首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
依据全国碳汇专项调查的理论和方法,对福建省霞浦县不同林龄阔叶混交林生态系统各组分的碳、氮含量及碳、氮储量格局进行调查分析,结果表明:灌木层各器官碳含量从大到小依次为枝干根叶,氮含量为叶干根枝;草本层碳、氮含量从大到小均为地上部分地下部分;土壤碳、氮含量均随土层深度增加而降低,随林龄的增大而上升;系统各组分C/N从大到小依次为枝根干枯落物叶土壤;12年生、19年生和28年生阔叶混交林生态系统的碳储量分别为164.066、231.751和290.985t!hm-2,氮储量分别为15.011、23.503和31.236t!hm-2,其中,土壤层碳储量所占比重分别为60.27%、46.50%和39.50%,氮储量所占比重分别为45.94%、33.09%和28.67%;乔木层、灌木层、枯落物层和土壤层碳、氮储量均随林龄的增大而增加。  相似文献   

2.
采用样方法和收获法,根据光合作用方程式、碳税法和人工制氧法,对云南玉溪磨盘山华山松人工林(16 a中龄林、26 a近成熟林、43 a成熟林)生物量、碳储量及其空间分布特征和固碳释氧进行了研究。结果如下:三种林龄华山松人工林的生物量分别为181.515 t·hm-2、284.679 t·hm-2、295.311 t·hm-2,碳储量分别为85.751 3t C·hm-2、139.934 4 t C·hm-2、132.508 6 t C·hm-2,净碳储量分别为:5.365 3 t C·hm-2·a-1、5.383 6 t C·hm-2·a-1和3.082 7t C·hm-2·a-1;三种林龄群落各层碳储量均为乔木层枯落物层灌木层草本层,三种林龄乔木层的碳储量分别占:91.37%、94.99%、93.70%;不同林龄相同器官(根、皮、叶、干、枝)之间变异系数在2.10%~7.33%之间,而同一林龄不同器官的变异系数在2.12%~5.82%之间;方差分析结果显示除成熟林乔木外,另两种林龄乔木各营养器官之间均存在显著差异;华山松中龄林、近成熟林、成熟林同化大气中CO2和释放出O2价值量分别是355 044.221 3 yuan·hm-2,216 003.386 1 yuan·hm-2,556 831.529 6 yuan·hm-2和338 767.648 4 yuan·hm-2、577 627.367 6 yuan·hm-2和351 419.513 0 yuan·hm-2。  相似文献   

3.
根据7块不同林龄杉木人工林标准地调查的数据,对亚热带杉木人工林生物量和碳储量及其垂直分布进行研究。结果表明:杉木人工林林木和各器官生物量随着林龄的增大而增加,树干所占比重最大且逐渐增大,在林龄28年时,乔木层的生物量最大为167.86 t/hm2。杉木人工林碳储量垂直分布序列为乔木层凋落物层草本层,分别为50.28 t/hm2、4.32 t/hm2、1.50 t/hm2,平均年固碳量分别为2.44 t/hm2·a-1、0.19 t/hm2·a-1、0.14 t/hm2·a-1。杉木人工林总平均生物量、总平均碳储量和总平均年固碳量分别为119.05 t/hm2、56.10 t/hm2、2.77 t/hm2·a-1。因此,乔木层作为森林生态系统中主要的碳库层,对于森林的碳汇功能发挥着重要的作用。  相似文献   

4.
通过对国营雷州林业局30个5年生桉树无性系人工林的调查、试验,旨在阐明不同桉树无性系人工林碳储量的变化规律及营建桉树碳汇林的合理措施.结果表明:30个桉树无性系人工林生态系统平均碳储量为148.743 t·hm-2,高于之前学者研究的桉树人工林碳储量,其中,乔木层和土壤层分别占34.39%、61.88%;乔木层平均碳储量达51.948 t·hm-2,不同无性系间差异极显著(p<0.01),其中,23(101-1)、25(179-1)、4(BU1)、26(184-1)号无性系表现最优;土壤层的平均碳储量为92.033 t·hm-2,不同无性系土壤层碳储量差异不明显;灌木层、草本层、凋落物层碳储量分别是2.430、0.731、1.592 t·hm-2,占比例较小.营建桉树碳汇林关键在于无性系的正确选择.  相似文献   

