首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Freshly deposited stream sediments from six urban centres of the Ganga Plain were collected and analysed for heavy metals to obtain a general scenery of sediment quality. The concentrations of heavy metals varied within a wide range for Cr (115–817), Mn (440–1 750), Fe (28 700–61 100), Co (11.7–29.0), Ni (35–538), Cu (33–1 204), Zn (90–1 974), Pb (14–856) and Cd (0.14–114.8) in mg kg-1. Metal enrichment factors for the stream sediments were <1.5 for Mn, Fe and Co; 1.5–4.1 for Cr, Ni, Cu, Zn and Pb; and 34 for Cd. The anthropogenic source in metals concentrations contributes to 59% Cr, 49% Cu, 52% Zn, 51% Pb and 77% Cd. High positive correlation between concentrations of Cr/Ni, Cr/Cu, Cr/Zn, Ni/Zn, Ni/Cu, Cu/Zn, Cu/Cd, Cu/Pb, Fe/Co, Mn/Co, Zn/Cd, Zn/Pb and Cd/Pb indicate either their common urban origin or their common sink in the stream sediments. The binding capacity of selected metals to sediment carbon and sulphur decreases in order of Zn > Cu > Cr > Ni and Cu > Zn > Cr > Ni, respectively. Stream sediments from Lucknow, Kanpur, Delhi and Agra urban centres have been classified by the proposed Sediment Pollution Index as highly polluted to dangerous sediments. Heavy metal analysis in the <20-μm-fraction of stream sediments appears to be an adequate method for the environmental assessment of urbanisation activities on alluvial rivers. The present study reveals that urban centres act as sources of Cr, Ni, Cu, Zn, Pb and Cd and cause metallic sediment pollution in rivers of the Ganga Plain.  相似文献   

2.
Heavy metal content of roots and shoots of vines (Vitis vinifera L.) after fertilization with garbage-sewage-sludge-compost The enrichment of Zn, Cu, Pb, Cd, Co, Ni and Cr from garbage-sewage-sludge-compost in vineyard soils, vines and must was studied in field-and pot-experiments. The following results were obtained: 1. In a field experiment, in which garbage-sewage-sludge-compost was applied, a marked soil enrichment of Zn, Cu, Pb, Cd and Cr was found. It was most evident at the 0–20 cm depth but also obvious at the 40–60 cm depth thus indicating downward migration. The soil was not enriched with Co and Ni. The heavy metal content of leaves, berries and must of riesling vines did not increase on the plots treated with garbage-sewage-sludge-compost. 2. In a pot trial, using an acid and an alkaline soil each mixed with garbage-sewage-sludge-compost, it was observed that only the uptake of Zn and Cu increased into the leaves, tendrils and wood of the riesling cuttings. In relation to the content of the substrate, the heavy metals were detected in the roots percentually in the following order: Cu, Cd > Zn > > Pb, Co, Ni, Cr The root contents were mostly substantially higher than those of the shoot. The migration from root to shoot decreased in the following percentual order: Zn > Cu > Cd, Pb 3. The heavy metal content decreased considerably from the roots to the upper plant organs. This was reflected in low concentrations of heavy metals in the vine must.  相似文献   

3.
Flux balances and current rates of change of heavy metal stores in forest ecosystems of the Soiling The inventory of the heavy metals Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb is calculated for a beech and a spruce forest ecosystem in the Soiling mountains on the basis of measured concentrations in the vegetation and soil compartments and their dry mass per hectare. The inventory is compared with measured heavy metal fluxes coupled with precipitation above and below the canopy, with seepage water fluxes below the rooting zone (50 cm depth), with litterfall, and with the current increment to biomass. The ratios between heavy metal stores in the forest floor layers (table 3) and the annual flux with litterfall (table 4) show decreasing tendency for liberation of the elements by decomposition of organic matter (OM) in the following order: Mn>OM>Ni>Cd>Cu>Cr ≈? Zn>Co ≈? Fe ≈? Pb Manganese is set free faster than total organic matter. The flux balances for the total ecosystems (table 4) show input > output in the case of Cr, Fe, Cu, Cd, and Pb; input ≈? output for Ni and Zn; input < output for Mn and Co. Heavy metal stores in mineral soil are decreasing by percolation losses and increment to biomass (mainly wood) in the case of all elements investigated, except Zn (under beech), Cd and Pb (table 4). The concentrations of Cu and Pb in the forest floor layers have reached levels at which deleterious effects on microorganisms and litter decomposition are to be expected.  相似文献   

