首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth of grass herbage in Ireland is highly seasonal with little or no net growth from November to February. As a result, feed demand exceeds grass supply during late autumn, winter and early spring. At low stocking rates [≤2 livestock units (LU) ha?1], there is potential to defer some of the herbage grown in autumn to support winter grazing. This study examined the effects of four autumn‐closing dates and four winter‐grazing dates in successive years on the accumulation of herbage mass and on tiller density in winter and subsequent herbage production at two sites in Ireland, one in the south and one in the north‐east. Closing swards from grazing in early and mid‐September (north‐east and south of Ireland respectively) provided swards with >2 t DM ha?1 and a proportion of green leaf >0·65–0·70 of the herbage mass above 4 cm, with a crude protein (CP) concentration of >230 g kg?1 DM and dry matter digestibility (DMD) of >0·700. The effects of autumn‐closing date and winter‐grazing date on herbage production in the subsequent year varied between the two sites. There was no significant effect of autumn‐closing date in the north‐eastern site whereas in the south earlier autumn closing reduced the herbage mass in late March by up to 0·34 t DM ha?1 and delaying winter grazing reduced the herbage mass in late March by up to 0·85 t DM ha?1. The effects of later grazing dates in winter on herbage mass continued into the summer at the southern site, reducing the herbage mass for the period from late March to July by up to 2 t DM ha?1. The effects of imposing treatments in successive years did not follow a consistent pattern and year‐to‐year variation was most likely linked to meteorological conditions.  相似文献   

2.
A rising-plate meter and a single-probe capacitance meter were calibrated on perennial ryegrass swards (cultivars S23, Endura, Melle) over the spring and summer (13 March to 14 September 1981). The swards were rotationally grazed by cattle and from mid-June onwards they were irrigated and cut at 5 cm after grazing to remove rejected herbage. Linear regressions were calculated relating meter readings to herbage dry matter mass as measured by cutting 0–2 m2 quadrats to either 18 mm above ground or to ground level. The regression for the rising-plate meter was constant over the spring (slope 275 kg DM ha?1 cm?1) and again over the summer (slope 385 kg DM ha?1 cm?1). The regression for the capacitance meter changed slightly over the spring (slope 11.2 to 14.0 kg DM ha?1 unit reading?1) and was also constant over the summer (slope 20.3 kg DM ha?1 unit reading ?1). Correlation coefficients were always above 09 and residual standard deviations ranged from 258–525 in Spring up to 636–918 kg DM ha?1 in summer. Residual standard deviations were lower with the plate meter than with the capacitance meter and were lower with the above-ground cutting height. Neither meter was able to give accurate results with tall rejected herbage containing a build-up of senescent material. Herbage mass below 18 mm was greater on summer than spring swards. When compared with a ground level cut. cutting above ground underestimated herbage mass on summer relative to spring swards; there was also a tendency to underestimate herbage mass on tall pastures relative to short pastures. There was no evidence of a curved relationship between herbage mass and meter reading with either meter and both meters gave readings related to herbage dry matter mass rather than mass of green herbage or water.  相似文献   

3.
Three experiments were carried out on perennial ryegrass‐dominant swards to provide a basis for recommendations for the limits to (a) building up and timing of utilization of a herbage ‘bank’ for out‐of‐season grazing and (b) duration and intensity of early spring grazing in the United Kingdom and Ireland. In experiment 1, the effect of regrowth interval (from 7 September, 20 October, 17 November or 15 December) in autumn on herbage accumulation, leaf turnover and on subsequent spring growth was investigated. Swards regrown from early September reached maximum herbage mass (about 3 t ha–1 DM) and leaf lamina content in mid‐November, by which time senescence rate exceeded rate of production of new leaves. New leaf production and senescence rates were greater in swards remaining uncut until December than in those cut in October or November. Time of defoliation up to December had no effect on spring herbage mass in the subsequent spring. Defoliating in March reduced herbage mass in late May by less than 20%. Experiment 2 investigated the progress in herbage growth and senescence in swards regrowing from different times in late summer and autumn to produce herbage for utilization beyond the normal grazing season. Treatments in a randomized block design with three replicates were regrowths from 19 July, 8 August, 30 August and 20 September. Based on a lower ceiling of leaf and total herbage mass being reached with progressively later regrowths, beyond which leaf senescence generally exceeded leaf production and herbage mass declined, it was concluded that currently recommended rotation lengths for this period should extend from 3 weeks in late July to 8 weeks for swards previously grazed in mid‐September. In both experiments, leaf senescence commenced earlier (by one leaf‐age category) than previously published estimates and so brought forward the time at which senescence rates balanced leaf growth rates. In experiment 3, designed to evaluate the effect of daily grazing period and intensity in early spring on herbage regrowth, dairy cows grazed successive plots (replicates) for 2 or 4 h each day at two intensities (target residual heights of 5 or 7 cm) in March to mid‐April. Regrowth rate was similar in all treatments including the ungrazed control, despite soil moisture content being relatively high on occasions. Tiller density was significantly reduced in May by grazing plots in early or mid‐April. It is concluded that in autumn there are limits to which rotation lengths should be extended to produce herbage for out‐of‐season grazing owing to attainment of ceiling yields. Although utilization in early spring may reduce herbage availability in spring, out‐of‐season utilization need not reduce herbage growth rates in early spring.  相似文献   

