首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), is an important insect pest which causes severe economic losses in wheat (Triticum spp.). Among the various U.S. RWA biotypes, biotype 1 (RWA1) and biotype 2 (RWA2) are the most prevalent and most virulent on cultivated genotypes. Although many sources of resistance to these biotypes are available among landraces, their relatedness should be characterized to permit their more efficient use in breeding programs. In this study, 38 hexaploid accessions resistant to biotype 1 and/or biotype 2 were evaluated for genetic diversity based on amplified fragment length polymorphisms (AFLP). Fifteen AFLP selective primer combinations were used to genotype these accessions, resulting in 893 amplicons. Of these, 274 (30.6%) informative polymorphic bands were used for genetic diversity analysis. Genetic similarity coefficients ranged from 0.47 to 0.87 among the resistant accessions, indicating high genetic diversity among them. Cluster analysis grouped the 38 accessions into two major clusters, I and II, including resistant lines for RWA1 and RWA2. The study indicated that accessions in the National Small Grains Collection conferring RWA1 or RWA2 resistance comprise a diversified population which should support introgression efforts and provide genetic diversity for future breeding for RWA resistance.  相似文献   

2.
A. M. Castro    A. Vasicek    S. Ramos    A. Worland    E. Suárez    M. Muñoz    D. Giménez  A. A. Clúa 《Plant Breeding》1999,118(2):131-137
A collection of 26 cultivars of wheat Triticum aestivum were screened for resistance against the two main aphid pests of cereals, the greenbug Schizaphis graminum Rond. and the Russian wheat aphid (RWA) Diuraphis noxia Mordvilko. Since genetic variability has been found in Argentinean populations of both aphid species, this work was aimed at determining the response of different types of resistance in wheat cultivars when infested with aphids. Antixenosis, antibiosis and tolerance were evaluated with traditional tests in controlled environmental conditions using a clone of greenbug biotype C and a clone of RWA collected on wheat. Genetic resistance was found against one or both aphid species in several wheats. Most of the highest levels of antixenosis, antibiosis and tolerance against the two aphids occurred in different cultivars; as a consequence the resistance mechanisms for both pests appear to be partly independent. Antibiosis against greenbug or RWA appears to be determined by two different sets of genes, one affecting development time and the other reducing fecundity and longevity. The antibiosis against both aphid species in terms of their development time and the intrinsic rate of population increase resulted in a partial cross effect of these aphid traits against the alternative insect species. Nonetheless, the same cultivars affected the total fertility and the longevity of both aphids. Since the highest plant performance levels and the least plant damage were recorded in different wheats, different patterns of tolerance were displayed against the greenbug and the RWA. Consequently, different genes appear to be involved in several traits of the resistance mechanisms against the two aphids. The genes that independently conferred resistance to aphids could be combined in new cultivars of wheat to broaden their genetic base of resistance against the greenbug and the RWA.  相似文献   

3.
Identification of new sources of resistance to Russian wheat aphid (RWA) (Diuraphis noxia (Kurdjumov) in wheat (Triticum aestivum L.) has become very important with the identification of several new biotypes since 2003. Our objective was to characterize inheritance and expression of resistance to RWA biotype 2 from three tetraploid wheat landraces (Triticum turgidum L. subsp. dicoccon) during transfer to hexaploid wheat. Resistant tetraploid accessions PI 624903, PI 624904, and PI 624908 were crossed to the susceptible hexaploid cultivars ‘Len’ and ‘Coteau’. Resistant F1 progeny were advanced to the F2:3 by self-pollination and to the BC1F2 and BC2F1 by backcrossing. Leaf rolling and chlorosis were recorded in standard seedling screening tests on F1 and F2:3 individuals while the F2, BC1F1, BC1F2, and BC2F1 were scored as resistant or susceptible. Segregation in the BC1F1 and BC2F1 fit a 1:1 resistant:susceptible ratio, indicative of control by a single dominant gene. Segregation for resistance in the F2 did not fit 3:1, 13:3, or 15:1 ratios for any of the resistant accessions. Expression of resistance in homogeneous resistant F2:3 lines was greater than susceptible checks, similar to the resistant tetraploid accessions, and less than a line carrying the Dn7 resistance gene. Resistance derived from these tetraploid accessions will be useful to broaden the base of RWA resistance available for use in wheat breeding.  相似文献   

