首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A new real-time PCR detection system was developed for grapevine yellows (GY) using TaqMan minor groove binder probes and including two amplicons for group-specific detection of Flavescence dorée (FD) and Bois noir (BN) phytoplasmas, plus a universal phytoplasma amplicon. FD and BN amplicons were designed to amplify species-specific genomic DNA fragments and the universal amplicon to amplify the 16S ribosomal DNA region. Efficiency of PCR amplification, limit of detection, range of linearity and dynamic range were assessed for all three amplicons. The specificity of detection systems was tested on several other isolates of phytoplasmas and bacteria and on healthy field grapevine and insect samples. No cross-reactivity with other phytoplasma strains, plant or insect DNA was detected. The assay was compared with conventional PCR on more than 150 field grapevine, insect and field bindweed samples. Real-time PCR showed higher sensitivity as phytoplasmas were detected in several PCR-negative and in all PCR-positive samples. A data-mining analysis of results from both detection approaches also favoured real-time PCR over conventional PCR diagnostics. The developed procedure for detection of phytoplasmas in grapevine also included amplification of plant DNA co-extracted with phytoplasmic DNA, providing additional quality control for the DNA extraction and PCR amplification for each sample. The newly developed assay is a reliable, specific and sensitive method easily applicable to high-throughput diagnosis of GY.  相似文献   

2.
In Europe the most devastating phytoplasma associated with grapevine yellows (GY) diseases is a quarantine pest, flavescence dorée (FDp), from the 16SrV taxonomic group. The on‐site detection of FDp with an affordable device would contribute to faster and more efficient decisions on the control measures for FDp. Therefore, a real‐time isothermal LAMP assay for detection of FDp was validated according to the EPPO standards and MIQE guidelines. The LAMP assay was shown to be specific and extremely sensitive, because it detected FDp in all leaf samples that were determined to be FDp infected using quantitative real‐time PCR. The whole procedure of sample preparation and testing was designed and optimized for on‐site detection and can be completed in one hour. The homogenization procedure of the grapevine samples (leaf vein, flower or berry) was optimized to allow direct testing of crude homogenates with the LAMP assay, without the need for DNA extraction, and was shown to be extremely sensitive.  相似文献   

3.
A method using consensus PCR followed by oligonucleotide microarray hybridization was developed for identification of phytoplasma 16Sr ribosomal groups. The array consisted of 21– to 33-nt-long oligonucleotides which were designed to hybridize to individual 16Sr groups. Two oligonucleotides were designed to detect all phytoplasma groups. The array could efficiently identify samples from 16SrI, 16SrII, 16SrIII, 16SrV, 16SrVI, 16SrVII, 16SrIX, 16SrX and 16SrXII ribosomal groups. This microarray-based test represents a rapid method for detection of phytoplasmas in unknown samples and for identification of most 16Sr groups.  相似文献   

4.
The presence of phytoplasma inFragaria ananassa x Duch cv Senga Sengana showing strawberry green petals symptoms was observed by electron microscopy of phloem tissue. No phytoplasmas were found in asymptomatic strawberry plants used as controls. Nucleic acids extracted from these plants were used in nested-PCR assays with primers amplifying 16S rRNA sequences specifie for phytoplasmas. Bands of 1.2 kb were obtained and the subsequent nested-PCR with specific primers and RFLP analyses allowed to classify the detected phytoplasmas in the aster yellows group (16SrI). They belonged to the subgroup I-C of which type strain is clover phyllody phytoplasma.  相似文献   

5.
A total of 62 phytoplasma isolates were collected from North America, Europe and Asia and analysed by heteroduplex mobility assay (HMA) of the 16/23S spacer region amplified by the polymerase chain reaction. The results revealed wide genetic diversity among the phytoplasmas studied and a number of new phytoplasma strains were identified from known or new plant hosts in Alberta, Canada. Two distinctive subgroups were revealed by HMA in phytoplasmas associated with canola yellows, Chinese aster yellows, dandelion yellows and monarda yellows. In Alberta, two subgroups of the aster yellows group of phytoplasmas, I-A and I-B, were prevalent in naturally infected field crops and ornamentals in open gardens. The results indicated that HMA is a simple, but rapid and accurate, alternative method for the detection and estimation of genetic divergence of phytoplasmas when finer molecular characterization of phytoplasmas is required at the subgroup level.  相似文献   