4.
In line with the present-day ecological and toxicological data obtained by Dutch ecologists, heavy metals/metalloids form the following succession according to their hazard degree in soils: Se > Tl > Sb > Cd > V > Hg > Ni > Cu > Cr > As > Ba. This sequence substantially differs from the succession of heavy elements presented in the general toxicological GOST (State Norms and Standards) 17.4.1.02-8, which considers As, Cd, Hg, Se, Pb, and Zn to be strongly hazardous elements, whereas Co, Ni, Mo, Sb, and Cr to be moderately hazardous. As compared to the general toxicological approach, the hazard of lead, zinc, and cobalt is lower in soils, and that of vanadium, antimony, and barium is higher. The new sequence also differs from that of the metal hazard in soils according to the Russian standard on the maximal permissible concentration of mobile metal forms (MPCmob): Cu > Ni > Co > Cr > Zn. Neither an MPCmob nor an APCmob has been adopted for strongly hazardous thallium, selenium, and vanadium in Russia. The content of heavy metals in contaminated soils is very unevenly studied: 11 of them, i.e., Cu, Zn, Pb, Ni, Cd, Cr, As, Mn, Co, Hg, and Se, are better known, while the rest, much worse, although there are dangerous elements (Ba, V, Tl) among them.  相似文献   

5.
土壤可见光-近红外反射光谱与重金属含量之间的相关性   总被引:13,自引:0,他引:13  
解宪丽  孙波  郝红涛 《土壤学报》2007,44(6):982-993
发展基于反射光谱技术的快速、简便、低成本的土壤重金属信息提取方法是区域土壤重金属污染治理所需要的。选择江西贵溪铜冶炼厂污染区,分析了9种重金属元素(Cu、Pb、Zn、Cd、Co、Ni、Fe、Mn及Cr)与土壤可见光-近红外反射光谱之间的相关性及其相关的原因。研究表明,研究区土壤中存在Cu(含量介于66.71~387 mg kg-1之间)和Cd(含量介于0.36~6.019 mg kg-1之间)的强烈富集。土壤重金属含量与反射光谱之间存在显著相关,污染元素Cu的最高相关系数为-0.87,Pb、Zn、Co、Ni、Fe的最高相关系数达到高度相关(|r|>0.80),Cr、Cd、Mn的最高相关系数达到显著相关(|r|>0.70)。微分光谱适于获取土壤中的重金属元素信息,利用组合波段能显著提高相关性。Cu与反射光谱之间的相关性主要受有机质的影响;Pb、Zn、Co、Ni主要受黏土矿物和铁锰氧化物的影响;Cr与反射光谱之间的相关性同时受有机质和黏土矿物的影响。  相似文献   

6.
Abstract

Metals cycle through the environment, and although many metals are required by biota, several have no known biological function and can be toxic. Metal concentrations [cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), palladium (Pd), vanadium (V), and zinc (Zn)] are surveyed with an eye toward soil chemistry, environmental and anthropogenic conditions, and potential remediation in 15 locations in and adjacent to Franklin County, MA. Road‐condition information was gathered, soil pH determined, and soils analyzed for soil metal content via a five‐phase sequential extraction and ICP‐AES analyses. Results indicate the majority of similarities are linked to soil pH and soil geochemistry, with only a few metals (Cr, Pb, and Zn) showing clear anthropogenic trends.  相似文献   

7.
Water, Air, & Soil Pollution - This study was conducted to determine the metal (Ag, Al, As, Cd, Co, Cu, Fe, Mn, Ni, Pb, Sb, Zn) tolerance and uptake of Mitchell grasses when grown on waste...  相似文献   