4.
Inheritance of resistance to a wheat midge, Sitodiplosis mosellana (Géhin), was investigated in spring wheats derived from nine resistant winter wheat cultivars. F1 hybrids were obtained from crosses between resistant winter wheats and susceptible spring wheats, and used to generate doubled haploid populations. These populations segregated in a ratio of 1:1 resistant to susceptible, indicating that a single gene confers the resistance. The F2 progeny from an intercross among spring wheats derived from the nine resistance sources did not segregate for resistance. Therefore, the same gene confers resistance in all nine sources of resistance, although other genes probably affect expression because the level of resistance varied among lines. Heterozygous plants from five crosses between diverse susceptible and resistant spring wheat parents all showed intermediate levels of response, indicating that resistance is partly dominant. Susceptible plants were reliably discriminated from heterozygous or homozygous resistant ones in laboratory tests, based on the survival and development of wheat midge larvae on one or two spikes. This powerful resistance gene, designated Sm1, is simply inherited and can be incorporated readily into breeding programmes for spring or winter wheat. However, the use of this gene by itself may lead to the evolution of a virulent population, once a resistant cultivar is widely grown.  相似文献   

5.
Summary Studies were conducted to determine the inheritance and allelic relationships of genes controlling resistance to the Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), in seven wheat germplasm lines previously identified as resistant to RWA. The seven resistant lines were crossed to a susceptible wheat cultivar Carson, and three resistant wheats, CORWA1, PI294994 and PI243781, lines carrying the resistance genes Dn4, Dn5 and Dn6, respectively. Seedlings of the parents, F1 and F2 were screened for RWA resistance in the greenhouse by artificial infestation. Seedling reactions were evaluated 21 to 28 days after the infestation using a 1 to 9 scale. All the F1 hybrids had equal or near equal levels of resistance to the resistant parent indicating dominant gene control. Only two distinctive classes were present and no intermediate types were observed in the F2 segregation suggesting major gene actions. The resistance in PI225262 was controlled by two dominant genes. Resistance in all other lines was controlled by a single dominant gene. KS92WGRC24 appeared to have the same resistance gene as PI243781 and STARS-9302W-sib had a common allele with PI294994. The other lines had genes different from the three known genes.  相似文献   

6.
H. Dong    J. S. Quick  Y. Zhang 《Plant Breeding》1997,116(5):449-453
The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko) has caused serious reduction in wheat production in 17 Western states of the United States since 1986. Inheritance of resistance to RWA in seven wheat lines and the allelism of the resistance genes in these lines with three known resistance genes Dn4, Dn5, and Dn6 were studied. The seven resistant lines were crossed to a susceptible wheat cultivar ‘Carson’ and three resistant wheats: CORWA1 (Dn4), PI 294994 (Dn5), and PI 243781 (Dn6). Seedlings of the parents, F1, and F2 were screened for RWA resistance in the greenhouse by artificial infestation. Seedling reactions were evaluated 21–28 days after the infestation using a 1–9 scale. The resistance level of all the F1 hybrids was similar to that of the resistant parent, indicating dominant gene control. Only two distinctive classes were present and no intermediate types were observed in the F2 population, suggesting qualitative, nonadditive gene action, in which the presence of any one of the dominant alleles confers complete resistance to RWA. Resistance in CI 2401 is controlled by two dominant genes. Resistance in CI 6501 and PI 94365 is governed by one dominant gene. Resistance in PI 94355 and PI 151918 may be conditioned by either one dominant gene or one dominant and one recessive gene. No conclusion can be made on how many resistance genes are in AUSVA1-F3, since the parent population was not a pure line. Allelic analyses showed that one of resistance genes in CI 2401 and PI 151918 was the same allele as Dn4, the resistance gene in CI 6501 was the same allele as Dn6, and AUS-VA1-F3 had one resistance gene which was the same allele as one of the resistance genes in PI 294994. One non-allelic resistance gene different from the Dn4, Dn5, and Dn6 genes in CI 2401, PI 94355, PI 94365, and PI 222668 was identified and should be very useful in diversifying gene sources in wheat breeding.  相似文献   

