首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to evaluate the value of commercially available kits for the detection of foot-and-mouth disease (FMD) virus infection in vaccinated cattle. The cattle were vaccinated with a commercial aqueous FMD vaccine type A24 and subsequently challenged 28 days post vaccination with homologous FMD virus. Seven of eight animals were protected from clinical disease and all became carriers. They were bled sequentially for up to 130 days post infection and samples of sera were tested with three ELISA kits: CHEKIT FMD-3ABC, Ceditest FMDV-NS and SVANOIR FMDV 3ABC-Ab ELISA. The Ceditest kit appears to be relatively higher sensitive than the others. When examined with this ELISA, all cattle developed of FMDV nonstructural proteins (NSPs) antibodies and remained positive throughout the period of the experiment. The response of antibodies against 3ABC antigen delayed in two cattle challenged with FMDV A24 virus. One of the cattle reacted negatively in Svanoir ELISA kit and sera from two animals were found negative in CHEKIT ELISA. It can be concluded that all tested kits can be a promising tool for FMD control and eradication campaigns in situation where emergency vaccination was applied.  相似文献   

2.
Foot-and-mouth disease (FMD) is endemic in Kenya and has been well studied in cattle, but not in pigs, yet the role of pigs is recognised in FMD-free areas. This study investigated the presence of antibodies against FMD virus (FMDV) in pigs sampled during a countrywide random survey for FMD in cattle coinciding with SAT 1 FMDV outbreaks in cattle. A total of 191 serum samples were collected from clinically healthy pigs in 17 districts. Forty-two of the 191 sera were from pigs vaccinated against serotypes O/A/SAT 2 FMDV. Antibodies against FMDV non-structural proteins were found in sera from 30 vaccinated and 71 non-vaccinated pigs, altogether 101/191 sera (53 %), and 91 % of these (92/101) also had antibodies measurable by serotype-specific ELISAs, predominantly directed against SAT 1 with titres of 10–320. However, only five high titres against SAT 1 in vaccinated pigs were confirmed by virus neutralisation test (VNT). Due to high degree of agreement between the two ELISAs, it was concluded that positive pigs had been infected with FMDV. Implications of these results for the role of pigs in the epidemiology of FMD in Kenya are discussed, and in-depth studies are recommended.  相似文献   

3.
The aim of this study was to evaluate the occurrence of antibodies to foot-and-mouth disease virus (FMDV) in sera of cattle in Poland. The examinations were performed using the virus neutralization (VN) test and ELISA methods: liquid-phase blocking ELISA (LPBE) and 3ABC-ELISA. During 1993-2001, about 681,000 samples of sera collected from animals held on the territory of Poland were tested. Of about 600,000 sera taken from animals exported to the European Union, 963 samples (0.16%) were found to be positive to FMDV types A, O and/or C. During 1996-2001 out of 85,000 sera tested as part of the national serological surveillance program for FMD, the FMDV antibodies were recorded in 51 (0.06%) samples. Persistence of FMD antibodies was observed in sera of cattle from the region around Zduńska Wola, which had been vaccinated annually during 1985-1985 with trivalent FMD vaccine. The results of the serological studies of 550 animals from this region indicates the presence of FMDV antibodies in sera of 240 (44%) cattle. A half-life of maternal antibodies in sera of calves born to seropositive dams was estimated; the highest level of FMDV antibodies was detected in sera taken from new-born calves aged 5-10 days. The level of FMDV antibodies in beestings of dams was highest during the first 10 hours after parturition; after 24 hours a significant decrease (3-5 times) was found and in two weeks post parturition FMDV antibodies were undetectable in the milk. It was established that all LPBE/VN positive sera of cattle exported from Poland, from the vaccination zone around Zduńska Wola as well as those tested as part of the national serological surveillance program for FMD, were taken exclusively from vaccinated animals or calves born to vaccinated dams.  相似文献   