8.
This paper contributes to increase the knowledge of the contents and sources of heavy metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) to agricultural soils in Castellón province (Spain), a representative area of the European Mediterranean region. The surface horizons of 77 agricultural soils under vegetable crops were sampled and heavy metals were analysed by atomic absorption spectroscopy (AAS) after microwave extraction using the USEPA 3051A method. Mean heavy metal contents were similar to those obtained in other areas of this region. However, heavy metal contents (e.g. Cr, Pb) in some soils were above the maximum limit set in the 86/278/CEE Directive. Multivariate analysis (correlation analysis and principal component analysis – PCA) was performed so as to identify the sources of heavy metals to soils. Co, Fe and Ni were highly correlated amongst them (r?>?0.800; p?<?0.01), whereas Cr and Mn were less correlated with Co, Fe and Ni (r?>?0.500; p?<?0.01). Other relationships among heavy metals (i.e. Cu, Pb and Zn) were also identified, although correlation coefficients were not so high as those among Co, Fe and Ni (r?<?0.500; p?<?0.01). Contents of Co, Fe, Mn and Ni were interpreted to be mainly associated with parent rocks corresponding to the first principal component (PC1). On the other hand, Cd, Cu, Pb and Zn were interpreted to be mainly related to anthropogenic activities and comprised the second (Pb and Zn) and the third (Cd and Cu) principal components (PC2 and PC3, respectively), designated as anthropogenic components. Remarkably, Cr appears to be related in the study area to both the lithogenic and the anthropogenic components. Lithogenic elements were highly correlated with soil properties. Positive relationships with CEC (r?>?0.200; p?<?0.05) and clay (r?>?0.400; p?<?0.01), and negative relationships with carbonates (r?>??0.400; p?<?0.01) and sand (r?>??0.300; p?<?0.01) were observed. Anthropogenic elements were less correlated with soils properties, since these elements are generally more mobile because they form more soluble chemical species associated to anthropogenic sources. Particularly, no correlation was found between Cd and Zn and soil properties. These findings extend results achieved in other parts of the region, highlighting the need to set soil quality standards in order to declare soils affected by anthropogenic pollution, particularly in the case of anthropogenic metals such as Cd, Cu and Pb, and also Cr and Zn in some areas. Further knowledge from other areas in this region would improve the basis for proposing such standards at regional level, which is a priority objective in Europe according to the European Thematic Strategy for Soil Protection.  相似文献   

9.
The To Lich and Kim Nguu Rivers, laden with untreated waste from industrial sources, serve as sources of water for irrigating vegetable farms. The purposes of this study were to identify the impact of wastewater irrigation on the level of heavy metals in the soils and vegetables and to predict their potential mobility and bioavailability. Soil samples were collected from different distances from the canal. The average concentrations of the heavy metals in the soil were in the order zinc (Zn; 204 mg kg?1) > copper (Cu; 196 mg kg?1) > chromium (Cr; 175 mg kg?1) > lead (Pb; 131 mg kg?1) > nickel (Ni; 60 mg kg?1) > cadmium (Cd; 4 mg kg?1). The concentrations of all heavy metals in the study site were much greater than the background level in that area and exceeded the permissible levels of the Vietnamese standards for Cd, Cu, and Pb. The concentrations of Zn, Ni, and Pb in the surface soil decreased with distance from the canal. The results of selective sequential extraction indicated that dominant fractions were oxide, organic, and residual for Ni, Pb, and Zn; organic and oxide for Cr; oxide for Cd; and organic for Cu. Leaching tests for water and acid indicated that the ratio of leached metal concentration to total metal concentration in the soil decreased in the order of Cd > Ni > Cr > Pb > Cu > Zn and in the order of Cd > Ni > Cr > Zn > Cu > Pb for the ethylenediaminetetraaceitc acid (EDTA) treatment. The EDTA treatment gave greater leachability than other treatments for most metal types. By leaching with water and acid, all heavy metals were fully released from the exchangeable fraction, and some heavy metals were fully released from carbonate and oxide fractions. The concentrations of Cd, Cr, Cu, Ni, Pb, and Zn in the vegetables exceeded the Vietnamese standards. The transfer coefficients for the metals were in the order of Zn > Ni > Cu > Cd = Cr > Pb.  相似文献   

10.
Total content of Fe, Mn, Zn, Cu, Pb, Cd, Ni and Co in soils irrigated with sewage effluent increased with increasing years of using sewage effluent in irrigation. Iron and Co applied to the soil from sewage effluent were immobilized mainly in unavailable form; Pb, Cd, and Ni in moderately available form; and Mn, Zn, and Cu in highly available form. The concentrations of Fe, Mn, Zn and Cu in tops of alfalfa and leaves of corn grown on these soils increased substantially with increased levels of available metal content of the soil, while those of other metals were little affected. As for orange, continuous increase in leaves metal content with time was found for Fe, Mn, Zn, Co and Cd. The concentrations of Cd, Co, Ni and Pb in corn grains and orange fruits were several times higher than normal, and this reduces their suitability for human consumption.  相似文献   

11.
Zhang  Zhaoxue  Zhang  Nan  Li  Haipu  Lu  Yi  Wang  Qiang  Yang  Zhaoguang 《Journal of Soils and Sediments》2019,19(12):4042-4051
Purpose

This study aimed to reveal spatial distribution of As, Cd, Cr, Cu, Mn, Ni, Pb, Sb, V, and Zn in paddy soils in the Zijiang River basin and to evaluate its pollution status and potential ecological risks, and thus to provide basic information for rational utilization of paddy soils in the study area.