5.
桤木人工林的碳密度、碳库及碳吸存特征   总被引:4,自引:0,他引:4  
对不同年龄阶段桤木人工林生态系统碳密度、碳库和碳吸存的研究结果表明:桤木各器官的碳密度算术平均值随年龄的增长而增加,5,8和14年生的分别为478.8,485.7和495.8g·kg-1,变异系数在0.25%~9.58%之间,不同器官碳密度由高至低排序大致为:树干树枝树叶树根树皮,林下植被各组分和死地被物的碳密度随着林龄的变化规律不明显,土壤层(0~60cm)平均碳密度也随着林龄的增长逐渐增加,且在垂直分布上随着土层深度的增加而逐渐下降。不同器官的碳贮量与其生物量成正比例关系,随着林龄增长,乔木层碳贮量的优势逐渐增强,从5年生的25.88t·hm-2增加到14年生的49.63t·hm-2。桤木人工林生态系统的碳库主要由植被层、死地被物层和土壤层组成,按其碳库大小顺序排列为:土壤层植被层死地被物层,5,8和14年生桤木林生态系统中的碳库分别为95.89,122.12和130.75t·hm-2,土壤碳贮量占整个生态系统碳库的59.42%以上,且随着林龄增长,地上部分与地下部分碳贮量之比有逐渐下降的趋势,5,8和14年生桤木年净固定碳量分别6.51,6.26和7.82t·hm-2a-1。湖南省现有桤木林植被碳库为2.8034×106t,为其潜在碳库的47.51%。  相似文献   

6.
将鄂西北山区典型森林生态系统划分为13种森林类型,在系统调查样地乔木层、灌木层、枯落物层及土壤层碳含量的基础上,对不同森林类型碳密度进行了估算。结果表明:鄂西北森林生态系统平均碳密度为175.812t·C·hm-2,各层碳密度的大小顺序为土壤层(110.130t·C·hm-2)乔木层(48.278t·C·hm-2)灌木层(15.187t·C·hm-2)枯落物层(2.217t·C·hm-2),各层分别占整个生态系统碳储量的62.64%,27.46%,8.64%和1.26%。天然林不同林龄碳密度排序为近成过熟林中龄林幼龄林,人工林不同森林类型碳密度排序为针阔混交林针叶林阔叶林。  相似文献   

7.
将乐县针阔混交林生态系统碳储量格局   总被引:1,自引:0,他引:1  
依据全国碳汇专项调查的理论和调查方法,对福建省将乐县不同龄组针阔混交林生态系统的碳储量进行调查分析。结果表明:针阔混交林生态系统碳储量随着林分年龄的增加而增加,幼龄林、中龄林、成熟林生态系统总碳储量分别为121.13、176.00、253.33 t·hm-2;在幼龄林、中龄林和成熟林中,乔木层碳储量所占比重分别为33.16%、46.94%、28.27%,土壤层有机碳储量所占比重分别为60.10%、50.45%、68.21%,土壤层和乔木层碳储量占生态系统总碳储量的90%以上;除成熟林中,30~100 cm土层有机碳储量略高于10~30 cm土层外,土壤层有机碳储量在各龄组针阔混交林中均表现为随土壤深度的增加而减少,随着林分年龄的增加而增加;各龄组针阔混交林其他层次不同组分碳储量差异各不相同,估算针阔混交林生态系统碳储量应充分考虑这种差异性,以提高估算精度。  相似文献   