7.
Greenbug and Russian wheat aphid (RWA) are two devastating pests of wheat. The first has a long history of new biotype emergence and recently. RWA resistance has just started to break down. Thus, it is necessary to find new sources of resistance that will broaden the genetic base against these pests in wheat. Seventy‐five doubled haploid recombinant (DHR) lines for chromosome 6A from the F1 of the cross between “Chinese Spring’ and the “Chinese Spring (Synthetic 6A) (Triticum dicoccoides × Aegilops tauschii)” substitution line were used as a mapping population for testing resistance to greenbug biotype C and to a new strain of RWA that appeared in Argentina in 2003. A quantitative trait locus (QTL) (br antixenosis to greenbug was significantly associated with the marker loci Xgwm1009 and Xgwm1185 located in the centromere region of chromosome 6A. Another QTL which accounted for most of the antixenosis against RWA was associated with the marker loci Xgwm1291 and Xiinni1150. both located on the long arm of chromosome 6A. This is the first report of greenbug and RWA resistance genes located on chromosome 6A. It is also the first report of antixenosis against the new strain of RWA. As most of the RWA resistance genes present in released cultivars have been located in [he D‐ genome, it is highly desirable to find new sources in other genomes to combine the existing resistance genes with new sources.  相似文献   

8.
Summary The Russian wheat aphid (Diuraphis noxia, Mordvilko) (RWA) is responsible for significant economic damage to cereal crops in arid and semi-arid environments. In this research 20 red winter wheats originating from Iran were evaluated for resistance to RWA. Leaf rolling, leaf folding, and leaf chlorosis were measured using 0 to 3 scales. An overall mean damage score was calculated as the average of the three measured damage symptoms. Plants from seven central Asian accessions (PI222666, PI222668, PI225226, PI225267, PI225271, PI243630, and PI243642) had mean damage scores significantly lower (p < 0.001) than Stephens wheat (RWA susceptible) and not significantly different from Border oat (RWA resistant). These results are consistent with previous studies which found a high frequency of resistant wheats collected from the central Asian region.  相似文献   

9.
M. T. Assad 《Plant Breeding》2002,121(2):180-181
The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), is a major economic pest of small grains in many countries. An experiment was therefore conducted to determine the inheritance of gene(s) controlling resistance to RWA in a resistant tetraploid durum wheat line. This resistant line,‘1881′, was crossed to a susceptible line, ‘Orejy‐e‐Kazeroon’, and then F1 F2 and BCF1 (backcross to susceptible line) seedlings were screened in a greenhouse for RWA resistance following artificial infection. Resistance in ‘1881’ was apparently controlled by one dominant gene. Since Dnl, Dn2, dn3, Dn4 and Dn5 have been reported to be located on genome D, it was reasoned that the resistance gene in ‘1881’ is not allelic to them.  相似文献   

