysporum f. sp. lentis, and Ascochyta fabae f. sp. lentis, respectively, are the key fungal pathogens of lentil. Cultivars with resistance to rust and Ascochyta blight have been released in several countries and resistant sources to vascular wilt are being exploited. Sources of resistance to several other fungal and viral diseases of regional importance are known. In contrast, although the pea leaf weevil (Sitona spp.) and the parasitic weed broomrape (Orobanche spp.), and to a lesser extent the cyst nematode (Heterodera ciceri), are significant yield reducers of lentil, no sources of resistance to these biotic stresses have been found. Directions for future research in lentil on both biotic and abiotic stresses are discussed.  相似文献   

6.
G. J. Jellis 《Euphytica》1992,63(1-2):51-58
Summary The potato has more characters of economic importance that need to be considered by the breeder than any other temperate crop. In Europe these include resistance to at least twelve major diseases and pests. Highest priority has been given to resistance to late blight (Phytophthora infestans), virus diseases (particularly those caused by potato leafroll virus and potato virus Y) and potato cyst nematode (Globodera rostochiensis andG. pallida). Useful sources of resistance are available and early generation screening techniques have been developed to allow positive selection for multiple resistance and the breeding value of clones used as parents to be determined. Progress in restriction fragment length polymorphism technology should result in more efficient selection in the future.  相似文献   

7.
Summary Necrotrophic pathogens of the cool season food legumes (pea, lentil, chickpea, faba bean and lupin) cause wide spread disease and severe crop losses throughout the world. Environmental conditions play an important role in the development and spread of these diseases. Form of inoculum, inoculum concentration and physiological plant growth stage all affect the degree of infection and the amount of crop loss. Measures to control these diseases have relied on identification of resistant germplasm and development of resistant varieties through screening in the field and in controlled environments. Procedures for screening and scoring germplasm and breeding lines for resistance have lacked uniformity among the various programs worldwide. However, this review highlights the most consistent screening and scoring procedures that are simple to use and provide reliable results. Sources of resistance to the major necrotrophic fungi are summarized for each of the cool season food legumes. Marker-assisted selection is underway for Ascochyta blight of pea, lentil and chickpea, and Phomopsis blight of lupin. Other measures such as fungicidal control and cultural control are also reviewed. The emerging genomic information on the model legume, Medicago truncatula, which has various degrees of genetic synteny with the cool season food legumes, has promise for identification of closely linked markers for resistance genes and possibly for eventual map-based cloning of resistance genes. Durable resistance to the necrotrophic pathogens is a common goal of cool season food legume breeders.  相似文献   

8.
Summary Clubroot is one of the most damaging diseases inBrassica oleracea crops world-wide. The pathogenicity ofPlasmodiophora brassicae is highly variable between as well as within field populations. Several sources of resistance to clubroot have been identified inB. oleracea. Generally, resistance tends to inherit partly as a recessive, partly as an additive trait, and appears to be controlled by few major genes. Progress in the understanding of the inheritance of resistance is being made through the use of single-spore isolates of the pathogen, and the use of molecular markers for resistance genes.Abbreviations cv cultivar - DH doubled haploid - ECD European Clubroot Differential set - RFLP Restriction Fragment Length Polymorphism  相似文献   

9.
Parasitic angiosperms cause great losses in many important crops under different climatic conditions and soil types. The most widespread and important parasitic angiosperms belong to the genera Orobanche, Striga, and Cuscuta. The most important economical hosts belong to the Poaceae, Asteraceae, Solanaceae, Cucurbitaceae, and Fabaceae. Although some resistant cultivars have been identified in several crops, great gaps exist in our knowledge of the parasites and the genetic basis of the resistance, as well as the availability of in vitro screening techniques. Screening techniques are based on reactions of the host root or foliage. In vitro or greenhouse screening methods based on the reaction of root and/or foliar tissues are usually superior to field screenings and can be used with many species. To utilize them in plant breeding, it is necessary to demonstrate a strong correlation between in vitro and field data. The correlation should be calculated for every environment in which selection is practiced. Using biochemical analysis as a screening technique has had limited success. The reason seems to be the complex host-parasite interactions which lead to germination, rhizotropism, infection, and growth of the parasite. Germination results from chemicals produced by the host. Resistance is only available in a small group of crops. Resistance has been found in cultivated, primitive and wild forms, depending on the specific host-parasite system. An additional problem is the existence of pathotypes in the parasites. Inheritance of host resistance is usually polygenic and its transfer is slow and tedious. Molecular techniques have yet to be used to locate resistance to parasitic angiosperms. While intensifying the search for genes that control resistance to specific parasitic angiosperms, the best strategy to screen for resistance is to improve the already existing in vitro or greenhouse screening techniques.  相似文献   