8.
基于2009年湖北省林业资源连续调查第六次复查数据和标准地实测数据,采用政府间气候变化委员会(IPCC)推荐的森林碳储量估算方法,研究湖北省森林生态系统的碳储量、碳密度和组分特征。结果表明:湖北省森林生态系统总碳储量710.01 Tg·C,其中乔木层、灌木层、枯落物层、土壤层分别占其总碳储量的15.74%、2.89%、2.11%和80.56%,天然林和人工林碳储量分别为420.43 Tg·C和151.59 Tg·C。湖北省森林生态系统平均碳密度为111.51 t·hm-2,表现为土壤层乔木层灌木层枯落物层,不同森林生态系统碳密度差异较大,介于88.32~177.79 t·hm-2之间。森林不同林层中,乔木层碳密度介于7.63~55.7 t·hm-2,灌木层碳密度介于0.25~12.49 t·hm-2,枯落物层碳密度1.14~3.53 t·hm-2之间,土壤层碳密度介于73.25~136.87 t·hm-2之间,主要集中在30 cm的土层厚度,呈现明显的表聚特征,土壤碳储量平均为植被层的3.88倍。森林生态系统碳密度表现为针阔混交林阔叶林针叶林,近成过熟林中龄林幼龄林。湖北省森林主要以中幼林为主,林业碳汇潜力巨大,合理的经营方式,可以提高森林结构质量水平,有效增加森林的碳汇功能。  相似文献   

9.
毛竹、杉木人工林生态系统碳平衡估算   总被引:4,自引:0,他引:4  
采用CID-301PS光合测定仪,对湖南会同林区毛竹和杉木人工林土壤CO2排放动态进行观测,并结合现存生物量调查,对其生态系统碳平衡特征进行估算.结果表明:毛竹和杉木林生态系统碳贮量分别为144.3和152.52 t·hm-2,并且其碳贮量空间分布格局基本一致,土壤层是主要部分,其次为乔木层,凋落物层和林下植被层所占比例最小.毛竹林土壤层有机碳贮量占76.89%,乔木层占22.16%,凋落物和林下植被层分别占0.51%和0.41%;杉木林土壤层碳贮量占62.03%,乔木层占34.99%,凋落物和林下植被层分别占2.28%和0.70%.毛竹林和杉木林生态系统年固定CO2总量分别为38.87和26.95 t·hm-2a-1,但其每年以土壤异养呼吸和凋落物呼吸的形式排放CO2的量分别为24.35和15.75 t·hm-2a-1,毛竹林和杉木林生态系统年净固定CO2的量分别为14.52和11.21 t·hm-2a-1,折合成净碳量分别为3.96和3.07 t·hm-2a-1.  相似文献   

10.
基于对5个林龄尾巨桉林分不同层次植被生物量和碳含量的测定,本文研究了5个不同林龄尾巨桉林分植被碳储量的分配格局.结果表明:5个不同林龄尾巨桉林分中乔木层、林下灌木层、林下草本层和凋落物层碳含量均值分别为47.64%、50.59%、44.41%和48.92%,碳储量为7.17~145.15 t·hm-2,随林龄增加而增大.乔木层碳储量所占比例最大,随林龄增加乔木层碳储量所占比例也逐渐增大.  相似文献   

11.
南宁马占相思人工林生态系统碳素密度与贮量   总被引:7,自引:0,他引:7  
对南宁市马占相思人工林3个不同年龄阶段(4,7和11年生)生态系统的碳素密度、贮量及其空间分布特征进行研究.结果表明:马占相思不同器官中碳素密度为455.4~494.5 g·kg-1,各器官碳素密度表现为:皮>干或叶>枝>根;同一林分中各层次碳素密度表现为乔木层>灌木层>草本层;0~80 cm土层中碳素密度随林龄增加而增大,且随土层深度增加而下降;3个年龄阶段马占相思人工林生态系统总碳贮量分别为117.63,176.70和202.08 t·hm-2,其中乔木层分别占25.67%,46,10%和50.91%,灌木和草本层分别占1.82%,1.65%和1.62%,土壤层分别占69.84%,49.62%和44.59%,凋落物层分别占2.68%,2.34%和2.88%;3个年龄阶段林分碳素年净固定量分别为10.66,15.70和12.55 t·hm-2a-1,其中乔木层碳素年净固定量分别为7.54,12.14和9.36 t·hm-2a-1,占林分总量的70.17%,74.14%和74.58%;凋落物层碳素年固定量分别为312,3.56和3.191 t·hm-2a-1,占林分总量的70.17%.74.14%和74.58%.  相似文献   