Materials and methods

The heavy metal(loid) concentrations in one hundred and thirty-five paddy soil samples (these samples were collected from the top 0–20 cm layer) were measured by inductively coupled plasma-optical emission spectrometry. The spatial distribution characteristics of the heavy metal(loid)s were depicted by the Ordinary Kriging interpolation analysis. The contamination degree and potential ecological risks of the heavy metal(loid)s in paddy soils were assessed by Nemerow’s comprehensive index, geoaccumulation index, potential ecological risk factor, and potential ecological risk index. The potential sources of the heavy metal(loid)s were deduced by Pearson’s correlation analysis, hierarchical cluster analysis, and principal component analysis.

Results and discussion

The mean concentrations of the heavy metal(loid)s decreased in the order of Mn?>?V?≈?Zn?>?Cr?>?Ni?≈?Pb?>?Cu?≈?Sb?>?As?>?Cd. Except for Cd and Sb, the mean concentrations of As, Cr, Cu, Mn, Ni, Pb, V, and Zn were close to the background reference values. The concentration of Cd in 94.8% of samples exceeded the soil quality standard value (grade II, 5.5?<?pH?<?6.5, GB 15618–1995). According to the assessments of pollution and potential ecological risks for the heavy metal(loid)s, 45.2% and 46.7% of samples were severely polluted and moderately polluted, respectively. The potential sources analysis indicated that Cd, Sb, and Zn mainly originated from agricultural, mining, and smelting activities; As, Cu, and Pb mainly originated from agricultural activities, while coal combustion by-products was another major source of these heavy metal(loid)s in paddy soils near the thermal power plant in the southwest corner of the study area; Cr, V, Mn, and Ni mainly originated from natural source.

Conclusions

Cadmium and Sb are the main contaminants in paddy soils in the study area, and there are hot-spot pollution areas.

  相似文献   

12.
A combined statistical and computergraphic approach is proposed for apportionment and attribution of soil contaminants in complex areas. The field test site lies north of Swansea, south Wales and contains two major pollutant sources, an active nickel refiner and (4 km away) the site of major base metal smelting in the nineteenth century (the Lower Swansea Valley reclamation study area). Soil samples (70 samples, 0–15 cm) were collected on a regular grid of 1000 m interval. They were extracted using 0.05 M diammonium EDTA and the extracts analysed for Cd, Co, Cu, Fe, Mn, Ni, Pb and Zn. Soil pH and %organic content were also determined. Factor analysis yielded three groups which explained 73.8% of the data variance (1: Cd, Cu, %OM, Pb, Zn, Ni; 2: Cd, Zn, Mn, pH; 3: Cu, Mn, Co, Ni, Fe). Isoline plots were classifiable into the same three groups. It was concluded that factor 3 contained those elements associated with smelter emissions, factor 1 with contamination from the Lower Swansea Valley and in factor 2 pedogenetic processes control the occurrence of the elements.  相似文献   

13.
Water, Air, & Soil Pollution - The elemental content of some soils of continental Chile and the Antarctic Peninsula are reported. The elements: Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb were...  相似文献   

14.
Adamo  Paola  Dudka  S.  Wilson  M. J.  McHardy  W. J. 《Water, air, and soil pollution》2002,137(1-4):95-116
The sequential extraction procedure proposed by the European Commission Measurement and Testing Programme, combined with Scanning Electron Microscopy and Energy Dispersive X-ray Analysis(SEM/EDS), was applied to identify and quantify the chemical andmineralogical forms of Cu, Ni, Fe, Mn, Zn, Pb, Cr and Cd presentin the topsoil from a mining and smelting area near Sudbury (Ontario, Canada). The possible mobility of the chemical forms was also assessed. The metal fractions: (1) soluble and exchangeable, (2) occluded in manganese oxides and in easily reducible iron oxides, (3) organically bound and in form of sulphides, (4) residual mainly present in the mineral lattice structures were separated. Cu and Ni were the major metallic contaminants, occurring in soils in broad ranges of concentrations: Cu 11–1890 and Ni 23–2150 mg kg-1. Cu was uniformly distributed among allthe extracted fractions. Ni was found associated mainly withthe residual forms, accounting for 17–92%, with an averageof 64%, of the total Ni present in the soils. Fe, Mn, Zn,Pb, Cr and Cd, while occurring in most analysed samples innormal soil concentrations, were primarily held in theresidual mineral fraction (on average >50%). The solubleand exchangeable forms made a small contribution (≤8.1%)to the total content of metals extracted. At least 14% ofthe total Cd, Mn and Pb was mobilised from the reducibleforms. The oxidizable fraction assumed mean values higher than10% only for Pb and Zn. Statistical treatment of the experimental data showed significant correlations between totalmetal content of the soils, some soil properties such as pH value, clay and organic matter content, and metal concentrationsin the various fractions. SEM/EDS analysis showed Fe in form ofoxides and sulphides in soils and Cu, Ni, Mn, Zn and Cr in association with iron oxides. Numerous black carbonaceous particles and precipitates of aluminium fluoride salts, observedin the solid residue left after `total’ digestion, were found tocontain Fe, Ni and Cr.  相似文献   

