首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pristine® (pyraclostrobin + boscalid) is a fungicide registered for the control of alternaria late blight in pistachio. A total of 95 isolates of Alternaria alternata collected from orchards with and without a prior history of Pristine® sprays were tested for their sensitivity towards pyraclostrobin, boscalid and Pristine® in conidial germination assays. The EC50 values for 35 isolates from orchards without Pristine® sprays ranged from 0·09 to 3·14 µg mL?1 and < 0·01 to 2·04 µg mL?1 for boscalid and Pristine®, respectively. For pyraclostrobin, 27 isolates had EC50 < 0·01 µg mL?1 and six had low resistance (mean EC50 value = 4·71 µg mL?1). Only one isolate was resistant to all three fungicides tested, with EC50 > 100 µg mL?1. Among 59 isolates from the orchard with a history of Pristine® sprays, 56 were resistant to pyraclostrobin; only two were sensitive (EC50 < 0·01 µg mL?1) and one was weakly resistant (EC50 = 10 µg mL?1). For the majority of these isolates EC50 values ranged from 0·06 to 4·22 µg mL?1 for boscalid and from 0·22 to 7·74 µg mL?1 for Pristine®. However, seven isolates resistant to pyraclostrobin were also highly resistant to boscalid and Pristine® and remained pathogenic on pistachio treated with Pristine®. Whereas strobilurin resistance is a common occurrence in Alternaria of pistachio, this is the first report of resistance to boscalid in field isolates of phytopathogenic fungi. No cross resistance between pyraclostrobin and boscalid was detected, suggesting that Pristine® resistance appears as a case of multiple resistance.  相似文献   

2.
A total of 74 mass isolates of cucumber powdery mildew fungus (Podosphaera xanthii) were collected from commercial greenhouses with a history of boscalid use in Ibaraki Prefecture, Japan, and tested in a leaf disk assay for their sensitivity to boscalid. The mildew development of 40 of 74 isolates and five sensitive reference isolates on the disks was completely suppressed at 5 μg boscalid/ml. The minimum inhibitory concentrations (MIC) for the remaining 34 isolates were 50 μg/ml or higher, and 21 of these isolates also grew well at 500 μg/ml. Six single-spore isolates were resistant to boscalid with MIC values higher than 500 μg/ml; four of these were moderately resistant (MR), and two were very highly resistant (VHR) isolates. The growth of MR isolates was almost completely suppressed at 500 μg/ml, whereas two VHR isolates grew vigorously at 500 μg/ml. In foliar inoculation tests of potted cucumber plants, the efficacy of boscalid (500 μg/ml) against both MR and VHR isolates was very low. Partial DNA fragment of the iron–sulphur protein subunit (SdhB) gene of succinate dehydrogenase was PCR-amplified from five sensitive and five resistant isolates and directly sequenced, revealing that VHR isolates possess a substitution from a highly conserved histidine (CAT) to tyrosine (TAT) in a third cysteine-rich center of a putative SdhB, whereas MR isolates so far have not been found to have such substitution in SdhB.  相似文献   

3.
A total of 651 isolates of cucumber corynespora leaf spot fungus ( Corynespora cassiicola ) collected from cucumber in Japan, either with (438 isolates) or without (213 isolates) a prior history of boscalid use, were tested for their sensitivity to boscalid by using a mycelial growth inhibition method on YBA agar medium. Additionally, seven isolates of C. cassiicola obtained from tomato, soybean, eggplant (aubergine) and cowpea in different locations in Japan were tested before boscalid registration. Minimum inhibitory concentration (MIC) and 50% effective concentration (EC50) values for 220 isolates from crops without a prior history of boscalid use ranged from 0·5 to 7·5 μg mL−1 and from 0·04 to 0·59 μg mL−1, respectively. Two hundred and fourteen out of 438 isolates collected from ten cucumber greenhouses in Ibaraki Prefecture, Japan, which received boscalid spray applications showed boscalid resistance, with MIC values higher than 30 μg mL−1. Moreover, resistant isolates were divided into two groups: a moderately resistant (MR) group consisting of 189 isolates with EC50 values ranging from 1·1 to 6·3 μg mL−1, and a very highly resistant (VHR) group consisting of 25 isolates with EC50 values higher than 24·8 μg mL−1. MR isolates were detected from all ten greenhouses, but VHR isolates were detected from only three. As a result of fungus inoculation tests which used potted cucumber plants, control failures of boscalid were observed against resistant isolates. Efficacy of boscalid was remarkably low against VHR isolates in particular. This is the first known report on boscalid resistance in Japan.  相似文献   