4.
The complex-trapping-blocking (CTB) enzyme-linked immunosorbent assay (ELISA) was evaluated to detect antibodies directed against foot-and-mouth disease virus (FMDV) strains A10 Holland, O1 BFS, and C1 Detmold. Log10 serum titres of uninfected, unvaccinated cattle (n = 100) were less than 1.80 in the CTB-ELISA. Sera from cattle vaccinated with either monovalent or trivalent vaccines were tested in both the CTB-ELISA and the serum neutralisation test (SNT); titres in both tests correlated positively (P less than 0.001). Titres of sera from cattle, sheep, and pigs vaccinated twice with FMDV A10 Holland also correlated positively in both tests. In another experiment, cattle vaccinated with FMDV strain C1 Detmold were intradermolingually challenged 3 weeks after primary vaccination; at the same time two controls were challenged. At 8 days after challenge, serum titres of the controls were distinctly higher in the CTB-ELISA than in the SNT, whereas serum titres of the vaccinated cattle were equally high in both tests. In potency tests for monovalent vaccines against FMDV strains A10 Holland, O1 BFS or C1 Detmold, serum titres correlated strongly in both tests with protection against the homologous FMDV strain. We concluded that the CTB-ELISA is not only sensitive, but easier to perform and more rapid and reproducible than the SNT. The CTB-ELISA may be useful in evaluating the immune response in cattle during FMD vaccine potency tests.  相似文献   

5.
Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals. In Uganda, FMD outbreaks are mainly controlled by ring vaccination and restriction of animal movements. Vaccination stimulates immunity and prevents animals from developing clinical signs which include lameness, inappetence, and decreased production. Ring vaccination and restriction of animal movements have, however, not successfully controlled FMD in Uganda and outbreaks reoccur annually. The objective of this study was to review the use of FMD virus (FMDV) vaccines and assess the effectiveness of vaccination programs for controlling FMD in Uganda (2001–2010), using retrospective data. FMD vaccine distribution patterns in Uganda (2001–2010) matched occurrence of outbreaks with districts reporting the highest number of outbreaks also receiving the largest quantity of vaccines. This was possibly due to “fire brigade” response of vaccinating animals after outbreaks have been reported. On average, only 10.3 % of cattle within districts that reported outbreaks during the study period were vaccinated. The average minimum time between onset of outbreaks and vaccination was 7.5 weeks, while the annual cost of FMDV vaccines used ranged from US $58,000 to 1,088,820. Between 2001 and 2010, serotyping of FMD virus was done in only 9/121 FMD outbreaks, and there is no evidence that vaccine matching or vaccine potency tests have been done in Uganda. The probability of FMDV vaccine and outbreak mismatch, the delayed response to outbreaks through vaccination, and the high costs associated with importation of FMDV vaccines could be reduced if virus serotyping and subtyping as well as vaccine matching were regularly done, and the results were considered for vaccine manufacture.  相似文献   

6.
For the purpose of removing infected animals by detecting humoral immune responses to non-structural proteins of the foot-and-mouth disease (FMD) virus, antibodies induced by contaminated residual non-structural proteins contained in less pure FMD vaccine can be problematic for serological screening. The aim of the present study was to measure the possible presence of antibodies against these non-structural proteins in repeatedly vaccinated calves and beef cattle. Five imported FMD vaccines were examined using two commercial ELISA kits, UBI FMDV NS EIA and Ceditest FMDV-NS, for serological testing. After five doses of vaccination, the serum of one calf tested positive, and two vaccines induced a significant increase in anti-3ABC antibodies in calves. This finding demonstrated that a positive reaction to non-structural proteins due to impurities in the FMD vaccine was detectable using commercial tests. A low percentage of field sera sampled from beef cattle in Kinmen also tested positive, but the key factor resulting in the positive reactions could not be positively identified based on our data.  相似文献   