15.
Total Suspended particulate matter (TSP) in urban atmosphere of Islamabad was collected using a high volume sampling technique for a period of one year. The nitric acid–perchloric acid extraction method was used and the metal contents were estimated by atomic absorption spectrophotometer. The highest mean concentration was found for Ca at 4.531 µg/m3, followed by Na (3.905 µg/m3), Fe (2.464 µg/m3), Zn (2.311 µg/m3), K (2.086 µg/m3), Mg (0.962 µg/m3), Cu (0.306 µg/m3), Sb (0.157 µg/m3), Pb (0.144 µg/m3) and Sr (0.101 µg/m3). On an average basis, the decreasing metal concentration trend was: Ca > Na > Fe > Zn > K > Mg > Cu > Sb > Pb > Sr > Mn > Co > Ni > Cr > Li > Cd ≈ Ag. The TSP levels varied from a minimum of 41.8 to a maximum of 977 µg/m3, with a mean value of 164 µg/m3, which was found to be higher than WHO primary and secondary standards. The correlation study revealed very strong correlations (r?>?0.71) between Fe–Mn, Sb–Co, Na–K, Mn–Mg, Pb–Cd and Sb–Sr. Among the meteorological parameters, temperature, wind speed and pan evaporation were found to be positively correlated with TSP, Ca, Fe, K, Mg, Mn and Ag, whereas, they exhibited negative relationships with relative humidity. On the other hand, Pb, Sb, Zn, Co, Cd and Li revealed significant positive correlations with relative humidity and negative with temperature, wind speed and pan evaporation. The major sources of airborne trace metals identified with the help of principle component analysis and cluster analysis were industrial emissions, automobile exhaust, biomass burning, oil combustion, fugitive emissions, resuspended soil dust and earth crust. The TSP and selected metals were also studied for seasonal variations, which showed that Na, K, Zn, Cu, Pb, Sb, Sr, Co and Cd peaked during the winter and remained lowest during the summer, while Ca, Fe, Mg and Mn were recorded highest during the spring.  相似文献   

16.

Purpose

Our main aim objective was to evaluate the transfer of Cd, Cr, Cu, Ni, Pb and Zn to barley (Hordeum vulgare) grown in various soils previously amended with two sewage sludges containing different concentrations of heavy metals. This allowed us to examine the transfer of heavv metals to barley roots and shoots and the occurrence of restriction mechanisms as function of soil type and for different heavy metal concentration scenarios.

Material and methods

A greenhouse experiment was performed to evaluate the transfer of heavy metals to barley grown in 36 agricultural soils from different parts of Spain previously amended with a single dose (equivalent to 50 t dry weight ha?1) of two sewage sludges with contrasting levels of heavy metals (common and spiked sludge: CS and SS).

Results and discussion

In soils amended with CS, heavy metals were transferred to roots in the order (mean values of the bio-concentration ratio in roots, BCFRoots, in brackets): Cu (2.4)?~?Ni (2.3)?>?Cd (2.1)?>?Zn (1.8)?>?Cr (0.7)?~?Pb (0.6); similar values were found for the soils amended with SS. The mean values of the soil-to-shoot ratio were: Cd (0.44)?~?Zn (0.39)?~?Cu (0.39)?>?Cr (0.20)?>?Ni (0.09)?>?Pb (0.01) for CS-amended soils; Zn (0.24)?>?Cu (0.15)?~?Cd (0.14)?>?Ni (0.05)?~?Cr (0.03)?>?Pb (0.006) for SS-amended soils. Heavy metals were transferred from roots to shoots in the following order (mean values of the ratio concentration of heavy metals in shoots to roots in brackets): Cr (0.33)?>?Zn (0.24)?~?Cd (0.22)?>?Cu (0.19)?>?Ni (0.04)?>?Pb (0.02) for CS-amended soils; Zn (0.14)?>?Cd (0.09)?~?Cu (0.08)?>?Cr (0.05)?>?Ni (0.02)?~?Pb (0.010) for SS-amended soils.