4.
Mefenoxam is one of the most commonly used fungicides for managing diseases caused by Phytophthora spp. on ornamentals. The objectives of this study were to determine whether Phytophthora nicotianae, a destructive pathogen of numerous herbaceous annual and perennial plant species in nurseries, has developed resistance to mefenoxam, and to evaluate the fitness of mefenoxam‐resistant isolates. Ninety‐five isolates of P. nicotianae were screened for sensitivity to mefenoxam on 20% clarified V8 agar at 100 a.i. µg mL?1. Twenty‐five isolates were highly resistant to this compound with EC50 values ranging from 235·2 to 466·3 µg mL?1 and four were intermediately resistant with EC50 values ranging from 1·6 to 2·9 µg mL?1. Sixty‐six isolates were sensitive with EC50 values less than 0·04 µg mL?1. Nine resistant and seven sensitive isolates were tested for mefenoxam sensitivity on Pelargonium × hortorum cv. White Orbit. Mefenoxam provided good protection of pelargonium seedlings from colonization by sensitive isolates, but not by any resistant isolates. Four resistant and four sensitive isolates were compared for fitness components and their relative competitive ability on Lupinus Russell Hybrids in the absence of mefenoxam. Resistant isolates outcompeted sensitive ones within 3 to 6 sporulation cycles on lupin seedlings, regardless of their initial proportions in mixed zoospore inoculum. Resistant isolates exhibited greater infection rate and higher sporulation ability than sensitive ones when they were applied separately onto lupins. These results suggest that fungicide resistance may pose a serious challenge to the continued effectiveness of mefenoxam as a control option for nursery growers.  相似文献   

5.
BACKGROUND: Botrytis cinerea Pers.: Fr. is a high‐risk pathogen for fungicide resistance development that has caused resistance problems on many crops throughout the world. This study investigated the fungicide sensitivity profile of isolates from kiwifruits originating from three Greek locations with different fungicide use histories. Sensitivity was measured by in vitro fungitoxicity tests on artificial nutrient media. RESULTS: Seventy‐six single‐spore isolates were tested for sensitivity to the SDHI fungicide boscalid, the QoI pyraclostrobin, the anilinopyrimidine cyprodinil, the hydroxyanilide fenhexamid, the phenylpyrrole fludioxonil, the dicarboxamide iprodione and the benzimidazole carbendazim. All isolates from Thessaloniki showed resistance to both boscalid and pyraclostrobin, while in the other two locations the fungal population was sensitive to these two fungicides. Sensitive isolates showed EC50 values to boscalid and pyraclostrobin ranging from 0.9 to 5.2 and from 0.04 to 0.14 mg L?1 respectively, while the resistant isolates showed EC50 values higher than 50 mg L?1 for boscalid and from 16 to > 50 mg L?1 for pyraclostrobin. All QoI‐resistant isolates carried the G143A mutation in cytb. Sensitivity determinations to the remaining fungicides revealed in total eight resistance phenotypes. No isolates were resistant to the fungicides fenhexamid and fludioxonil. CONCLUSION: This is the first report of B. cinerea field isolates with resistance to both boscalid and pyraclostrobin, and it strongly suggests that there may be a major problem in controlling this important pathogen on kiwifruit. Copyright © 2010 Society of Chemical Industry  相似文献   