7.
The relationship of Foot-and-Mouth Disease (FMD) virus antigen payload and single and double vaccinations in conferring protection against virus challenge in sheep was studied. Sheep vaccinated with half the cattle dose (1 ml) containing 15 and 3.75 μg of FMDV antigen with or without booster resisted virulent challenge on 21 days post vaccination or 7 days post booster. FMDV RNA could be detected in nasal secretions in 26% of vaccinated sheep (103.12 to 103.82 viral RNA copies) on day 35 post challenge. No live virus could be isolated after 5 days post challenge indicating that the risk of transmission of disease was probably very low. The finding showed that vaccines containing antigen payload of 1.88 μg may prevent or reduce the local virus replication at the oropharynx and shedding of virus from nasal secretions and thereby reduce the amount of virus released into the environment subsequent to exposure to live virus. Sheep with no vaccination or with poor sero conversion to vaccination can be infected without overt clinical signs and became carriers.  相似文献   

8.
Lu Z  Cao Y  Guo J  Qi S  Li D  Zhang Q  Ma J  Chang H  Liu Z  Liu X  Xie Q 《Veterinary microbiology》2007,125(1-2):157-169
Non-structural protein (NSP) 3ABC antibody is considered to be the most reliable indicator of present or past infection with foot-and-mouth disease virus (FMDV) in vaccinated animals. An indirect ELISA was established, using purified His-tagged 3ABC fusion protein as antigen, for detection of the antibody response to FMDV NSP 3ABC in different animal species. The method was validated by simultaneous detection of the early antibody responses to NSP and structural protein (SP) in FMDV Asia 1 infected animals. The performance of the method was also validated by detection of antibody in reference sera from the FMD World Reference Laboratory (WRL) in Pirbright, UK, and comparison with two commercial NSP ELISA kits. The results showed that the antibody response to SP developed more quickly than that to NSP 3ABC in FMDV infected animals. In contact-infected cattle, the antibody response to NSP 3ABC was significantly delayed compared with that to SP antibody. The early antibody responses to SP and NSP 3ABC in FMDV inoculated cattle and contact-infected or inoculated sheep and pigs were generally consistent. In pigs, 3ABC antibody was linked to the presence of clinical signs; however, in sheep, subclinical infection was detected by the development of 3ABC antibodies. Therefore, the antibody responses to 3ABC varied between host species. Eight out of 10 positive serum samples from FMD WRL were tested to be positive at cutoff value of 0.2. The rate of agreement with the ceditest FMDV-NS and the UBI NSP ELISA were 98.05% (302/308) and 93.2% (287/308), respectively. The prevalence of 3ABC antibodies reached 71.4% in some diseased cattle herds. The further work is required to evaluation the performance of this method in different animal species and different field situations.  相似文献   

9.
Three commercially available ELISAs for the detection of antibodies to the non-structural proteins of foot-and-mouth disease virus (FMDV) were evaluated, using sera from uninfected, vaccinated, infected, inoculated, first vaccinated and subsequently infected, and first vaccinated and subsequently inoculated cattle. We compared antibody kinetics to non-structural proteins, sensitivity, and specificity. One of the ELISAs had a higher sensitivity and much lower specificity than the other two, therefore we established standardised cutoff values for the compared assays using receiver operated characteristic (ROC) curves. Using the standardised cutoff values, all three ELISAs produced comparable results with respect to sensitivity and specificity. Antibody development to non-structural proteins after infection and after vaccination/infection was not significantly different. Development of antibodies, however, both neutralising and directed to non-structural proteins, was significantly delayed after intranasal inoculation as compared to intradermolingual infection. Based on results of sera obtained after vaccination and experimental infection all three assays can be used for testing sera collected between 4 weeks and 6 months after infection. More information is needed on the prevalence of positive reactors in a situation where emergency vaccination has been used and FMD transmission was still observed.  相似文献   