10.
Summary Wild relatives of common wheat, Triticum aestivum, and related species are an important source of disease and pest resistance and several useful traits have been transferred from these species to wheat. C-banding and in situ hybridization analyses are powerful cytological techniques allowing the detection of alien chromatin in wheat. C-banding permits identification of the wheat and alien chromosomes involved in wheat-alien translocations, whereas genomic in situ hybridization analysis allows determination of their size and breakpoint positions. The present review summarizes the available data on wheat-alien transfers conferring resistance to diseases and pests. Ten of the 57 spontaneous and induced wheat-alien translocations were identified as whole arm translocations with the breakpoints within the centromeric regions. The majority of transfers (45) were identified as terminal translocations with distal alien segments translocated to wheat chromosome arms. Only two intercalary wheat-alien transloctions were identified, one induced by radiation treatment with a small segment of rye chromosome 6RL (H25) inserted into the long arm of wheat chromosome 4A, and the other probably induced by homoeologous recombination with a segment derived from the long arm of a group 7 Agropyron elongatum chromosome with Lr19 inserted into the long arm of 7D. The presented information should be useful for further directed chromosome engineering aimed at producing superior germplasm.Contribution No. 96-55-J from the Kansas Experimental Station, Kansas State University, Manhattan, KS 66506-5502, USA.  相似文献   

11.
J. A. Lane  J. A. Bailey 《Euphytica》1992,63(1-2):85-93
Summary Striga species are parasitic angiosperms that attack many crops grown by subsistence farmers in sub-Saharan Africa and India. Control of the parasite is difficult and genetically resistant crops are the most feasible and appropriate solution. In cowpea, complete resistance toStriga gesnerioides has been identified. Breeding for resistance in sorghum has identified varieties with good resistance toS. asiatica in Africa and India. One variety was also resistant toS. hermonthica in W. Africa. No such resistance toStriga has been found in maize or millets.Resistant varieties have usually been sought by screening germplasm in fields naturally infested withStriga. However, laboratory techniques have also been developed, including anin vitro growth system used to screen cowpeas for resistance toS. gesnerioides. Two new sources of resistance in cowpea have been identified using the system. The technique has also been used to investigate the mechanisms of resistance in this crop. Two mechanisms have been characterised, both were expressed after penetration of cowpea roots by the parasite.The resistance of some sorghum varieties toStriga is controlled by recessive genes. In cowpea, resistance toStriga is controlled by single dominant genes. The genes for resistance are currently being transferred to cowpea varieties which are high yielding or adapted to local agronomic conditions. OneStriga resistant cowpea variety, Suvita-2, is already being grown widely by farmers in Mali. Reports of breakdown of resistance in cowpea toStriga have not yet been confirmed, but a wider genetic base to the resistance is essential to ensure durability ofStriga resistance.Abbreviations ICRISAT International Crops Research Institute for the Semi-Arid Tropics - IITA International Institute of Tropical Agriculture - LARS Long Ashton Research Station - SAFGRAD Semi-Arid Food Grain Research and Development  相似文献   

12.
Angular leaf spot is one of the major diseases of the common bean. The extensive genetic variability of this pathogen requires the constant development of new resistant cultivars. Different sources of resistance have been identified and characterized. For the State of Minas Gerais, Brazil, four main resistance sources were found: Mexico 54, AND 277, MAR 2 and Cornell 49-242. Independent characterization of these genotypes demonstrates that resistance in all four sources is dominant and monogenic. However, there are no studies on the relationship and independence of these genes. In the present work, allelism tests were carried out to understand the relationship among the resistance genes present in these four resistance sources. The data revealed a much higher complexity in the resistance inheritance of these genes than previously reported. It was demonstrated that Cornell 49-242 possesses a dominant gene (Phg-3); Mexico 54 possesses three genes, denominated Phg-2, Phg-5 and Phg-6. In MAR 2, two genes were found, one independent designated Phg-4 and the other, an allelic form of Phg-5, denominated of Phg-52. Allelic forms were also found in AND 277, Phg-22, Phg-32 and Phg-42. These results have special importance for breeding programs aiming to pyramid resistance genes.  相似文献   