6.
BACKGROUND: Cercospora leaf spot (CLS), caused by the fungus Cercospora beticola, is the most serious foliar disease of sugar beet (Beta vulgaris L.) worldwide. Disease control is mainly achieved by timely fungicide applications. In 2011, CLS control failures were reported in spite of application of quinone outside inhibitor (QoI) fungicide in several counties in Michigan, United States. The purpose of this study was to confirm the resistant phenotype and identify the molecular basis for QoI resistance of Michigan C. beticola isolates. RESULTS: Isolates collected in Michigan in 1998 and 1999 that had no previous exposure to the QoI fungicides trifloxystrobin or pyraclostrobin exhibited QoI EC50 values of ?0.006 µg mL?1. In contrast, all isolates obtained in 2011 exhibited EC50 values of > 0.92 µg mL?1 to both fungicides and harbored a mutation in cytochrome b (cytb) that led to an amino acid exchange from glycine to alanine at position 143 (G143A) compared with baseline QoI‐sensitive isolates. Microsatellite analysis of the isolates suggested that QoI resistance emerged independently in multiple genotypic backgrounds at multiple locations. A real‐time PCR assay utilizing dual‐labeled fluorogenic probes was developed to detect and differentiate QoI‐resistant isolates harboring the G143A mutation from sensitive isolates. CONCLUSION: The G143A mutation in cytb is associated with QoI resistance in C. beticola. Accurate monitoring of this mutation will be essential for fungicide resistance management in this pathosystem. Copyright © 2012 Society of Chemical Industry  相似文献   

7.
水稻稻瘟病菌对烯肟菌胺的抗性风险评估及抗性机制初探   总被引:2,自引:0,他引:2  
 采用菌丝生长速率法测定了100株采自我国主要水稻产区的水稻稻瘟病菌对烯肟菌胺的敏感性, 结果表明, 其EC50分布于0.011 1~0.295 6 μg·mL-1, 平均EC50=(0.078 6±0.056 1) μg·mL-1。供试菌株对烯肟菌胺的敏感性分布呈单侧峰曲线, 未出现抗药性亚群体, 可将该曲线作为稻病瘟菌对烯肟菌胺的敏感性基线。通过室内药剂驯化获得了7株抗药突变体, 突变频率为1.11×10-4, 其中2株高抗突变体NJ0811-I和A10的抗性水平大于1 000倍, 抗药性性状能稳定遗传, 致病力显著弱于其亲本菌株;5株低抗突变体抗性水平在2.05~4.55倍之间, 抗药稳定性差, 适合度与亲本无显著性差异。交互抗药性结果表明, 烯肟菌胺与嘧菌酯存在正交互抗药性, 与田间防治稻瘟病常用药剂稻瘟灵、异稻瘟净无交互抗药性。综合分析表明, 稻瘟病菌对烯肟菌胺可能存在低到中等抗性风险。进一步克隆了抗药突变体及其亲本的cytb基因, CYTB氨基酸序列比对结果表明, 2株高抗突变体均在143位由甘氨酸突变为丝氨酸(G143S), 建立了高抗菌株的AS-PCR分子检测方法;而5株低抗突变体cytb基因未发生点突变, 推测可能存在其他的抗性分子机制。  相似文献   

8.
浙江省果蔬灰葡萄孢对啶酰菌胺的抗性   总被引:1,自引:0,他引:1  
以2004—2006年从浙江、江苏等地采集的灰葡萄孢对啶酰菌胺的敏感性基线[EC50 = (1.07 ± 0.11) mg/L]为依据,采用菌丝生长速率法连续监测了浙江省果蔬灰葡萄孢群体对啶酰菌胺的敏感性变化。结果表明:浙江省果蔬灰葡萄孢对啶酰菌胺的抗性发展迅速,2012—2013年和2017—2018年的平均EC50值分别为 (5.23 ± 7.79) 和 (24.30 ± 49.33) mg/L。其中,2012—2013年的抗药性菌株频率为15.3%,且均为低水平抗性 (LR) 菌株;而2017—2018年的抗药性频率上升至53.2%,并出现了7.5%的中等水平抗性 (MR) 菌株和1.3%的高水平抗性 (HR) 菌株。啶酰菌胺抗性菌株的菌丝生长速率、产孢量、产菌核数和致病力与敏感菌株相比均无显著差异。抗药性分子机制研究表明:啶酰菌胺抗性菌株的琥珀酸脱氢酶B亚基 (SDH B) 均发生了点突变,共包括H272R、P225F和N230I 3种类型,其中H272R型突变占88.5%;其SDH A和SDH D均未发生点突变;而SDH C的突变 (G85A + I93V + M158V + V168I) 与对药剂敏感性之间无明显联系。  相似文献   