6.
A fluorescence-based real-time loop-mediated isothermal amplification (LAMP) assay for ‘Candidatus Phytoplasama solani’ (Bois noir phytoplasma; BNp) detection was developed and optimised for rapid laboratory and on-site BNp detection. This assay is highly specific, rapid and as sensitive as qPCR. It was validated according to European and Mediterranean Plant Protection Organisation recommendations. In addition, 286 grapevine leaf samples from the 2015 growing season were tested with this new real-time LAMP assay and an assay previously developed for detection of Flavescence dorée phytoplasma (FDp). These LAMP assays for detection of both BNp and FDp used without any DNA extraction step, which is a required step for qPCR analysis, were comparably effective to qPCR, and positive results were obtained in less than 35 min.  相似文献   

7.
The phytoplasmas of groups 16SrI (‘Candidatus Phytoplasma asteris’) and 16SrVII (‘Ca. Phytoplasma fraxini’) have been associated with phytoplasma diseases in several urban tree species in Bogotá, Colombia and surrounding areas. The insect vectors responsible for this phytoplasma transmission are unknown. The objectives of this study were to test for the presence of phytoplasmas in leafhopper species (Cicadellidae) collected in areas with diseased trees and to determine the phytoplasma transmission ability of two of these species. Leafhoppers of nine species were collected at two sampling sites and tested by nested or double nested PCR using primers for the 16S rRNA gene. The amplicons were subjected to RFLP and/or sequencing analysis. Phytoplasmas of group 16SrI were detected in morphospecies MF05 (Haldorus sp.), group 16SrVII in MF07 (Xestocephalus desertorum), MF08 (Empoasca sp.) and MF09 (Typhlocybinae), and both groups 16SrI and 16SrVII in MF01 (Empoasca sp.), MF02 (Typhlocybinae), MF03 (Scaphytopius sp.), MF04 (Amplicephalus funzaensis) and MF06 (Exitianus atratus). Transmission tests to uninfected bean plants (Phaseolus vulgaris) were performed using field collected A. funzaensis and E. atratus individuals in separate assays. After 5 weeks, the test plants exposed to individuals of both species of leafhoppers showed symptoms, suggesting phytoplasma infection. Phytoplasma groups 16SrI and 16SrVII were detected in the two groups of exposed plants, indicating that A. funzaensis and E. atratus were able to transmit both groups of phytoplasmas. This is the first report of insect vectors for phytoplasmas of group 16SrVII in the world and of 16SrI in South America.  相似文献   

8.
This study determined the tuf gene sequence of the phytoplasma specific to paulownia witches’‐broom from Nanyang, China (hereby designated PaWB‐Ny). The PaWB‐Ny tuf gene was 1185 nucleotides in length and confirmed that the phytoplasma belongs to subgroup 16SrI‐D of aster yellows. Three characteristic GTP‐binding protein motifs were identified based on the peptide deduced from the tuf gene sequence. Results suggested that the elongation factor EF‐Tu was localized in the cytoplasm and lacked hydrophobic transmembrane domains. Antibodies against PaWB‐Ny EF‐Tu were prepared by rabbit immunization with glutathione‐S‐transferase (GST)‐tagged EF‐Tu fusion protein expressed in Escherichia coli. EF‐Tu exhibited a molecular weight of ~43 kDa and was detected in PaWB‐infected paulownia plants by western blot analysis. Indirect enzyme‐linked immunosorbent assays (ELISA) and dot blotting analyses were performed with freezing and thawing treatments during antigen preparation. Dilution of extracts to an appropriate scale significantly reduced non‐specific reactions. The resultant PaWB EF‐Tu antibody reacted with antigens from plants infected with periwinkle virescence and chinaberry tree witches’‐broom phytoplasmas, but not those infected with jujube witches’‐broom or bishopwood witches’‐broom phytoplasma. The EF‐Tu was characteristically localized within the phytoplasmal cytoplasm of infected plant phloem tissues.  相似文献   

9.
Over the years, real-time PCR outflanked endpoint PCR in phytopathogen diagnostics, mainly because of the increase in sensitivity and timesaving aspects of the technique. However, a time consuming 16S rRNA-based nested PCR method is still the gold standard for phytoplasma diagnosis. This is also the case for phytoplasma detection in Malus, Pyrus and Prunus, the three main host plants of apple proliferation (AP), pear decline (PD) and European stone fruit yellows (ESFY) phytoplasma, respectively. The last decade, loop-mediated isothermal amplification (LAMP) (Notomi et al. 2000) is gaining a lot in significance and is also for phytoplasmas expected to become a widely used reliable diagnostic tool. High specificity and sensitivity which also requires a less stringent need for DNA purification, and the short analysis time and the limited equipment requirements makes the LAMP method a fast and affordable alternative with great point-of-care diagnostic potential. In this paper, we present a LAMP primer set for the ribosomal group 16SrX, containing the important fruit tree phytoplasmas AP, PD and ESFY. The primers were developed and validated for fast and sensitive detection and general use for diagnosis. We foresee that the LAMP technique will also have its application in on-site diagnosis of the fruit tree phytoplasmas during inspections and surveys.  相似文献   