13.
Durable resistance to rice blast disease-environmental influences   总被引:5,自引:0,他引:5  
J. M. Bonman 《Euphytica》1992,63(1-2):115-123
Summary Blast is one of the most serious diseases of rice worldwide. The pathogen,Pyricularia grisea, can infect nearly all parts of the shoot and is commonly found on the leaf blade and the panicle neck node. Host resistance is the most desirable means of managing blast, especially in developing countries. Rice cultivars with durable blast resistance have been recognized in several production systems. The durable resistance of these cultivars is associated with polygenic partial resistance that shows no evidence of race specificity. This partial resistance is expressed as fewer and smaller lesions on the leaf blade but latent period does not appear to be an important component. Partial resistance to leaf blast is positively correlated with partial resistance to panicle blast, although some cultivars have been found showing leaf-blast susceptibility and panicle-blast resistance. A diverse set of environmental factors can influence the expression of partial resistance, including temperature, duration of leaf-wetness, nitrogen fertilization, soil type, and water deficit. Because of the great diversity of rice-growing environments, resistance that proves durable in one system may or may not prove useful in another. In highly blast-conducive environments, other means of disease management must be applied to assist host-plant resistance.  相似文献   

14.
R. Johnson 《Euphytica》1978,27(2):529-540
Summary The rust pathogens of cereals exist as populations of races that differ in their ability to attack various varieties. Varieties that are resistant when first released often become susceptible later due to the spread of previously undetected races but the time taken for this to occur in very variable. It often occurs so rapidly as to curtail the commercial use of otherwise satisfactory varieties.Some varieties, however, are widely grown for many years and remain adequately resistant to the prevalent rust diseases. They may aptly be described as having durable resistance. This durable or long-lasting resistance can be detected without any assumptions about, or detailed knowledge of, whether durability depends on any particular mechanisms of resistance, on various degrees of racespecificity or on many or few genes. Cappelle-Desprez is given as an example of a wheat variety with durable resistance to yellow rust.The most powerful test for the detection of durable resistance occurs when a variety is widely grown commercially for several years. A much weaker test is obtained by growing varieties in small disease nursery plots even when the test is repeated for several years. Usually, resistance which is durable is also partial or incomplete. Often, however, partial resistance of wheat to yellow rust has not been durable. Thus the observation that resistance is partial is not, of itself, a satisfactory criterion for the detection of durable resistance.It is suggested that the most obvious sources of durable resistance for use in breeding programmes are varieties which have been widely grown and have displayed this character. The transfer of such resistance during breeding may be achieved if the creation or incorporation of higher levels of resistance that have not been tested for durability is avoided. It should then be possible to derive resistance from the durably. resistant parent. Methods of achieving this are discussed.  相似文献   

15.
D. Rubiales  A. Moral  A. Martín 《Euphytica》2001,122(2):369-372
Septoria leaf blotch and common bunt are important diseases of wheat to which Hordeum vulgare is resistant. Addition lines of H. vulgare in wheat were utilized to determine which H. vulgare chromosomes carry resistance genes. Resistance to septoria leaf blotch was conferred by gene(s) present all over the barley genome, but more strongly by those located on chromosomes 7 and 4. Almost complete resistance to common bunt was conferred by gene(s) present in chromosomes 6 and a slight but significant level of resistance was conferred by chromosome 7. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
H.C. Sharma 《Euphytica》2001,122(2):391-395
Sorghum midge, Stenodiplosis (Contarinia) sorghicola (Coquillett), is an important pest of grain sorghum, and host plant resistance is an important aspect of control of this pest. This research investigated how cytoplasmic male-sterility and source of pollen influence the expression of resistance to sorghum midge. Sorghum midge emergence was significantly lower in panicles of midge-resistant and midge-susceptible cytoplasmic male-sterile lines when pollinated with AF 28 - a midge-resistant restorer line, than those pollinated with Swarna - a midge susceptible restorer line, indicating the presence of xenia effects. Maintainer lines (B-lines) of midge-resistant parents had significantly lower numbers of eggs and larvae than the B-lines of midge-susceptible parents. Male-sterile lines of the both midge-resistant and midge-susceptible lines were equally susceptible, indicating that resistance to sorghum midge is influenced by factors in the cytoplasm of the B-line. These findings will have an important bearing on the production of hybrids with resistance to insects. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Breeding cassava for resistance to cassava mosaic disease   总被引:4,自引:0,他引:4  
Summary Cassava mosaic disease (CMD) is one of the most serious and widespread diseases throughout cassava growing areas in Africa, causing yield reductions of up to 90%. Early research on breeding of cassava (Manihot esculenta Crantz) for resistance to CMD in Africa is reviewed. Changes in population size and in activity of the white-fly vector to CMD (Bemisia tabaci Genn.) in relation to changes in environmental conditions such as amount and distribution of rainfall, light intensity and temperature are discussed in relation to screening for resistance to CMD. Over the past eight years, significant progress has been made at the International Institute of Tropical Agriculture (IITA). Resistance to CMD has been successfully incorporated into high yielding cultivars of acceptable quality. The CMD resistant material has been evaluated and many promising clones have been selected in various countries in tropical Africa and India. The resistance has been effective in those countries.  相似文献   