9.
A total of 568 B. cinerea isolates were collected from diseased sweet basil plants and the air in 10 sweet basil greenhouses. Mycelial growth tests were used to evaluate the sensitivity of these isolates to benomyl, fenhexamid, iprodione, polyoxin AL and pyrimethanil. EC50 values for polyoxin, the main botryticide on sweet basil in Israel, ranged from 0.4 to 6.5 μg ml?1 and had a bimodal distribution; the EC50 values for sensitive isolates ranged from 0.4 to 1.5 μg ml?1 and the EC50 values for low-level resistant isolates ranged from 4 to 6.5 μg ml?1. Among populations that had not been exposed to polyoxin treatments, 20 to 35 % of the collected isolates were low-level resistant for polyoxin. Polyoxin treatments in an experimental greenhouse shifted the equilibrium in favour of low-level resistant isolates, and the change occurred rapidly: from a frequency of 20 % low-level resistant isolates in the population that had never been treated with polyoxin to a frequency of 72 % after a few treatments over two seasons. Prolonged use of polyoxin in Israeli basil crops (in some sites for more than 10 years) does not appear to have led to the development of high-level resistance, but low-level resistant isolates were found in commercial greenhouses with the frequency of up to 73 %. High-level resistance to benzimidazoles was common (60 to 80 % of isolates) in greenhouses with a history of benzimidazole treatments; whereas 15–25 % of the isolates from greenhouses in which fungicides were not used were resistant. Low-level resistance to dicarboximides was fairly widespread (frequency of 30 to 80 % depending on the greenhouse) and a few cases of moderate resistance to dicarboximides were also noted (frequency of 0 to 9 %). Neither high- nor low-level resistance to anilinopyrimidines was common in sweet basil commercial greenhouses (0 to 7 %). However, 34 % of the isolates were strongly resistant in the experimental greenhouse, following a few treatments with anilinopyrimidine fungicides during the previous season. Before those treatments, the proportion of anilinopyrimidines resistant isolates had been 1 %. About 3 % of the isolates exhibited low-level resistance to fenhexamid and no isolates were found to be strongly resistant to fenhexamid. Low-level resistance to one fungicide was often associated with low-level resistances to other fungicides. Thirty-two phenotypes exhibiting resistance to one or more of the tested fungicides were noted among B. cinerea isolates. Resistant isolates showed similar or reduced fitness parameters in comparison to wild-type isolates.  相似文献   

10.
C. Zhang  H. Wu  X. Li  H. Shi  F. Wei  G. Zhu 《Plant pathology》2013,62(6):1378-1383
During 2009–2010, a total of 323 isolates of Xanthomonas oryzae pv. oryzae were obtained from rice with symptoms of bacterial leaf blight (BLB) in four provinces (Zhejiang, Jiangsu, Anhui and Hubei) in China. These isolates were tested for baseline sensitivity to zinc thiazole, a novel bactericide with strong antibacterial activity against Xanthomonas. The sampled pathogenic population had similar sensitivity to zinc thiazole (0·1–16·8 mg L?1) in all four regions and over the whole two‐year study period. The baseline sensitivity was distributed as a unimodal curve with a mean EC50 value of 6·79 ± 1·61 mg L?1. The risk of mutation to resistance of zinc thiazole in X. oryzae pv. oryzae was further evaluated in vitro and in vivo. Twelve zinc thiazole‐resistant mutants were obtained through ultraviolet (UV) irradiation, culturing on zinc thiazole‐amended nutrient agar (NA) plates, and culturing on zinc thiazole‐treated rice plants. These zinc thiazole‐resistant mutants had resistance factors (RF = EC50 value of a mutant / EC50 value of the wildtype parent of this mutant) of 12·4 to 186·1 with a mean RF value of 44·1. Mutants obtained via UV irradiation, culturing on NA plates and culturing on rice plants had mean RF values of 51·8, 24·5 and 14·4, respectively. All mutants showed decreases in resistance to zinc thiazole after 20 successive transfers on bactericide‐free media or 10 successive inoculation–reisolations on bactericide‐free rice plants. No significant difference was found in bacterial growth and sensitivity to bismerthiazol between zinc thiazole‐resistant mutants and their parents. However, a significant decrease was observed in the pathogenicity of zinc thiazole‐resistant mutants compared with their parents, especially for mutants obtained via UV irradiation.  相似文献   