10.
Different molecular procedures were compared for the detection of aster yellows phytoplasmas (AYP) in the leafhopper vectorsMacrosteles quadripunctulatus (Kirschbaum),Euscelidius variegatus (Kirschbaum) andEuscelis incisus (Kirschbaum). Polymerase chain reaction (PCR) with universal and group-specific primers designed on the 16S-rDNA sequence was most sensitive in nested assays. A dot-blot procedure with an oligoprobe designed on the 16S-rDNA was less sensitive and consistent to detect phytoplasmas in total insect DNA, but consistently detected amplicons from direct PCR. The dot-blot assay with a probe based on a phytoplasma plasmid sequence detected AYP in most vector specimens and did not react with DNAs from leafhoppers infected by flavescence dorée and psyllids infected by apple proliferation phytoplasmas. This last assay is almost devoid of contamination risks, faster and cheaper compared to PCR, therefore it has to be preferred for field-scale analysis of leafhopper populations. http://www.phytoparasitica.org posting Feb. 24, 2004.  相似文献   

11.

Plants of corn (Zea mays L.) exhibiting symptoms of stunting and leaf reddening were assayed for the presence of phytoplasma gene sequences through the use of phytoplasma rRNA and ribosomal protein gene and maize bushy stunt (MBS) phytoplasma-specific oligonucleotide primers in polymerase chain reactions (PCR). Polymorphisms in 16S rDNA amplified from diseased plants were those characteristic of phytoplasmas classified in the16S rRNA gene group 16SrI, subgroup IB, of which MBS phytoplasma is a member. Amplification of ribosomal protein (rp) gene sequences in PCR primed by phytoplasma-specific primers confirmed presence of a phytoplasma in the diseased plants. Restriction fragment length polymorphism (RFLP) patterns of the amplified phytoplasma rp gene sequences were similar or identical to those observed for a known strain of MBS phytoplasma. In separate PCR, an MBS-specific oligonucleotide pair primed amplification of a MBS-characteristic DNA from templates derived from the diseased corn. Our data provide the first firm evidence for the presence of maize bushy stunt phytoplasma in corn in Brazil.  相似文献   

12.
Phytoplasmas are plant pathogenic bacteria that infect more than 700 plant species. Because phytoplasma-resistant cultivars are not available for the vast majority of crops, the most common practice to prevent phytoplasma diseases is to remove infected plants. Therefore, developing a rapid, accurate diagnostic method to detect a phytoplasma infection is important. Here, we developed a phytoplasma detection assay based on loop-mediated isothermal amplification (LAMP) by targeting the groEL gene and 16S rDNA. We designed 19 primer sets for the LAMP assay and evaluated their amplification efficiency, sensitivity, and spectra to select the most suitable primer sets to detect Candidatus Phytoplasma asteris. As a result, DNA was efficiently amplified by one of the primer sets targeting the groEL gene, and LAMP assay sensitivity with this primer set was 10-fold higher than that of the polymerase chain reaction. Moreover, the groEL gene was successfully amplified from several strains of Ca. Phytoplasma asteris by this primer set, indicating that the groEL gene can be used as a LAMP assay target gene for a broad range of phytoplasma strains. Additionally, a simple DNA extraction method that omits the homogenizing and phenol extraction steps was combined with the LAMP assay to develop a simple, rapid, and convenient diagnostic method for detecting phytoplasma.  相似文献   

13.
Heteroduplex mobility assay (HMA) and DNA sequencing were performed on Flavescence dorée (FD) phytoplasma strains and related phytoplasmas belonging to the elm yellows group. Part of the ribosomal RNA gene operon and a nonribosomal DNA region were utilized for phylogenetic analyses. Two FD strains, FD92 and FD-D, detected in France and Italy, respectively, were identical in both DNA fragments, confirming previous results. Other FD strains were all very similar and most closely resembled ALY, an Italian alder phytoplasma. Phytoplasmas associated with German Palatinate grapevine yellows were shown to form a distinct subcluster, also different from the elm yellows phytoplasma subcluster. Strain disparities revealed by HMA and sequence data were mostly in agreement, highlighting the utility of HMA in differentiation and classification of phytoplasmas belonging to the same ribosomal RNA group.  相似文献   