10.
In this study, we investigated whether Cedivac-FMD, an emergency vaccine against foot-and-mouth disease (FMD), is suitable for use conjointly with a screening program intended to confirm freedom from disease in vaccinated herds based on evidence of virus replication in vaccinates. Different sets of sera were tested using the Ceditest FMDV-NS ELISA for the detection of antibodies against non-structural proteins (NSPs) of FMD virus. During a vaccine safety study, serum samples were collected from 10 calves, 10 lambs and 10 piglets following administration of a double dose and a repeat dose of high payload trivalent Cedivac-FMD vaccine. All serum samples collected both 2 weeks following the administration of a double dose as well as those collected 2 weeks after the single dose booster (given 2 weeks after the double dose) were negative in the Ceditest FMDV-NS ELISA. In a series of vaccine potency experiments, serum samples were collected from 70 vaccinated cattle prior to and following exposure to infectious, homologous FMD virus. When testing cattle sera collected 4 weeks after vaccination with a regular dose of monovalent >6 PD(50) vaccines, 1 of 70 animals tested positive in the NSP antibody ELISA. After infection with FMD virus, antibodies to NSP were detected in 59 of 70 vaccinated cattle and 27 of 28 non-vaccinated control animals within 7 days. Cedivac-FMD vaccines do not induce NSP antibodies in cattle, pigs or sheep following administration of a double dose or a repeat dose. FMD-exposed animals can be detected in a vaccinated group within 7-14 days. Because Cedivac-FMD does not induce NSP antibodies, the principle of 'marker vaccine' applies.  相似文献   

11.
Foot-and-mouth disease (FMD) is a highly contagious and economically significant disease of cattle, pigs, sheep, goats and wild ruminant species. The FMD virus genome encodes a unique polyprotein from which the different viral polypeptides are cleaved by viral proteases, including eight different non-structural proteins (NSPs). Both structural and non-structural antigens induce the production of antibodies in infected animals. In contrast, vaccinated animals which have not been exposed to replicating virus will develop antibodies only to the viral antigens in the inactivated material. Vaccination against FMD is a key element in the control of the disease in addition to slaughter and movement restrictions. However, countries that vaccinate in the event of an outbreak will have to re-establish their FMD free status to the satisfaction of their trading partners.Because currently available vaccines stimulate the production of antibodies indistinguishable from those produced by infected animals in response to live virus and because vaccinated animals can be infected and become carriers of FMD virus, efforts have been made to develop diagnostic test that can differentiate vaccinated animals from those that are convalescent and from those that have been vaccinated and become carriers following subsequent contact with live virus. Currently the detection of antibodies to non-structural protein's (NSPs) is the preferred diagnostic method to distinguish virus infected, carrier, animals from vaccinated animals. However this is currently only possible at the herd level because of the great variability in the initiation, specificity and duration of the immune response in individual animals to the NSPs shown in many studies. Considerable effort and attention is now being directed toward the development of new methods and techniques for the rapid and accurate detection of anti-NSP antibodies, harmonization and standardization of current diagnostic techniques, as well as the production of defined reagents.  相似文献   

12.
Protection against foot-and-mouth disease (FMD) and ability to transmit FMD virus to susceptible contact animals were studied in cattle vaccinated three times in annual field campaigns with the Dutch trivalent vaccine. Eighty vaccinated cattle and 16 susceptible controls were intranasally exposed to an aerosol containing a homologous FMD challenge virus (O1 BFS, A10 Holland or C1 Detmold) or a heterologous virus (A5 Modena or C1 Modena). The day after exposure, vaccinated cattle were stabled individually with an FMD-susceptible contact. All cattle challenged with an homologous virus strain at one year (20 head), at two years (10 head) and at three years (30 head) after the last vaccination were protected against the development of clinical signs of disease; one, zero and five cattle of these groups, respectively, transmitted virus to their contacts. In each group, approximately two out of three exposed cattle had virus-positive oropharyngeal fluid samples and seroconverted. The amount of virus recovered from probang samples increased with the time since the last vaccination. Mean antibody titres of cattle that had not been vaccinated for three consecutive years did not change significantly over the last two-year period. All 10 cattle challenged with the vaccine strain-related C1 Modena virus were protected against clinical disease, whereas three out of 10 challenged with the heterologous A5 Modena strain virus one year after the last vaccination contracted FMD and transmitted the virus. Five others (four in the C1 group and one in the A5 group) spread the virus to their contacts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
FMDV infection can cause a long lasting virus carrier state in the oesophageal-pharyngeal (OP) region of cattle, sheep, goats, African buffalo, wildebeest and kudu. Virus can be recovered from OP fluids with low titres for several months up to more than 2 years. During this time phases of positive virus recovery are interrupted by negative phases. The number of virus carriers decreases as time progresses. The virus carrier state is always accompanied by FMDV antibodies in serum and OP fluid. Vaccinated animals also become virus carriers after FMDV infection, to the same extent as unvaccinated animals. No virus carrier state has been proven in pigs, but it cannot be excluded in some species of deer. Epizootic importance of carrier animals (in FMD) has not been found. Experimental contact transmissions of carrier virus to cattle, sheep and goats have failed. Only buffalo transmit carrier virus to the own species and perhaps to cattle. Nevertheless, virus carriers represent a natural reservoir of FMDV in infected areas and a potential source of antigenically altered virus variants, since continuous variations of the virus and selection of virus mutants take place in the animal during the carrier state.  相似文献   