11.
From 2004 to 2006, 213 isolates of Botrytis cinerea never exposed to QO center inhibitors (QOIs) were collected to determine the baseline sensitivity to azoxystrobin. In the absence of salicylhydroxamic acid (SHAM), the mean EC50 values were 10.49 ± 13.12 and 0.36 ± 0.48 mg l−1 for inhibiting mycelial growth and conidium germination, respectively. In the presence of SHAM, the mean EC50 values were 2.24 ± 1.29 and 0.22 ± 0.11 mg l−1. In 2010, five azoxystrobin-resistant isolates were detected with the resistance frequency of 2.25% in greenhouse tomatoes after 4 years of continuous exposure. These resistant isolates showed cross-resistance to other QOIs but not to boscalid. In addition, these resistant isolates had comparable growth, sporulation and pathogenicity ability as sensitive isolates and maintained resistance in plants and the presence of SHAM. The G143A point mutation predicted to cause a change from glycine to alanine at codon 143 of cyt b gene was found in all resistant isolates.  相似文献   

12.
Resistance to the fungicide boscalid in laboratory mutants of Botryotinia fuckeliana (Botrytis cinerea) was investigated. The baseline sensitivity to boscalid was evaluated in terms of colony growth (EC50 = 0.3–3 μg ml−1; MIC = 10–30 μg ml−1) and conidial germination (EC50 = 0.03–0.1 μg ml−1; MIC = 1–3 μg ml−1) tests. Mutants were selected in vitro from wild-type strains of the fungus on a fungicide-amended medium containing acetate as a carbon source. Mutants showed two different levels of resistance to boscalid, distinguishable through the conidial germination tests: low (EC50 ∼ 0.3 μg ml−1, ranging from 0.03 to 1 μg ml−1; MIC > 100 μg ml−1) and high (EC50 > 100 μg ml−1) resistance. Analysis of meiotic progeny from crosses between resistant mutants and sensitive reference strains showed that resistant phenotypes were due to mutations in single major gene(s) inherited in a Mendelian fashion, and linked with both the Daf1 and Mbc1 genes, responsible for resistance to dicarboximide and benzimidazole fungicides, respectively. Gene sequence analysis of the four sub-units of the boscalid-target protein, the succinate dehydrogenase enzyme, revealed that single or double point mutations in the highly conserved regions of the iron-sulphur protein (Ip) gene were associated with resistance. Mutations resulted in proline to leucine or phenylalanine replacements at position 225 (P225L or P225F) in high resistant mutants, and in a histidine to tyrosine replacement at position 272 (H272Y) in low resistant mutants. Sequences of the flavoprotein and the two transmembrane sub-units of succinate dehydrogenase were never affected.  相似文献   