4.
The effects of continuous stocking by sheep at sward surface heights (SSH) of 3, 5, 7 and 9 cm in grass/clover (GC) and nitrogen-fertilized grass (GN) swards were examined in relation to herbage mass and quality, clover content, tiller density and rates of herbage production and senescence in two periods in each of three grazing seasons (1987-89). The GN swards received a total of 300 kg N ha?1 each year in six equal dressings from March; GC swards received a single dressing of 50 kg N ha?1 in March each year. Herbage mass measured from ground level increased linearly with SSH with overall mean herbage masses of 0·89, 1·38, 1·78 and 2·12 t OM ha?1 (s.e.m.0·024, P < 0·001) at SSH of 3, 5, 7 and 9 cm respectively. GN and GC swards had mean herbage masses of 1·58 and 1·51 t OM ha?1 (s.e.m. 0·051, NS) respectively. Mean N content of herbage on GN swards was greater than that on GC swards and declined with increasing SSH. Crude, fibre (CF) content of herbage was similar for both sward types and increased with increasing SSH. Clover content of GC swards remained low throughout the experiment, ranging from 0·002 to 0·074 of herbage mass. However, from tissue turnover rates it was estimated that its contribution to herbage production was in the range of 0·049–0·219 of net herbage growth. Total growth increased with increasing SSH in both sward types, with maximum growth rates in GN swards of 143 and 130 kg DM ha?1 d?1 and in GC swards of 88·2 and 85·4 kg DM ha?1 d?1 in Periods 1 (up to early July) and 2 (after July) respectively. Senescence rates ranged between 13·3 and 50·1 kg DM ha?1 d?1 and tended to be higher in Period 2 than in Period 1. Net production increased with increasing SSH in Period 1, while in Period 2 net production declined at SSH above 6·5 cm. The increased net herbage production in taller swards was not associated with greater utilized metabolizable energy production at sward heights above 5 cm.  相似文献   

5.
Extending the grazing season through the production and utilization of high‐quality forage is a key objective in grassland‐based dairy production systems. Grazing swards to a low post‐grazing sward height (PGSH) is a strategy for improving grass utilization. A grazing experiment conducted in Ireland investigated immediate and subsequent effects of PGSH on sward production, utilization and structural characteristics. Swards were grazed to 2·7 cm (severe; S1) or 3·5 cm (moderate; M1) from 10 February to 18 April 2010 (Period 1; P1). From 19 April, each P1 paddock was halved and grazed to either 3·8 cm (S2) or 4·8 cm (M2), until 30 October (Period 2; P2). The first grazing rotation was +7 d on S1 swards compared with M1 swards (45 d), due to greater herbage utilization (+0·22). Herbage production during P1 was not affected by PGSH but a severe PGSH during this period reduced subsequent herbage production: 13·9 (S1) vs. 15·5 t dry matter (DM) ha?1 (M1) by the end of the study. Leaf proportion was increased (+0·10) on S2 swards compared with M2 swards, but M2 swards produced 1·2 t DM ha?1 more herbage during P2. Despite the relatively lower level of sward utilization obtained from moderate grazing in P1 (3·5 cm) and P2 (4·5–5·0 cm), such levels of PGSH increased DM production while maintaining sward quality, compared with severe grazing (2·7 cm in P1 and 3·5–4·0 cm in P2).  相似文献   