14.
The identity of phytoplasmas detected in strawberry plants with green petal (SGP) and lethal yellows (SLY) diseases was determined by RFLP analysis of the 16S rRNA gene and adjacent spacer region (SR). RFLP and sequence comparisons indicated that the phytoplasmas associated with SGP and SLY were indistinguishable and were most closely related to ' Candidatus Phytoplasma australiense', the phytoplasma associated with Australian grapevine yellows, papaya dieback and Phormium yellow leaf diseases. This taxon lies within the aster yellows strain cluster. Primers based on the phytoplasma tuf gene, which amplify only members of the AY strain cluster, amplified a DNA product from the SGP and SLY phytoplasmas. Primers deduced from the 16S rRNA/SR of P. australiense that amplify only members of this taxon amplified rDNA sequences from the SGP and SLY phytoplasmas. Primers that selectively amplify members of the faba bean phyllody (FBP) phytoplasma group, the most commonly occurring phytoplasma group in Australia, did not amplify rDNA from the SGP and SLY phytoplasmas.  相似文献   

15.
Okra plants with bunchy top disease were found to be prevalent during the period of August–October 2009 in New Delhi, India. The common symptoms observed were shortening of internodes, aggregation of leaves at the apical region, reduced leaf lamina, stem reddening, fruit bending, phyllody and stunting of plants. The disease incidence ranged from 2–60% accompanied by significant reductions in production of both flowers and seeds. Nested polymerase chain reaction targeting phytoplasma specific 16S rDNA and rp genes revealed all symptomatic plants to be positive for phytoplasma. Homology searches depicted its closest identity to phytoplasmas of 16SrI ‘Candidatus Phytoplasma asteris’, like the Sugarcane yellows and Periwinkle phyllody phytoplasmas. Profiles for 16S rDNA obtained with 10 restriction endonucleases, differed in TaqI sites for two phytoplasma isolates (BHND5 & 10) from the standard pattern of 16SrI-B subgroup, the latter was seen in the case of isolate BHND1. Restriction fragment analysis of rp genes with AluI, Tsp509I matched with patterns of the rpI-B phytoplasmas. Phylogenetic reconstruction of rp genes revealed okra bunchy top phytoplasma (BHND1) as a divergent isolate, the subsequent sequence analysis of which showed the presence of a novel BslI site. These significant differences suggest that multiple phytoplasma strains are affecting okra, one of which is a diverging lineage within the 16SrI-B group while others represent a new 16SrI subgroup not reported so far. Additionally, this is the first report of a phytoplasma associated disease in okra plants worldwide.  相似文献   

16.
ABSTRACT Alfalfa (Medicago sativa) plants showing witches'-broom symptoms typical of phytoplasmas were observed from Al-Batinah, Al-Sharqiya, Al-Bureimi, and interior regions of the Sultanate of Oman. Phytoplasmas were detected from all symptomatic samples by the specific amplification of their 16S-23S rRNA gene. Polymerase chain reaction (PCR), utilizing phytoplasma-specific universal primer pairs, consistently amplified a product of expected lengths when DNA extract from symptomatic samples was used as template. Asymptomatic plant samples and the negative control yielded no amplification. Restriction fragment length polymorphism profiles of PCR-amplified 16S-23S rDNA of alfalfa using the P1/P7 primer pair identified phytoplasmas belonging to peanut witches'-broom group (16SrII or faba bean phyllody). Restriction enzyme profiles showed that the phytoplasmas detected in all 300 samples belonged to the same ribosomal group. Extensive comparative analyses on P1/P7 amplimers of 20 phytoplasmas with Tru9I, Tsp509I, HpaII, TaqI, and RsaI clearly indicated that this phytoplasma is different from all the other phytoplasmas employed belonging to subgroup 16SrII, except tomato big bud phytoplasma from Australia, and could be therefore classified in subgroup 16SrII-D. The alfalfa witches'-broom (AlfWB) phytoplasma P1/P7 PCR product was sequenced directly after cloning and yielded a 1,690-bp product. The homology search showed 99% similarity (1,667 of 1,690 base identity) with papaya yellow crinkle (PapayaYC) phytoplasma from New Zealand. A phylogenetic tree based on 16S plus spacer regions sequences of 35 phytoplasmas, mainly from the Southern Hemisphere, showed that AlfWB is a new phytoplasma species, with closest relationships to PapayaYC phytoplasmas from New Zealand and Chinese pigeon pea witches'-broom phytoplasmas from Taiwan but distinguishable from them considering the different associated plant hosts and the extreme geographical isolation.  相似文献   