13.
Fluxapyroxad,3-(difluoromethyl)-1-methyl-N-(3’,4’,5’-trifluorobiphenyl-2-yl) pyrazole-4-carboxamide (C18H12F5N3O, Fig. 1), is a SDHI fungicide, which is a new active ingredient that interferes with succinate ubiquinone reductase in the electron transport chain of fungi. Between 2008 and 2010, a total of 128 isolates of Rhizoctonia solani from Anhui Province of China were characterized for the baseline sensitivity to fluxapyroxad. The isolates collected between 2008 and 2010 all showed similar sensitivity to fluxapyroxad. Baseline sensitivity was distributed as unimodal curves with an average EC50 value of 0.054?±?0.014 μg ml?1. However, EC50 values of boscalid for inhibition of mycelial growth of R. solani isolates ranged from 1.89 to 2.68 μg/ml and the average (±SE) EC50 value was 2.212?±?0.228 μg/ml, indicating that the R. solani isolates were less sensitive to boscalid than that of fluxapyroxad. Fluxapyroxad exhibited excellent protective and curative activity against rice sheath blight and provided 82.6–94.2 % protective or curative control efficacy. In field trials, control efficacy of fluxapyroxad at 100 g a.i/ha 15 days and 30 day after second application was 83.4–88.0 %, suggesting excellent activity against sheath blight. Control efficacy of boscalid at a dosage of 600 g a.i/ha 15 days and 30 day after second application was about 51.7–57.0 %. There was a significant difference in the efficacy between fluxapyroxad and boscalid or jinggangmycin. These results suggested that fluxapyroxad is a good alternative fungicide to jinggangmycin for the control of rice sheath blight.  相似文献   

14.
Quinone outside inhibitors (QoIs) and succinate dehydrogenase inhibitors (SDHIs) are major groups of agricultural fungicides. However, resistance to some of these fungicides has been reported in a Japanese population of Puccinia horiana, the causal agent of chrysanthemum white rust disease. Because their mechanisms are not well understood, we investigated the existence of mutations in QoI and SDHI target protein-encoding genes. Eight out of nine isolates from cultivated chrysanthemum carried L275F and L299F amino acid substitutions in cytochrome b, the target protein of QoIs. These isolates showed 23- and 17-fold higher EC50 values for the QoI fungicides azoxystrobin and kresoxim-methyl, respectively, in basidiospore germination inhibitory tests, while they were hypersensitive to another QoI, famoxadone. All nine isolates were resistant to SDHI oxycarboxin and carried the I88F substitution in SdhC. This substitution was orthologous to the SdhC-I86F substitution found in some Brazilian isolates of the soybean rust fungus, Phakopsora pachyrhizi, showing reduced sensitivity to some SDHIs. Although the rarity of wild-type sensitive isolates, the subsequent limited number of comparisons between wild types and mutants, and a difficulty in applying reverse genetic analysis to this obligate parasite, are obstacles in making definitive conclusions, L275F and L299F in cytochrome b and SdhC-I88F are suspected to be responsible for the different patterns of sensitivity to QoI and for oxycarboxin-resistance in P. horiana, respectively.  相似文献   

15.
BACKGROUND: Succinate dehydrogenase inhibitors (SDHIs) constitute a fungicide class with increasing relevance in crop protection. These fungicides could play a crucial role in successful management of grey mould disease. In the present study the effect of fluopyram, a novel SDHI fungicide, on several developmental stages of Botrytis cinerea was determined in vitro, and the protective and curative activity against the pathogen was determined on strawberry fruit. Furthermore, fungal baseline sensitivity was determined in a set of 192 pathogen isolates. RESULTS: Inhibition of germ tube elongation was found to be the most sensitive growth stage affected by fluopyram, while mycelial growth was found to be the least sensitive growth stage. Fluopyram provided excellent protective activity against B. cinerea when applied at 100 µg mL?1 96, 48 or 24 h before the artificial inoculation of the strawberry fruit. Similarly, fluopyram showed a high curative activity when it was applied at 100 µg mL?1 24 h post‐inoculation, but, when applications were conducted 48 or 96 h post‐inoculation, disease control efficacy was modest or low. The measurement of baseline sensitivity showed that it was unimodal in all the populations tested. The individual EC50 values for fluopyram ranged from 0.03 to 0.29 µg mL?1. In addition, no correlation was found between sensitivity to fluopyram and sensitivity to other fungicides, including cyprodinil, fenhexamid, fludioxonil, iprodione, boscalid and pyraclostrobin. CONCLUSIONS: The obtained biological activity, baseline sensitivity and cross‐resistance relationship data suggest that fluopyram could play a key role in grey mould management in the near future and encourage its introduction into spray programmes. Copyright © 2011 Society of Chemical Industry  相似文献   