Conclusions

Soils weakly restricted the mobility of heavy metals to roots, plant physiology restricted the transfer of heavy metals from roots to shoots, observing further restriction at high heavy metal loadings, and the transfer of Cd, Cu and Zn from soils to shoots was greater than for Cr, Ni and Pb. Stepwise multiple linear regressions revealed that soils with high sand content allowed greater soil-plant transfer of Cr, Cu, Pb and Zn. For Cd and Ni, soils with low pH and soil organic C, respectively, posed the highest risk.  相似文献   

17.
北京城乡交错带土壤重金属的空间变异特征   总被引:22,自引:0,他引:22  
  相似文献   

18.
Heavy metal contamination of soils is usually quantified and guidelines set solely on the basis of total heavy metal content. However, it is recognised that water soluble heavy metal concentrations may provide a better indication of the potential risk that heavy metals may pose to the soil environment. The aim of this study was to use a semi-empirical model based on the competitive adsorption of metal and H+ ions [dependent on solution pH, total metal content, total carbon content and soil oxide content] to predict water soluble Cu, Cr, Cd, Pb, Ni and Zn concentrations in a range of field contaminated soils. The results of multiple linear regressions showed that basic soil properties could predict 85, 72, 66, 78, 50 and 75% of the variation in soluble Ni, Cu, Cr, Pb, Cd and Zn concentrations respectively. Water soluble metal concentrations were best predicted using empirical linear regressions which included total metal content, while the importance of other soil properties such as soil pH, total carbon and oxalate extractable Fe and Al oxides varied between metals. The models have the potential to provide valuable information on metal availability in contaminated soils and offer an indication of the potential risk a metal may pose to a given soil environment, along with providing a basis for developing soil quality guidelines for the prevention, investigation and clean-up of soil metal contamination.  相似文献   

19.
泉州市324国道泉州至塘头段路旁土壤中重金属来源分析   总被引:3,自引:0,他引:3  
分析了泉州市324国道泉州至塘头段路旁土壤中14种重金属元素Sc、V、Fe、Mn、Co、Ni、Cu、Zn、As、Cd、Sn、Sb、Pb、Bi的含量,用富集因子和多元统计分析方法探讨了重金属的污染特征和可能来源。结果表明,Pb、Sn、Sb、Cd、Ni、Zn、Sc、Cu和Bi的含量均超过泉州市土壤背景值,污染较严重;Ni、Sb、Sn的高富集系数说明其受人类活动影响较大。相关分析和因子分析结果显示,上述14种元素主要有3个来源:Sn、Sb、Pb、Bi、Ni、Cu、Zn、Cd主要来源于交通污染;As、Sc、Fe来源于人类工业活动;而Co、Mn、V主要来源于土壤母质。聚类分析的结果也验证了因子分析的结果。  相似文献   

20.
This paper reports the results of a study focused on the metal (Cd, Co, Cr, Cu, Ni, Pb, Sb, U and Zn) distribution in soils and uptake and accumulation by earthworms Nicodrilus caliginosus (Savigny) from urban, peri-urban, green-urban and non-urban zones of Siena municipality (central Italy). The main goal was to define the influence of soil properties and metal soil contents on the uptake of these contaminants by earthworms. Data indicated that Cd, Cu, Pb, Sb and Zn soil contents increased in the following order: non-urban < green-urban < peri-urban < urban soils, suggesting that vehicular traffic affects the distribution of these metals. Pb and Sb were the main soil contaminants and their highest enrichments were found in urban sites where stop-and-go traffic occurs. Concentrations of these traffic-related metals in earthworms showed a distribution pattern similar to that in soil, suggesting that soil contamination influenced the uptake of Cd, Cu, Pb, Sb and Zn by N. caliginosus. There were significant positive correlations between Cd, Pb and Sb earthworm concentrations and their soil contents. The lack of correlation for Cu and Zn could be due to the physiological regulation of these elements by earthworms. Statistical analysis pointed out that the uptake and accumulation of Cd, Cu, Pb, Sb and Zn by earthworms were affected by some soil physicochemical properties such as the organic carbon and carbonate contents that are able to rule the bioavailability of metals in soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号