14.
The development of a liquid-phase blocking sandwich ELISA (LPBE) to measure antibodies (Ab) produced in cattle with the O, A and C foot-and-mouth disease virus (FMDV) types of commercial vaccines used in Argentina is described. The test was specific: 99% of naïve cattle sera (n = 130) gave titres below log10 = 1.2, and none had a titre above log10 = 1.5. Comparative studies with serum neutralization test (SNT) using sera from cattle which received one or more vaccine doses is reported. The overall rank correlation coefficient (Spearman's , rs) between SNT and LPBE were highly significant (rs > 0.67, P < 0.0001) for all vaccine strains. LBPE Ab titres on sera collected 90 days post vaccination were compared with results of cattle protection tests by applying a logistic regression. The minimum Ab titres at which 85% and 75% of the cattle were protected for each FMDV type were determined in order to interpret field Ab data in terms of protection. Application of this method allows large scale serological examinations to monitor antibody levels in vaccinated animals as an indirect indicator of the FMD control program status in the field. Its use in the evaluation of commercial batches of FMD vaccine is discussed.  相似文献   

15.
To investigate and optimise detection of carriers, we vaccinated 15 calves with an inactivated vaccine based on foot-and-mouth disease virus (FMDV) A Turkey strain and challenged them and two further non-vaccinated calves with the homologous virus four weeks later. To determine transmission to a sensitive animal, we put a sentinel calf among the infected cattle from 60 days post-infection until the end of the experiment at 609 days post-infection. Samples were tested for the presence of FMDV, viral genome, specific IgA antibodies, antibodies against FMDV non-structural (NS) proteins or neutralising antibodies. Virus and viral genome was intermittently isolated from probang samples and the number of isolations decreased over time. During the first 100 days significantly more samples were positive by RT-PCR than by virus isolation (VI), whereas, late after infection more samples were positive by virus isolation. All the inoculated cattle developed high titres of neutralising antibodies that remained high during the entire experiment. An IgA antibody response was intermittently detected in the oropharyngeal fluid of 14 of the 17 calves, while all of them developed detectable levels of antibodies to NS proteins of FMDV in serum, which declined slowly beyond 34 days post-infection. Nevertheless, at 609 days after inoculation, 10 cattle (60%) were still positive by NS ELISA. Of the 17 cattle in our experiment, 16 became carriers. Despite frequent reallocation between a different pair of infected cattle no transmission to the sentinel calf occurred. It remained negative in all assays during the entire experiment. The results of this experiment show that the NS ELISA is currently the most sensitive method to detect carriers in a vaccinated cattle population.  相似文献   

16.
以豚鼠为试验动物模型,探索一种应用豚鼠替代牛进行牛口蹄疫Asia-1型灭活疫苗效力检验的方法.豚鼠和牛同步对6批牛口蹄疫Asia-1型灭活疫苗进行PD50效力检验,其中2批进行重复性试验.豚鼠分别在免疫后7、14、21和28天采血检测Asia-1型的中和抗体水平.统计学分析显示,测定的豚鼠PD50和牛PD50之间具有极...  相似文献   