16.
Downy blight, caused by Peronophythora litchii, is an important disease of lychee (litchi) plants in China. The in vitro sensitivities of various asexual stages of P. litchii to the three carboxylic acid amide (CAA) fungicides dimethomorph, flumorph and pyrimorph were studied with four single‐sporangium isolates. None of the three fungicides affected zoospore discharge from sporangia, but they strongly inhibited mycelial growth (mean EC50 values of 0·075, 0·258 and 0·115 mg L?1, respectively); sporangial production (mean EC50 values of 0·085, 0·315 and 0·150 mg L?1, respectively); germination of cystospores (mean EC50 values of 0·140, 0·150 and 0·645 mg L?1, respectively); and germination of sporangia (mean EC50 values of 0·203, 0·5 and 0·743 mg L?1, respectively). As mycelial growth was the most sensitive stage to dimethomorph and pyrimorph, it was chosen to test baseline sensitivities to the three fungicides. In 2007, from 131 isolates collected in Fujian, Guangdong and Guangxi provinces, 127, 116 and 113 isolates were used to establish baseline sensitivity for dimethomorph, flumorph and pyrimorph respectively. Isolates from different provinces exhibited similar baseline sensitivity to the same fungicide. Baseline sensitivities to dimethomorph, flumorph and pyrimorph were distributed as unimodal curves, with mean EC50 values of 0·082 (± 0·01), 0·282 (± 0·047), and 0·115 (± 0·032) mg L?1, respectively. This information will serve as a baseline for tracking future changes in sensitivities of P. litchii populations to these three CAA fungicides.  相似文献   

17.
抗氟吡菌胺辣椒疫霉菌株的诱导及其生物学特性的研究   总被引:2,自引:0,他引:2  
 采用菌丝生长速率法, 测定了采自泰安、平谷、杭州和昆明4个地区的42株辣椒疫霉病菌对氟吡菌胺的敏感性, 结果表明, 其EC50值在0.618 ~0.927 μg·mL-1之间, 平均EC50 =(0.743±0.067 7) μg·mL-1。 42个菌株对氟吡菌胺的敏感性分布呈单峰曲线, 未出现抗性的病原菌亚群体, 可将其单峰曲线作为辣椒疫霉对氟吡菌胺的敏感性基线。采用药剂驯化和紫外照射对辣椒疫霉敏感菌株TA进行诱变处理, 获得了2株辣椒疫霉抗氟吡菌胺菌株;利用菌落直径法测定抗氟吡菌胺菌株的遗传稳定性、菌丝生长速率及对其它杀菌剂的交互抗性;通过活体叶盘法测定抗氟吡菌胺菌株和敏感菌株的致病力及产孢子囊能力, 分析抗性和敏感菌株之间生物学特性差异。结果表明, 敏感菌株TA经过氟吡菌胺 48代连续汰选, 其抗性达58.0倍, 获得中抗菌株TA-R;紫外照射获得了抗性达260.6倍的高抗菌株TA-UV, 且其抗性均能稳定遗传;TA-R和TA-UV对甲霜灵、霜脲氰表现出正交互抗性, 对烯酰吗啉、百菌清、代森锰锌和丙森锌无交互抗性;抗氟吡菌胺菌株TA-R、TA-UV与敏感菌株在活体叶盘上的致病力、离体产孢能力均差异不显著(P<0.05), 但其菌丝生长速率、菌丝干重均低于敏感菌株。  相似文献   

18.
Stem-end rot, caused by Lasiodiplodia theobromae, is an important postharvest disease of papaya in Brazil. The use of fungicides is one of the main disease management measures. However, there are no data available on the sensitivity of L. theobromae to thiophanate methyl (methyl benzimidazole carbamate), the most common fungicide used in papaya orchards in northeastern Brazil. Thus, the effective concentration that results in 50 % of mycelial growth inhibition (EC50) of 109 isolates, representing five populations of the pathogen was estimated in vitro. Seven components of fitness were measured for the 10 isolates with lower and high values of EC50. Of the 109 isolates, 20.2 % were resistant to the fungicide with EC50 values greater than 300 μg ml?1, whereas the remaining 79.8 % were sensitive with an average EC50 of 1.87 μg ml?1. The EC50 values for the resistant isolates were significantly (P?≤?0.05) higher than those for the sensitive isolates. When the fitness components were evaluated, only in relation to the spore production was significant difference among sensitive and resistant isolates, and resistant isolates showed sporulation capacity significantly lower than the S isolates, indicating a fitness cost.  相似文献   