12.
相对准确地计量地带性森林碳库大小是估算区域森林碳汇潜力的前提。根据全市不同森林类型设置样地900个,运用样地清查法估算广州市森林生态系统碳储量和碳密度。结果表明:广州市森林生态系统碳储量为52.16 Tg C。其中,植被层和土壤层碳储量分别为21.97 Tg C和27.16 Tg C。碳储量空间分布主要集中在从化区和增城区;总碳储量的组成中,土壤层碳库比例最大(58%),其次为乔木层碳库比例(40%),而灌木层、草本层、凋落物层和细根(≤ 2.0 mm)的生物量比例大多在1%~2%;天然林碳储量与人工林接近,但是碳密度显著大于人工林(p < 0.05);不同林龄从小到大排序为:幼龄林、中龄林、近熟林、过熟林、成熟林;天然林以阔叶混和它软阔的碳储量最高,阔叶混和黎蒴的碳密度最高。人工林不同林型从大到小排序为:南洋楹 > 黎蒴 > 木荷 > 木麻黄 > 它软阔 > 阔叶混 > 湿地松。森林生态系统碳密度为178.03 t C hm-2,其中,植被层和土壤层碳密度分别为79.61 t C hm-2和98.42 t C hm-2。本研究全面计量了广州市森林生态系统碳库现状,这对评估该地区森林固碳潜力和指导碳汇林经营管理具有重要参考价值。  相似文献   

13.
为了解树种与造林模式对人工林生态系统碳储量的影响,在南亚热带相同立地上,采用样地调查方法,对33年生马尾松纯林(PCL)、红椎纯林(CCL)、马尾松×红椎同龄混交林(PCM)生态系统碳储量进行了研究。结果表明:PCM、PCL、CCL人工林生态系统碳储量分别为:235.38、196.40、144.59t/hm^2,处理间差异显著(P<0.05),混交林生态系统碳储量显著高于纯林,马尾松纯林显著高于红椎纯林。PCM、PCL、CCL人工林生态系统碳储量在不同层次的分配比例,乔木层分别为:53.70%、54.05%、33.02%;地被物层为:1.47%、2.06%、1.37%;土壤层为:44.83%、43.89%、65.61%。生态系统碳储量在不同层次分配比例排序,PCM、PCL都为乔木层>土壤层>地被物层;CCL为土壤层>乔木层>地被物层,乔木层和土壤层碳储量占生态系统碳储量的97.94%~98.63%,地被物层仅占1.37%~2.06%。  相似文献   

14.
为桉树人工林的土壤质量评价提供科学依据,研究了不同林龄(1a、2a、3a、5a、7a)尾巨桉林地0~60cm土壤和枯落物的碳含量及碳储量,测算了不同林龄桉树林地叶面积指数,乔木层、灌木层、草本层和枯落物层生物量。结果表明:土壤有机碳含量随土层深度增加而呈降低趋势,不同林龄0~20 cm土层有机碳含量差异显著,不同林龄相同土层之间土壤有机碳储量差异不显著;枯落物碳储量差异显著,大小顺序为:5 a (4.83 t·hm-2)>7 a (3.89 t·hm-2)>3 a (2.66 t·hm-2)>2 a (2.43 t·hm-2)>1 a (1.56 t·hm-2);0~60 cm土层土壤碳储量与叶面积指数呈负相关关系,与林龄、乔木层生物量、灌木层生物量、草本层生物量、枯落物层生物量之间呈正相关性,但相关性都不显著。  相似文献   