6.
The objective of this study was to investigate the effects of an early (February; F) or delayed (April; A) primary spring grazing date and two stocking rates, high (H) and medium (M), on the grazing management, dry matter (DM) intake of grass herbage and milk production of spring‐calving dairy cows grazing a perennial ryegrass sward in the subsequent summer. Sixty‐four Holstein‐Friesian dairy cows (mean of 58 d in milk) were assigned to one of four grazing treatments (n = 16) which were imposed from 12 April to 3 July 2004. Cows on the early spring‐grazing treatment were grazed at 5·5 cows ha?1 (treatment FH) and 4·5 cows ha?1 (treatment FM) while cows on the late‐grazing treatment were grazed at 6·4 cows ha?1 (treatment AH) and 5·5 cows ha?1 (treatment AM). The organic matter digestibility and crude protein concentration of the grass herbage were higher on the early‐grazing treatment than on the late‐grazing treatment. The cows on the FM treatment had significantly (P < 0·001) higher milk (24·5 kg), solids‐corrected milk (22·5 kg), fat (P < 0·01, 918 g) and protein (831 g) yields than the other three treatments. Cows on the FM treatment had a higher (P < 0·001) DM intake of grass herbage by 2·3 kg DM per cow per day than cows on the AH treatment, which had a DM intake significantly lower than all other treatments (15·2 kg DM per cow per day). The results of the present study showed that grazing in early spring has a positive effect on herbage quality in subsequent grazing rotations. The study also concluded that early spring‐grazed swards stocked at a medium stocking rate (4·5 cows ha?1; FM) resulted in the highest DM intake of grass herbage and milk production.  相似文献   

7.
The response of swards which have been previously grazed to N fertilizer applied in early February was studied in two experiments in Northern Ireland. The effect of N fertilizer applied at a range of dates in autumn and spring on swards for out-of-season utilization was studied in a further experiment. Deep soil coring was also undertaken, subsequent to grazing with dairy cows, in grazed and protected areas in November and March to investigate the effect of out-of-season grazing on soil mineral N levels.
Dry-matter (DM) yield response to early spring N application in previously grazed swards was low, with no effect on DM yield in February or March. Progressively delaying N application (and commencement of herbage accumulation) in autumn from 8 September until 18 October reduced herbage availability in late autumn and early spring but increased leaf lamina content. The greater the amount of herbage accumulated to 1 December, the lower the tiller density in the following April.
N fertilizer had a greater impact on soil mineral N in spring than in late autumn/early winter, suggesting that fertilizer N was more prone to loss in the latter. Soil mineral N was not significantly affected by out-of-season grazing.
It is concluded that in well-fertilized, previously grazed swards response to N for out-of-season herbage is low and the probability for N loss is increased. Herbage quality will decline and the sward may be damaged if about 2 t DM ha−1 or more of harvestable herbage accumulates for use in winter or in early spring.  相似文献   

8.
A small‐plot experiment was conducted in south‐west Ireland to investigate (i) the effects of pre‐closing regrowth interval and closing date on dry‐matter (DM) yield and sward structural and composition characteristics, during the autumn–winter and spring opening periods, and (ii) subsequent carryover effects. The study used a randomized block design with a factorial arrangement of treatments (4 closing dates × 2 opening dates) with a split plot (two pre‐closing regrowth intervals). The long pre‐closing (LPC) interval began on 9 August, and the short pre‐closing interval (SPC) started on 15 September. The autumn closing dates were as follows: 1 October (CD1), 15 October (CD2), 1 November (CD3) and 14 November (CD4). Plots were defoliated again on 1 February (EOD) or 1 March (LOD). On the LPC treatment, herbage yield increased from CD1 (2463 kg DM ha?1) to CD3 (3185 kg DM ha?1). On the SPC treatment, herbage yield was similar for CD3 and CD4, indicating a ceiling in herbage accumulation. For each 1‐d delay in closing date between CD1 and CD4, the opening herbage yield was reduced by 10 kg DM ha?1. Herbage quality decreased as the closing date was delayed; DMD and CP decreased by 0·06 and 12 g kg DM?1, respectively, between CD1 and CD4. The EOD resulted in increased leaf and decreased dead proportions over the LOD treatments. A balance between autumn CD and spring OD needs to be achieved to ensure a sufficient supply of high‐quality grass in spring.  相似文献   