17.
竹丛枝植原体16SrDNA片段克隆与序列分析   总被引:7,自引:0,他引:7       下载免费PDF全文
利用植原体16SrRNA基因序列设计合成的引物,对表现丛枝的竹子植株总DNA进行直接PCR及巢式PCR扩增,得到长1.2kb的目的片段。将此片段与pGEMTEasy载体连接并转化到大肠杆菌DH5α感受态细胞中。通过酶切、PCR鉴定,对筛选得到的重组阳性克隆进行核酸序列测定及同源性比较分析,结果表明其与植原体16SrⅠ组中的西方翠菊黄化植原体(SAY)同源率为99%。依据16SrDNA序列建立了竹子丛枝病植原体株系的系统进化树。对云南竹子丛枝病植原体株系分类鉴定与已报道的结果相似。  相似文献   

18.
ABSTRACT In the spring of 2000, an aster yellows (AY) epidemic occurred in carrot crops in the Winter Garden region of southwestern Texas. A survey revealed that vegetable crops, including cabbage, onion, parsley, and dill, and some weeds also were infected by AY phytoplasmas. Nested polymerase chain reaction (PCR) and restriction fragment length polymorphism analysis of PCR-amplified phytoplasma 16S rDNA were employed for the detection and identification of phytoplasmas associated with these crops and weeds. Phytoplasmas belonging to two subgroups, 16SrI-A and 16SrI-B, in the AY group (16SrI), were predominantly detected in infected plants. Carrot, parsley, and dill were infected with both subgroups. Onion and three species of weeds (prickly lettuce, lazy daisy, and false ragweed) were predominantly or exclusively infected by subgroup 16SrI-A phytoplasma strains, while cabbage was infected by subgroup 16SrI-B phytoplasmas. Both types of phytoplasmas were detected in three leafhopper species, Macrosteles fascifrons, Scaphytopius irroratus, and Ceratagallia abrupta, commonly present in this region during the period of the epidemic. Mixed infections were very common in individual carrot, parsley, and dill plants and in individual leafhoppers. Sequence and phylogenetic analyses of 16S rDNA and ribosomal protein (rp) gene sequences indicated that phytoplasma strains within subgroup 16SrI-A or subgroup 16SrI-B, detected in various plant species and putative insect vectors, were highly homogeneous. However, based on rp sequences, two rpI subgroups were identified within the subgroup 16SrI-A strain cluster. The majority of subgroup 16SrI-A phytoplasma strains were classified as rp subgroup rpI-A, but phytoplasma strains detected in one onion sample and two leafhoppers (M. fascifrons and C. abrupta) were different and classified as a new rp subgroup, rpI-N. The degree of genetic homogeneity of the phytoplasmas involved in the epidemic suggested that the phytoplasmas came from the same pool and that all three leafhopper species may have been involved in the epidemic. The different phytoplasma population profiles present in various crops may be attributed to the ecological constraints as a result of the vector-phytoplasma-plant three-way interaction.  相似文献   

19.
This test performance study (TPS) was carried out on DNA samples from grapevine, clematis, fungi and bacteria to compare and validate loop‐mediated isothermal amplification (LAMP) tests for detection of Grapevine flavescence dorée phytoplasma and ‘Candidatus Phytoplasma solani’ (Grapevine Bois noir phytoplasma). Two LAMP tests, for Grapevine flavescence dorée phytoplasma and ‘Candidatus Phytoplasma solani’ (as developed by Kogov?ek and colleagues), with proven applicability for rapid laboratory or on‐site detection were included in this study. They were performed in 10 laboratories. In addition, the commercial Qualiplante/Hyris isothermal amplification test for Grapevine flavescence dorée phytoplasma was performed in three laboratories. The accuracy of the three tests was shown to be over 98%. Moreover, the high accuracy of these tests, which used different devices across different laboratories, confirmed their reproducibility.  相似文献   

20.
In this study, the putative phytoplasma species causing coconut lethal yellowing disease in Mozambique and Tanzania were characterized. The 16S rRNA and secA genes were sequenced. Phylogenetic analysis revealed that Mozambican coconut phytoplasmas belong to three different types: ‘Candidatus Phytoplasma palmicola’ 16SrXXII‐A, a second strain that was previously isolated in Tanzania and Kenya (16SrIV‐C), and a third strain that was different from all known lethal yellowing phytoplasma species. The third strain potentially represents a novel species and is closely related to pine phytoplasma. Co‐infection with ‘Ca. Phytoplasma pini’‐related and ‘Ca. Phytoplasma palmicola’ 16SrXXII‐A strains was observed. Furthermore, sequence variation in ‘Ca. Phytoplasma palmicola’ at the population level was consistent with purifying selection and population expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号