10.
The Russian wheat aphid, Diuraphis noxia (Mordvilko), is a major pest of cereal crops in many areas of the world, causing serious reduction in grain yield in wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). Incorporating genetic resistance to D. noxia into wheat cultivars is paramount to effectively reduce damage inflicted by this pest. Genetic resistance to D. noxia has been identified in wheat, barley and rye germplasm, and several resistance genes are available for use for cultivar improvement. In the United States of America, only a few Russian wheat aphid (RWA) resistant winter wheat cultivars are currently available, and these cultivars contain only one of the six known RWA resistance genes. The objective of this study was to determine the inheritance of RWA resistance in wheat accession PI 47545, using a screening method based on differences in the leaf morphology of resistant and susceptible types following insect challenge. PI 47545 was selected for study, since it displayed high levels of resistance in a white-grained wheat background, the predominant wheat class produced in the Pacific Northwest of the USA. Segregation analysis was conducted on an F2 population developed by cross-hybridizing the susceptible soft white winter wheat cultivar ‘Daws’ to the resistant accession PI 47545. Russian wheat aphid screening data from this population indicated that the resistance in PI 47545 is controlled by a single, dominant gene (χ2 = 1.72; p ≤ 0.189). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Two sets of intervarietal chromosome substitution lines in the recipient,susceptible cultivar ‘Chinese Spring’ were screened to identify the wheat chromosomes involved with antixenosis, antibiosis and tolerance resistance to greenbug and Russian wheat aphid. The amphiploid ‘Synthetic’ and the cultivar ‘Hope’ were the donor parents. Antixenosis, antibiosis and tolerance were evaluated with conventional tests in controlled environmental conditions using a clone of greenbug biotype C and a clone of RWA collected on wheat. Antixenosis against greenbug was accounted for by several chromosomes in both sets of substitution lines with chromosome 2B contributing the highest level of this type of resistance. The highest levels of antixenosis against RWA were associated with the group of chromosomes 7 of the substitutions CS/Syn set and the chromosome substitutions 2B, 6A and 7D of the CS/Hope set. Antibiosis against both aphids species was accounted for by several different chromosomes. The highest levels of antibiosis for most of RWA resistance traits were recorded from the 1B substitution line of the CS/Hope set. More than one gene appears to determine antibiosis. Tolerance to both greenbug and the RWA was significantly associated with chromosomes 1A,1D, and 6D in the CS/Syn set of substitutions. These lines showed enhanced plant growth under aphid infestation. The highest levels of antixenosis, antibiosis and tolerance against the two aphid species occurred mostly in different substitution lines. Consequently, the different types of resistance for both pests seem to be partially independent. Since different genes seem to be involved in at least several traits of the resistance categories against the two aphid species, such genes could be combined in new cultivars of wheat to broaden their genetic base of resistance against the greenbug and the RWA. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
B. Ehdaie  C.A. Baker 《Euphytica》1999,107(1):71-78
Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), is an important pest of wheat (Triticum aestivum L.) in the United States of America. Developing adapted wheat cultivars with genetic resistance to RWA is an effective control strategy. Genetic studies were conducted to determine the mode of inheritance of gene(s) conferring resistance to RWA in an Iranian landrace wheat line, G 5864. For the inheritance study, G 5864 was crossed with the susceptible wheats ‘Yecora Rojo’ and ND 2375. Seedlings of F1, reciprocal F1, F2, BC1 to the susceptible parent (BCS), and BC1 to the resistant parent (BCR) were screened for RWA reaction. Several phenotypic segregation ratios were tested in the F2 populations for goodness of fit; the 9:3:3:1 ratio (resistant: rolled leaves: stunted plants: susceptible) was an acceptable fit in all cases. Thus, resistance in G 5864 seemed to be controlled by two independent dominant genes with additive gene effects. The allelic relationships of gene(s) in this line with genes in other resistant lines, PI 137739 (Dn1), PI 262660 (Dn2), PI 372129 (Dn4), PI 294994 (Dn5), and PI 243781 (Dn6), were also studied. Segregation patterns observed in G 5864 × resistant (R × R) F2 populations were inconclusive. However, no susceptible plants were observed in these F2 populations. If previous reports concerning the number of resistance genes present in the other resistant lines are correct, then given the high manifestation of resistance observed in G 5864, and given the absence of susceptible plants in the R × R F2 populations, it is indicated that RWA resistance in G 5864 is either controlled by different alleles at the same loci as the other resistance genes, or that G 5864 shares a resistance gene with each of the other resistant lines. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
M.T. Assad  H.R. Dorry 《Euphytica》2001,117(3):229-232
Russian wheat aphid (RWA), Diuraphis noxia (Kurdjumov), is a serious pest of small grains in many countries. A previous study screened 70 genotypes, collected from different parts of Iran, for RWA resistance. Four crosses were made between two resistant lines (Shz.W-102 and Shz.W-104) and two susceptible lines (Shz.W-101 and Shz.W-103). Parents, F1, F2, and BCF1 seedlings were screened for RWA resistance in the greenhouse by artificial infection. To determine allelism, the two resistant lines were intercrossed and F1, and F2 seedlings were evaluated. Resistance in Shz.W-102 and Shz.W-104, when crossed with Shz.W-101, was controlled by one dominant gene. However, resistance in Shz.W-102 and Shz.W-104, when crossed with Shz.W-103, was controlled by two dominant genes. Genes in two resistant lines segregated independently of each other. A three-gene system was proposed to govern resistance in the lines under study . This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
K. K. Nkongolo 《Euphytica》1996,90(3):337-344
Summary The Barley Yellow Dwarf Virus disease (BYDV) and the Russian wheat aphid (RWA) Diuraphis noxia (Mordvilko) have caused significant losses to wheat and barley in several areas of the world. Important sources of resistance to both BYDV and RWA have been found in Triticale. Different generations of interspecific wheat x Triticale crosses were produced and the progenies were screened for BYDV and RWA tolerance. Plants with equal chromosome numbers showed different levels of fertility. A significant correlation was observed between pollen fertility and seed set in primary florets (r=0.57). In generaL, pollen fertility, seed set and the number of euploid plants (2n=42) increased from one generation to the next. The expression of BYDV tolerance varied from population to population. Additive effects were predominant in F1 and some backcross populations. A dominant effect of rye tolerance genes was also observed in few populations. A monogenic trait or a quantitative (polygenic) character would not agree with the observed segregation patterns. The heritability of this oligogenic tolerance was quite different between populations and in many populations the tolerance genes were only partially expressed. Some transgressive segregation for tolerance and sensitivity was demonstrated. The genes controlling tolerance to RWA in Triticale lines, Muskox 658 and Nord Kivu were not expressed in advanced lines resistant to BYDV. This indicates that tolerance genes for BYDV and RWA in these lines are located on different chromosomes.  相似文献   