9.
The effect of sowing date (SD) and sowing rate of perennial ryegrass (PRG) on the establishment of Caucasian and white clovers in New Zealand was assessed. Clovers were sown in spring on 24 September (SD1) and 9 November (SD2) 1999, and in autumn on 4 February (SD3) and 31 March (SD4) 2000. On each date, clovers were sown with 0, 3, 6 or 12 kg ha?1 of PRG. Total herbage dry matter (DM) production up to 6 November 2000 was 13–16 t DM ha?1 for SD1 and SD2 when sown with 3–12 kg ha?1 of PRG, and 7–10 t DM ha?1 for sown clover monocultures. For SD3 and SD4, total herbage production was 6–9 t DM ha?1 with PRG, while total herbage production of clover monocultures was 5·4 t DM ha?1 for SD3 and 2·6 t DM ha?1 for SD4. By 6 November 2000, white clover contributed proportionately more than 0·15 of herbage mass when sown with 3–12 kg ha?1 of PRG on SD1, SD2 or SD3, but less than 0·09 when sown on SD4. The proportion of Caucasian clover never exceeded 0·09 of herbage mass in any of the swards. White clover was successfully established in spring and in autumn with 3–12 kg ha?1 of PRG provided the 15‐mm soil temperature was above 14 °C. None of the combinations of Caucasian clover and PRG provided an adequate proportion of legumes during the establishment year. This unsuccessful establishment of Caucasian clover with PRG was attributed to its inability to compete for available light as a seedling due to slow leaf area expansion from secondary shoot development and a high root:shoot ratio. Alternative establishment strategies for Caucasian clover may include the use of slow establishing grasses, cover crops and temporal species separation.  相似文献   

10.
The objective of this study was to examine the effect of herbage mass and daily herbage allowance (DHA) on sward characteristics and animal performance, dry‐matter intake, rumen pH and volatile fatty acid production of unsupplemented spring‐calving dairy cows throughout the main grazing season. Sixty‐eight Holstein‐Friesian dairy cows were randomly assigned across four treatments (n = 17) in a 2 × 2 factorial design. Two swards were created with different levels of pre‐grazing herbage mass [allocated above 4 cm (>4 cm); 1700 kg DM ha?1 (medium; M) or 2200 kg DM ha?1 (high; H)] and two levels of DHA (>4 cm; 16 or 20 kg DM per cow d?1). An additional eight lactating ruminally cannulated Holstein–Friesian dairy cows were randomly assigned to each treatment in a replicated 4 × 4 Latin square design. Sward and animal measurements were collected across four periods each of 1 week duration in April and May (PI) and July and August (PII). Maintaining the medium‐mass sward across the season improved the nutritive value of the sward in the latter part of the grazing season compared with high‐mass swards, thus resulting in increased animal intakes and milk production throughout PII. The higher organic matter digestibility of the medium‐compared with high‐masses during PII indicates that grazing severity and herbage mass in the spring to mid‐summer period will determine sward quality parameters in the late summer period.  相似文献   

11.
High (H; 27 350 m?1:) or low (L. 13 300 m-1) tiller density perennial ryegrass swards were created in the mid- and late grazing season by imposing different sward heights in the spring. Summer-calving cows then grazed these swards from 6 June to 2 September 1992 and were offered 5 kg fresh weight hd?1 d?1 of either a barley (S) or a molassed sugar beet pulp (F) based supplement. The factorial combination of sward and supplement types resulted in four experimental swards being grazed by thirteen Holstein/Friesian cows each. Supplement F contained more crude fibre (110 vs. 58 g kg?1) and less metabolizable energy [12–5 vs. 13–2 MJ kg?1 dry matter (DM)] than supplement S. Herbage on the H sward contained more metabolizable energy (11–9 vs. 104 MJ kg?1 DM) and crude protein (232 vs. 205 g kg?1 DM), had fewer rejected areas f 16–5 vs. 26–9%) and a higher live-dead tiller ratio (4–6 vs. 2–1) than that on the L sward. Sward, but not supplement type, significantly affected the intake of grazed herbage (P<0–001). On average, the herbage intakes of cows grazing II swards were higher than for L swards (14–5 vs. 11 6kg DM d?1) and those of cows on the S and F supplements were 12–6 and 13–5 kg DM d?1 respectively. Averaged over the grazing period, sward and supplement had no significant effects on milk yield, milk composition or yield of constituents. When expressed on an average weekly basis, cows grazing an L sward and offered the F supplement on occasions had significantly lower milk yields and higher milk fat contents (P<005) than those grazing an H sward and offered the S supplement. There were no significant effects on cow live weight or condition score change. The results suggested that grazing swards with a high density of live tillers increased herbage intakes and on occasions milk yield, relative to low density swards. However, small increases in energy intake from sward and supplement effects were used primarily to ameliorate liveweight loss.  相似文献   