17.
We evaluated the potential ability of germanium biotite (GB) to stimulate the production of antibodies specific for foot-and-mouth disease virus (FMDV). To this aim, we measured the total FMDV-specific antibody responses and IgM production after vaccination against FMD both experimentally and in the field. GB supplementation with FMDV vaccination stimulated the production of anti-FMDV antibodies, and effectively increased IFN-γ and TNF-α levels. These results suggest that GB may be a novel alternative feed supplement that can serve as a boosting agent and an immunostimulator for increasing the efficacy of FMDV vaccination in pigs.  相似文献   

18.
A monoclonal antibody, 3BIgG, against the prokaryotically expressed foot-and-mouth disease virus (FMDV) non-structural protein (NSP) 3B was obtained. The 3BIgG-sepharose conjugant (3BmAb-6BFF) was prepared by adding the purified 3BIgG into epoxy-activated sepharose 6BFF, incubating with the inactivated FMDV, and then removing the sepharose by centrifugation. The vaccine was made from the supernatant emulsified with oil-adjuvant ISA206. Ten guinea pigs, 26 pigs and six cattle were vaccinated, and a vaccination control group was included without treatment with 3BmAb-6BFF. After 28 days, 9/10 pigs challenged with FMDV were protected, this result was the same as the control group, indicating that the vaccine potency was not reduced after treatment with 3BmAb-6BFF. The other animals were vaccinated weekly for nine weeks, and serum samples were collected to detect 3ABC-antibody titers. The results showed that 3ABC-antibody production was delayed and the positive antibody rates were lower when vaccination was carried out using vaccines treated with 3BmAb-6BFF compared with untreated vaccines. The findings of this study suggest that it is possible to reduce NSPs using a mAb-sepharose conjugant in FMD vaccines without reducing their efficacy.  相似文献   

19.
Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals including cattle, pigs, sheep and many wildlife species. It can cause enormous economic losses when incursions occur into countries which are normally disease free. In addition, it has long-term effects within countries where the disease is endemic due to reduced animal productivity and the restrictions on international trade in animal products. The disease is caused by infection with foot-and-mouth disease virus (FMDV), a picornavirus. Seven different serotypes (and numerous variants) of FMDV have been identified. Some serotypes have a restricted geographical distribution, e.g. Asia-1, whereas others, notably serotype O, occur in many different regions. There is no cross-protection between serotypes and sometimes protection conferred by vaccines even of the same serotype can be limited. Thus it is important to characterize the viruses that are circulating if vaccination is being used for disease control. This review describes current methods for the detection and characterization of FMDVs. Sequence information is increasingly being used for identifying the source of outbreaks. In addition such information can be used to understand antigenic change within virus strains. The challenges and opportunities for improving the control of the disease within endemic settings, with a focus on Eurasia, are discussed, including the role of the FAO/EuFMD/OIE Progressive Control Pathway. Better control of the disease in endemic areas reduces the risk of incursions into disease-free regions.  相似文献   

20.
During 1999, 11 outbreaks of foot and mouth disease (FMD) were declared in the east and central part of Morocco. All the FMD clinical cases reported were cattle. In order to analyse the serological status of sheep from the FMD outbreak areas, 598 sheep sera were tested using a liquid-phase blocking ELISA (LPBE) to detect antibodies against FMDV structural proteins. The study confirmed the presence of FMDV specific antibodies in 77 clinically normal sheep, indicating that unrecognised FMDV-infected sheep could represent a potential risk of FMD dissemination in Morocco.Subsequently, sera from flocks of sheep that had been exposed to FMD outbreaks were assayed by an indirect ELISA using the recombinant FMDV non-structural protein 3ABC expressed in E. coli to evaluate the potential use of this serological test in future epidemiological studies and the development of FMD control strategies. The results indicated that the 3ABC-ELISA was able to detect antibodies indicative of infection with FMDV in asymptomatic sheep in field conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号