15.
The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), has become a serious, perennial pest of wheat (Triticum aestivum L.) in many areas of the world. This study was initiated to determine the inheritance of RWA resistance in PI 140207 (a RWA-resistant spring wheat) and to determine its allelic relationship with a previously reported RWA resistance gene. Crosses were made between PI 140207 and ‘Pavon’ (a RWA-susceptible spring wheat). Genetic analysis was performed on the parents, F1, F2, backcross (BC) population and F2-derived F3 families. Analyses of segregation patterns of plants in the F1, F2, and BC populations, and F2-derived F3 families indicated single dominant gene control of RWA resistance in PI 140207. Results of the allelism test indicated that the resistance gene in PI 140207, while conferring distinctly different seedling reactions to RWA feeding, is the same as Dn 1, the resistance gene in PI 137739.  相似文献   

16.
The distribution and allelic expressivity of hybrid necrosis genes (Ne 1 and Ne 2) were studied in 21 winter (mostly exotic) and 43 spring type elite wheat genotypes, by crossing them with two known testers, C 306 (Ne 1-carrier) and HD 2380 (Ne 2-carrier).Ne 1 gene was present in one north-west Himalayan winter wheat landrace, Shoure Local, but absent in the other winter as well as spring wheats. Ne 2 gene was prevalent to a much lower extent in the exotic winter wheat germplasm (31.57%) as compared to the recently developed Indian and Mexican spring wheat semidwarfs (69.80%). This may suggest that breeders have tried to preclude hybrid necrosis by selecting for non-carrier genotypes in the development of exotic winter wheats in contrast to the situation in spring wheats. Based on the degree of expression of hybrid necrosis genes in the F1 hybrids, the carrier genotypes were characterized with respect to the allelic strength of the hybrid necrosis genes. The 27 non-carrier genotypes of the two ecotypes identified in the present study have a greater potential use in future hybridization programmes so as to overcome the problem of hybrid necrosis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
D.R. Porter  J.A. Webster 《Euphytica》2000,111(3):199-203
The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), has become a perennial, serious pest of wheat (Triticum aestivum L.) in the western United States. Current methodologies used to enhance RWA resistance in wheat germplasm could benefit from an understanding of the biochemical mechanisms underlying resistance to RWA. This study was initiated to identify specific polypeptides induced by RWA feeding that may be associated with RWA resistance. The effects of RWA feeding on PI 140207 (a RWA-resistant spring wheat) and Pavon (a RWA-susceptible spring wheat) were examined by visualizing, silver-stained denatured leaf proteins separated by two-dimensional polyacrylamide gel electrophoresis. Comparisons of protein profiles of noninfested and RWA-infested Pavon and PI 140207 revealed a 24-kilodalton-protein complex selectively inhibited in Pavon that persisted in PI 140207during RWA attack. No other significant qualitative or quantitative differences were detected in RWA-induced alterations of protein profiles. These results suggest that RWA feeding selectively inhibit synthesis and accumulation of proteins necessary for normal metabolic functions in susceptible plants. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
The Russian wheat aphid (RWA), Diuraphis noxia (Kurdjumov), is an important pest of small‐grain cereals, particularly wheat, worldwide. The most efficient strategy against the RWA is to identify sources of resistance and to introduce them into susceptible wheat genotypes. This study was conducted to determine the mode of inheritance of the RWA resistance found in ICARDA accession IG 100695, to identify wheat microsatellite markers closely linked to the gene and to map the chromosomal location of the gene. Simple sequence repeat (SSR) marker scores were identified in a mapping population of 190 F2 individuals and compared, while phenotypic screening for resistance was performed in F2 : 3 families derived from a cross between ‘Basribey’ (susceptible) and IG 100695 (resistant). Phenotypic segregation of leaf chlorosis and rolling displayed the effect of a single dominant gene, temporarily denoted Dn100695, in IG 100695. Dn100695 was mapped on the short arm of chromosome 7D with four linked SSR markers, Xgwm44, Xcfd14, Xcfd46 and Xbarc126. Dn100695 and linked SSR markers may be useful for improving resistance for RWA in wheat breeding.  相似文献   

19.
Summary During a four year period, a total of 258 winter and spring wheat genotypes were evaluated for resistance to head blight after inoculation with Fusarium culmorum strain IPO 39-01. It was concluded that genetic variation for resistance is very large. Spring wheat genotypes which had been reported to be resistant to head blight caused by Fusarium graminearum were also resistant to F. culmorum. The resistant germplasm was divided into three gene pools: winter wheats from Eastern Europe, spring wheats from China/Japan and spring wheats from Brazil. In 32 winter wheat genotypes in 1987, and 54 winter wheat genotypes in 1989, the percentage yield reduction depended on the square root of percentage head blight with an average regression coefficient of 6.6. Heritability estimates indicated that for selection for Fusarium head blight resistance, visually assessed head blight was a better selection criterion than yield reduction.  相似文献   

20.
A. M. Castro    A. Vasicek    S. Ramos    A. Martin    L. M. Martin  A. F. G. Dixon 《Plant Breeding》1998,117(6):515-522
A collection of tritordeum amphiploids (Hordeum chilense × Triticum turgadum) and their wheat parents were screened for resistance against the two main aphid pesis of cereals, the greenhug. Schizaphis graminum Rond. and ihe Russian wheat aphid (RWA) Diuraphis naxia Mord-vilko. Antixenosis. antibiosis and tolerance were evaluated in controlled environmental conditions using a. clone of greenbug biotypc C and a clone of RWA collected on pasta wheat. Tritordeum amphiploids pos-sess genetic resistance against greenbug and RWA; some of the lines tested were more resistant than the parental wheat line. Four principal components explained the resistance against both aphid species. The antixenosis shown against both pests was mainly contributed by their wheat parents. The antibiosis againsl both aphid species was obviously dependent on diflerent plant traits. The highest levels of antibiosis against the two aphids occurred in different amphiploids. Different genes are involved in the antibiotic reaction against the two aphids. The Tritordeum resistance to RWA is based on anlixenosis and ant-biosis since the tolerance trails were not independent of the other types of resistance. The level of tolerance shown to the greenbug was variable and appears to be controlled by differeni mechanisms. The tolerance to aphids shown by H. chilense is expressed in the amphiploids. but with some genomic interaction. Genes conferring resistance to aphids in H. chilensee could be incorporated into new cultivars of wheat to broaden their genetic base of resistance against greenbug and RWA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号