12.
Results for years 4–8 of a long-term grazing experiment on swards of a diploid perennial ryegrass (Lolium perenne), var. Contender (D swards), a tetraploid ryegrass, var. Condesa (T swards) and Condesa with S184 white clover (Trifolium repens) (TC swards), direct sown in May 1987, are presented. The swards were continuously stocked with sheep from 1988 to 1990, as previously reported, and for a further 5 years, 1991–95, at a target sward surface height (SSH) of 4–6 cm. Control of sward height was successfully achieved by variable stocking, except in 1993 when paddocks were set stocked and the resulting mean SSH was 9·3 cm. Grass swards received on average 160 kg N ha?1 year?1; grass/clover swards were mainly not fertilized with N with the exception that they were given 30 kg N ha?1 as a remedial mid-summer application during a period of low herbage mass on offer in 1994 and 1995. Mean white clover content of the swards fell from 18·2% of herbage dry-matter (DM) in 1992 to 8·5% in 1993, whereas stolon lengths fell from 120 to 58 m m?2. A return to lower sward heights in 1994–95 resulted in an increase in white clover content to 12·8% by the final sampling in August 1995. Perennial ryegrass content of the grass swards remained high throughout (mean 96·7% in 1995). Perennial ryegrass tiller densities recorded in August 1991, 1993 and 1994 showed consistently significant (P < 0·001) sward differences (3-year mean 16 600, 13 700 and 10 100 perennial ryegrass tillers m?2 for the D, T and TC swards). In 1994, the year after lax grazing, a low perennial ryegrass tiller density (9100 m?2) and low white clover content (mean 4·3%) in the TC swards resulted in a much lower herbage bulk density than in the grass swards (April–July means 72, 94 and 44 kg OM ha?1 cm?1 for the D, T and TC swards). There was a consistent 40 g d?1 increase in lamb liveweight gain on the TC swards over the T swards, except in 1994. In that year there was a reduction in lamb liveweight gain of 33 g d?1 on the TC swards and a significant increase in ewe liveweight loss (117 g d?1) associated with low herbage bulk density despite optimal sward height. Lamb output (kg liveweight ha?1) on TC swards reflected white clover content, falling from a similar output to that produced from grass given 160 kg N ha?1, at 18% white clover DM content, down to 60% of grass + N swards with around 5% clover. A 6% greater output from the T than the D swards was achieved mainly through higher stocking rate. The experiment demonstrated a rapid, loss in white clover under lax grazing, and showed that the relationship between performance and sward height is also dependent on herbage density. High lamb output from a grass/clover sward was only achieved when the clover content was maintained at 15–20% of the herbage DM.  相似文献   

13.
Two experiments were carried out on a tall fescue sward in two periods of spring 1994 and on a tall wheatgrass sward in autumn 2001 and spring 2003 to analyse the effect of sward surface height on herbage mass, leaf area index and leaf tissue flows under continuous grazing. The experiment on tall fescue was conducted without the application of fertilizer and the experiment with tall wheatgrass received 20 kg P ha?1 and a total of 100 kg N ha?1 in two equal dressings applied in March (autumn) and end of July (mid‐winter). Growth and senescence rates per unit area increased with increasing sward surface height of swards of both species. Maximum estimated lamina growth rates were 28 and 23 kg DM ha?1 d?1 for the tall fescue in early and late spring, respectively, and 25 and 36 kg DM ha?1 d?1 for tall wheatgrass in autumn and spring respectively. In the tall fescue sward, predicted average proportions of the current growth that were lost to senescence in early and late spring were around 0·40 for the sward surface heights of 30–80 mm, and increased to around 0·60 for sward surface heights over 130 mm. In the tall wheatgrass sward the corresponding values during spring increased from around 0·40 to 0·70 for sward surface heights between 80 and 130 mm. During autumn, senescence losses exceeded growth at sward surface heights above 90 mm. These results show the low efficiency of extensively managed grazing systems when compared with the high‐input systems based on perennial ryegrass.  相似文献   