15.
对11 a 生香梓楠(Michelia hedyosperma)人工林生态系统的碳素含量、碳储量及其空间分配特征进行了研究。结果表明:(1)香梓楠各植物器官碳素平均含量的变化范围在450.98~514.45 g/kg 之间,各器官碳含量的排列次序为:干材>根蔸>粗根>枝>中根>细根>叶>皮。(2)香梓楠人工林生态系统总碳储量为182.32 t/hm2,其中土壤层所占比例最高,达77.62%,灌草层所占比例最少,仅占0.30%,各生物层次碳储量总体表现为:土壤层>乔木层>凋落物层>灌草层。(3)香梓楠人工林生态系统总生物量为81.68 t/hm2,乔木层、灌草层和凋落物层分别占95.68%、1.45%和2.87%,表现为乔木层>凋落物层>灌草层。(4)香梓楠人工林分乔木层年净生产力和净固碳量分别为7.10和3.56 t/(hm2· a),具有较高的碳汇潜力。  相似文献   

16.
马尾松林——三峡库区最主要的森林类型之一,对维持区域碳平衡具有非常重要的作用。本文以新田林场40 a~45 a生马尾松林生态系统为研究对象,同时结合铁山坪林场46 a~51 a生马尾松林文献资料,探讨了三峡库区马尾松林生态系统的生物量和碳分配格局。结果表明:马尾松林的总生物量约为140.00 t.hm-2,其中乔木层生物量所占比例大于80.00%。新田林场和铁山坪林场马尾松林生态系统的总碳储量分别为206.28 t.hm-2和197.78 t.hm-2,其中植被层约占1/3,土壤层占2/3。植被层中,乔木层碳储量占绝对优势。土壤层的碳储量主要集中于表层,土壤层碳储量呈现出随深度而降低的规律。与其它地区关于马尾松林的研究相比,年龄相近的林分,三峡库区的马尾松林碳储量偏低。因此,对三峡库区的马尾松林进行合理的经营管理,可能增加其固碳能力。  相似文献   

17.
海南岛尾细桉人工林碳贮量及其分布   总被引:3,自引:0,他引:3  
基于海南西部沿海台地区、北部平原区、东部沿海台地区和中部山地区共18个调查点54个尾细桉人工林样地调查数据,分析海南尾细桉人工林的生物量、碳贮量、固碳能力及其区域空间分布特征。结果表明:海南尾细桉人工林生物量平均为49.72t·hm-2,乔木层(85.10%)>凋落物层(8.08%)>林下植被层(6.82%);尾细桉人工林生态系统碳贮量平均为88.84t·hm-2,乔木层为20.55t·hm-2(23.13%),林下植被层为1.55t·hm-2(1.74%),凋落物层为1.93t·hm-2(2.17%),土壤层(0~100cm)为64.81t·hm-2(72.96%);尾细桉各器官碳贮量以树干最大,占乔木层碳贮量的52.81%;海南尾细桉人工林生态系统年净生产力平均为17.56t·hm-2a-1,年净碳固定量平均为8.43t·hm-2,折算成CO2量为30.91t·hm-2a-1;整个海南尾细桉人工林生态系统碳贮量为2958.37万t,年净碳固定量为280.97万t·a-1;从不同区域来看,中部山地区尾细桉人工林固碳能力达11.89t·hm-2a-1,远高于北部平原区(8.97t·hm-2a-1)、西部沿海台...  相似文献   