18.
Xu Jie  J. W. Snape 《Euphytica》1989,41(3):273-276
Summary Two tetraploid and two diploid clones of Hordeum bulbosum were screened for resistance to five isolates of powdery mildew which are virulent on cultivated barley. All were resistant and this resistance was also expressed in hybrids with H. vulgare. The tetraploid genotypes were also resistant to isolates of yellow rust and brown rust. These results show that H. bulbosum contains useful genes for resistance to these diseases and that there is a potential to transfer these into cultivated barley.  相似文献   

19.
Raj Kumar  G. S. Kang  S. K. Pandey 《Euphytica》2007,155(1-2):183-191
Under epiphytotic conditions for late blight in spring seasons, data were recorded on its intensity four times at 4 days intervals from the start of the disease in the field, in 114 (19 females × 6 males) progenies and their parents planted in randomized complete block design in the years 2005 and 2006. Regression and stepwise regression analysis showed that observations during the rapidly increasing phase of disease between initial and last phase of disease are more important than the observations at initial and last phase of the disease. Combining ability analysis on a sub-set of 68 progenies showed that the additive component of genetic variance was more important than the non-additive component of variance in inheritance of quantitative resistance to late blight. The per se performance of the parents does give an idea about their general combining ability (GCA). However, selection of parents based on their GCA will be very useful for breeding for quantitative resistance to late blight. Parents JX 90, JF 4841, CP 3356, CP 1358, CP 3290, JN 1197 and CP 3125 were found to have good GCA for quantitative resistance for late blight and the best six crosses for late bilght resistance based on mean performance involved parents with good combining ability only.  相似文献   

20.
The spotted stem borer, Chilo partellus, is one of the most important pests of sorghum, and host plant resistance is an important component for the management of this pest. Most of the sorghum hybrids currently under cultivation are based on cytoplasmic male-sterility (CMS). In order to develop a strategy for resistance to stem borer, we studied the traits associated with resistance, and their nature of gene action in F1 hybrids derived from resistant, moderately resistant, and susceptible CMS and restorer lines. The hybrids based on stem borer-resistant, moderately resistant, or susceptible CMS and restorer lines were equally resistant or susceptible as the parents for leaf feeding [Damage rating (DR) 5.8 to 6.6 vs. 5.9 to 6.6], and had significant and decreasing trend in deadheart formation (resistant CMS × resistant restorer lines < moderately resistant CMS × moderately resistant restorer lines < susceptible CMS × susceptible restorer lines), respectively. Proportional contributions of restorer lines were greater than those of the CMS lines for leaf feeding, deadhearts, recovery and overall resistance, stalk length, nodes per plant, stem borer holes per plant, and peduncle tunneling. The general (GCA) and specific combining ability (SCA) estimates suggested that leaf feeding score, number of nodes, overall resistance score, panicle initiation, recovery score, and stalk length (dominance type of gene action) have been found to be associated with resistance to spotted stem borer, governed by additive type of gene action, their correlation and direct effects in the same direction, and explained 65.3% of the variation in deadhearts, and thus could be used as marker traits to select and breed for resistance to C. partellus in sorghum. The parents having significant SCA effects for two or more resistance traits for either or more parents have also been discussed for their use in the stem borer resistance breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号