14.
The objective of this study was to quantify the effect of perennial ryegrass (Lolium perenne L.; PRG) sward density on seasonal and total DM yield under simulated grazing and animal grazing by cattle, and to assess the effectiveness of visually estimated ground scores (GSs) for predicting sward PRG density. The study incorporated five different seeding rates of PRG, each replicated three times, to simulate swards ranging in PRG density typical of different ages and conditions. There was no significant difference between defoliation managements for total DM yield, but sward PRG density had a significant effect on both the seasonal and total DM herbage yield under both systems. Under simulated grazing, total DM yield ranged from 10·7 to 12·0 t DM ha?1 with increasing sward PRG density at a GS range of 1·70–4·28 (mean of 2 years’ data, P < 0·01). Under animal grazing, the yield range was from 10·3 to 12·2 t DM ha?1 for a GS range of 1·50–3·39 (mean of 2 years’ data, P < 0·01). The largest differences in DM yield occurred during the spring period. The relationship between sward DM yield and GS was significant (P < 0·001) for both simulated and animal‐grazed swards. Each unit increase in midseason GS (June) related to an average yield increase of 350 kg DM ha?1 under simulated grazing and a 721 kg DM ha?1 increase under cattle grazing. Every unit increase in the GS at the end of the grazing season (December) was associated with a 460 or 1194 kg DM ha?1 increase under simulated and animal grazing, respectively. These results show that visual estimates of density were an effective tool in describing PRG density and that this could be related to DM yield potential. Further investigations may provide a threshold value below which the renewal of swards could be advised based on a visual GS of PRG.  相似文献   

15.
A small‐plot experiment was carried out in Northern Ireland on a predominantly perennial ryegrass sward over the period July 1993 to March 1994 to investigate the effect of timing and rate of fertilizer nitrogen (N) application on herbage mass and its chemical composition over the winter period. Eighty treatment combinations, involving four N fertilizer application dates (28 July, 9 and 30 August and 20 September 1993), four rates of N fertilizer (0, 30, 60 and 90 kg N ha?1) and five harvest dates (1 October, 1 November, 1 December 1993, 1 February and 1 March 1994), were replicated three times in a randomized block design experiment. N application increased herbage mass at each of the harvest dates, but in general there was a decrease in response to N with increasing rate of N and delay in time of application. Mean responses to N applications were 13·0, 11·5 and 9·5 kg DM kg?1 N at 30, 60 and 90 kg N ha?1 respectively. Delaying N application, which also reduced the length of the period of growth, reduced the mean response to N fertilizer from 14·3 to 7·4 kg DM kg?1 N for N applied on 28 July and 20 September respectively. Increasing rate of N application increased the N concentration and reduced the dry‐matter (DM) content and water‐soluble carbohydrate (WSC) concentration of the herbage but had little effect on the acid‐detergent fibre (ADF) concentration. Delaying N application increased N concentration and reduced DM content of the herbage. The effect of date of N application on WSC concentration varied between harvests. A decrease in herbage mass occurred from November onwards which was associated with a decrease in the proportion of live leaf and stem material and an increase in the proportion of dead material in the sward. It is concluded that there is considerable potential to increase the herbage mass available for autumn/early winter grazing by applying up to 60 kg N ha?1 in early September.  相似文献   

16.
Oat and ryegrass intercropping in pastures is widely used in regions with subtropical climates. The aim of this study was to evaluate the tiller size/density compensation mechanisms in monoculture and intercropping swards of black oats (Avena strigosa Schreb cv. IAPAR 61) and annual ryegrass (Lolium multiflorum Lam. cv common) under intermittent grazing. Treatments (black oat, annual ryegrass and their mixture) were assigned according to a complete randomized block design with four replicates. Ryegrass, oat and intercropped pastures were grazed when the swards reached a height of 17, 25 and 23 cm, respectively, and with a level of defoliation of 40%. The aerial biomass was determined with a rising plate meter, and the tiller population density (TPD) was estimated by counting tillers in three 10 cm diameter PVC rings per paddock. The mass per tiller was estimated based on the aerial biomass and the TPD of each paddock. Total herbage production did not differ among treatments, with values around 7400 kg DM ha?1. TPD decreased and mass per tiller increased linearly in the monoculture treatments. Tiller size/density compensation was observed in the three plant communities (treatments) according to the self‐thinning rule. In addition, no relationships were found when each species was analysed individually in the intercrop treatment. The results suggest that species in grass mixed swards adjust their population to keep a relatively constant leaf area index (LAI) over the grazing seasons, and that would help pastures to stabilize herbage production.  相似文献   