18.
九龙江口秋茄红树林储碳固碳功能研究   总被引:1,自引:0,他引:1  
以福建九龙江口24年生、48年生的秋茄红树林为研究对象,通过测定秋茄林木层各器官、凋落物层、土壤层含碳率和土壤呼吸,结合各组分生物量和年净生产量,计算秋茄红树林的碳储量和年净固碳量。结果表明:24年生、48年生秋茄林碳储量分别为183.31、244.45 t·hm-2,其中林木层碳储量分别为162.45、222.95 t·hm-2,凋落物层碳储量分别为15.05、16.99 t·hm-2,土壤层和林木层碳储量在生态系统碳储量中的比例均随林龄增大而升高。24年生、48年生秋茄林均表现出了碳汇功能,其中24年生秋茄林年净固碳量较大,为18.51 t·hm-2·a-1;而48年生秋茄林的碳汇功能较低,为7.01 t·hm-2·a-1。  相似文献   

19.
分析了南亚热带中山区的铁坚油杉天然林乔木层、灌木层、草本层和凋落物层的生物量和碳储量以及分配格局,为提高该地区碳储量提供参考依据。在天然铁坚油杉林内设定标准样地,采用标准样方收获法和标准木法测定生态系统的生物量和碳储量。(1)铁坚油杉天然林生态系统总生物量为239.61 t/hm~2,乔木层为237.65 t/hm~2,灌草层为0.18 t/hm~2,凋落物层为1.78 t/hm~2,生物量主要集中在乔木层。(2)植被层各组分有机碳含量相差不大,为介于465.22~512.17 g/kg之间;各组份间的碳含量无显著性差异,0~20 cm层土壤层碳含量高达12.55 g/kg,土壤层碳含量随着土壤深度增加而逐渐降低,随着深度增加碳含量降低程度变小。(3)生态系统总碳为134.55 t/hm~2,其中植被层为68.45 t/hm~2,乔木层为67.54t/hm~2,碳储量相对高,植被层的碳储量主要集中在乔木层,所占比例高达98.70%;土壤层碳储量为66.10 t/hm~2,该生态系统碳储量集中在土壤层和乔木层,且两者所占比例接近,分别为50.20%、49.13%。铁坚油杉天然林生态系统生物量和碳储量相对较高,土壤固碳能力较强,应进行合理保护利用。  相似文献   

20.
【目的】以甘肃黄土丘陵区宁县人工林地为研究区,探讨侧柏人工林碳密度及其分配特征,为黄土丘陵区人工林生态效益评估提供理论依据。【方法】以不同林龄侧柏人工林(7,10,12和14年生)为研究对象,每个林龄分别设置3块样地,分乔木层、灌木层、草本层和枯落物层进行调查取样,然后在每块样地采集0~100 cm土层的土样,用元素分析仪 LiquiTOCⅡ测定植物和土壤碳含量,研究甘肃黄土丘陵区侧柏人工幼林的碳含量、碳密度及其分配特征。【结果】侧柏不同器官碳含量为447.51~513.93 g·kg -1,表现为果实>树叶>树干>粗枝>细枝>细根>根桩>树皮>粗根>大根>中根>小根;灌木层和草本层均以根的碳含量最低,枯落物层未分解层碳含量高于半分解层,且各组分碳含量差异显著;土壤层(0~100 cm )碳含量为23.31~96.08 g·kg -1,且随林龄增加而增大,随土壤深度增加而下降;侧柏人工林生态系统中,乔木层碳密度占植被层碳密度比例最大,高于灌木层、草本层和枯落物层;0~100 cm土层土壤碳密度占整个生态系统碳密度比例最大,且随着林龄增加而增大,且差异显著;7,10,12和14年生侧柏人工幼林生态系统碳密度分别为37.56,44.67,50.87和56.34 t·hm -2,乔木层、林下植被层、枯落物层和土壤层的碳密度均随林龄增加而增大。【结论】黄土丘陵区7,10,12和14年生侧柏人工幼林的乔木层不同器官碳含量差异显著(P<0.05),相同器官碳含量差异不显著(P>0.05);侧柏人工林生态系统碳库表现为土壤层>乔木层>草本层>枯落物层>灌木层;侧柏人工林各层的碳密度都随林龄增加而增大;乔木层、灌木层、草本层和枯落物层碳密度分配比例随林龄增加而增大,而土壤层碳密度比例随林龄增加而减少。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号