19.
BACKGROUND: Recently in Japan, isolates resistant to boscalid, a succinate dehydrogenase inhibitor (SDHI), have been detected in Corynespora cassiicola (Burk. & Curt.) Wei and Podosphaera xanthii (Castaggne) Braun & Shishkoff, the pathogens causing Corynespora leaf spot and powdery mildew disease on cucumber, respectively. Resistant isolates of C. cassiicola are widely distributed and represent a serious problem in disease control at present. Novel SDHI fungicides, including fluopyram, are now under development. RESULTS: The growth of very highly boscalid‐resistant, highly resistant and sensitive isolates of C. cassiicola was strongly suppressed on fluopyram‐amended YBA agar medium. Although boscalid and another SDHI, penthiopyrad, hardly controlled Corynespora leaf spot and powdery mildew on cucumber plants when very highly or highly boscalid‐resistant isolates were employed for inoculation, fluopyram still exhibited excellent control efficacy against these resistant isolates as well as sensitive isolates of C. cassiicola and P. xanthii. CONCLUSION: Differential sensitivity to boscalid, penthiopyrad and fluopyram, clearly found in these two important pathogens of cucumber, may indicate involvement of a slightly distinct site of action for fluopyram from the two other SDHIs. This finding may lead to the discovery of unique SDHIs in the future. Copyright © 2011 Society of Chemical Industry  相似文献   

20.
Isolates ofVenturia inaequalis and ofV. pirina sensitive (S) or resistant (R) to benomyl were examined in vitro on media amended with two phenylcarbamate fungicides. There was a negatively correlated cross-resistance (NCCR) to both methyl N-(3,5-dichlorophenyl) carbamate (MDPC) and isopropyl N-(3,4-diethoxyphenyl) carbamate (NPC) in some benomylresistant isolates. InV. inaequalis, isolates with low benomyl resistance (LR) did not show NCCR to MDPC, whereas isolates with medium (MR), high (HR) and very high (VHR) resistance to benomyl were more sensitive to MDPC than were the benomyl-sensitive isolates. To NPC, MR and VHR isolates showed NCCR whereas LR and HR isolates reacted similarly as sensitive isolates. InV. pirina only HR and VHR isolates showed NCCR to MDPC. The VHR isolates were sensitive to NPC, whereas the reactions of S, LR, MR and HR to NPC were similar.Crosses between benomyl-sensitive and benomyl-resistantV. pirina as well as between different resistant isolates showed that NCCR is inheritable and controlled by a single Mendelian gene.Samenvatting Benomyl-gevoelige en-resistente isolaten vanVenturia inaequalis enV. pirina werden in vitro onderzocht op media met de fungiciden methyl N-(3,5-dichlorophenyl) carbamate (MDPC) en isopropyl N-(3,4-dichlorophenyl) carbamate (NPC). Een aantal benomyl-resistente isolaten van deze pathogeen bleken een negatief gecorreleerde kruisresistentie (NCCR) te vertonen ten opzichte van MDPC en NPC.Isolaten vanV. inaequalis met matige (MR), hoge (HR) en zeer hoge (VHR) benomyl-resistentie vertoonden NCCR. Ten opzichte van NPC vertoonden alleen MR en VHR isolaten NCCR, en niet de LR en HR isolaten. InV. pirina vertoonden HR en VHR isolaten NCCR ten opzichte van MDPC, maar alleen de VHR isolaten ten opzichte van NPC.Kruisingen tussen benomyl-gevoelige en-resistenteV. pririna, en tussen verschillende benomyl-resistente isolaten onderling, toonden aan dat NCCR erfelijk is en berust op een enkel gen.Contribution No. 1712-E, 1986 series, from the ARO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号