17.
A perennial ryegrass (Lolium perenne L.)‐dominated sward on a well‐drained soil (Experiment 1) and a creeping bent (Agrostis stolonifera L.)‐dominated sward on a poorly drained soil (Experiment 2) were subjected to four treading treatments: control (C, no damage), light damage (L), moderate damage (M) or severe damage (S) to quantify the effects on herbage dry‐matter (DM) production and tiller density. In Experiment 1, treading damage was imposed in spring. In Experiment 2, one‐third of the site was damaged in autumn, one‐third in spring and one‐third in both spring and autumn. Both sites were rotationally grazed after treading treatments. Pre‐grazing herbage mass was measured eight times in Experiment 1 and seven times in Experiment 2 on each plot, and tiller density was assessed four times in each experiment. In Experiment 1, pre‐grazing herbage mass was reduced by 30% in S plots at the first harvest after damage, but cumulative pre‐grazing herbage DM production was not different between treatments (12·7 t DM ha?1). In Experiment 2, annual cumulative pre‐grazing herbage mass was reduced by between 14 and 49%, depending on intensity of treading damage event and season when damage occurred. Tiller density was not affected by treatment in either experiment. A perennial ryegrass‐dominated sward on a well‐drained soil was resilient to heavy treading damage. A creeping bent‐dominated sward on poorly drained soil requires a more careful grazing management approach to avoid major losses in cumulative pre‐grazing herbage mass production during wet weather grazing events.  相似文献   

18.
The objective of this study, which was part of a larger grazing‐systems experiment, was to investigate the cumulative impact of three levels of grazing intensity on sward production, utilization and structural characteristics. Pastures were grazed by rotational stocking with Holstein–Friesian dairy cows from 10 February to 18 November 2009. Target post‐grazing heights were 4·5 to 5 cm (high; H), 4 to 4·5 cm (intermediate; I) and 3·5 to 4 cm (low; L). Detailed sward measurement were undertaken on 0·08 of each farmlet area. There were no significant treatment differences in herbage accumulated or in herbage harvested [mean 11·3 and 11·2 t dry matter (DM) ha?1 respectively]. Above the 3·5 cm horizon, H, I and L swards had 0·56, 0·62 and 0·67 of DM as leaf and 0·30, 0·23 and 0·21 of DM as stem respectively. As grazing severity increased, tiller density of grass species other than perennial ryegrass (PRG) decreased (from 3,350 to 2,780 and to 1771 tillers m?2 for H, I and L paddocks respectively) and the rejected area decreased (from 0·27 to 0·20 and to 0·10 for H, I and L paddocks respectively). These results indicate the importance of grazing management practice on sward structure and quality and endorse the concept of increased grazing severity as a strategy to maintain high‐quality grass throughout the grazing season. The findings are presented in the context of the need for intensive dairy production systems to provide greater quantities of high‐quality pasture over an extended grazing season, in response to policy changes with the abolition of EU milk quotas.  相似文献   

19.
A 2‐year whole‐farm system study compared the accumulation, utilization and nutritive value of grass in spring‐calving grass‐based systems differing in stocking rate (SR) and calving date (CD). Six treatments (systems) were compared over two complete grazing seasons. Stocking rates used in the study were low (2·5 cows ha?1), medium (2·9 cows ha?1) and high (3·3 cows ha?1), respectively, and mean CDs were 12 February (early) and 25 February (late). Each system had its own farmlet of eighteen paddocks and one herd that remained on the same farmlet area for the duration of the study. Stocking rate had a small effect on total herbage accumulation (11 860 kg DM ha?1 year?1), but had no effect on total herbage utilization (11 700 kg DM ha?1 year?1). Milk and milk solids (MS; fat + protein) production per ha increased by 2580 and 196 kg ha?1 as SR increased from 2·5 to 3·3 cows ha?1. Milk production per ha and net herbage accumulation and utilization were unaffected by CD. Winter feed production was reduced as SR increased. Increased SR, associated with increased grazing severity, resulted in swards of increased leaf content and nutritive value. The results indicate that, although associated with increased milk production per ha, grazed grass utilization and improved sward nutritive value, the potential benefits of increased SR on Irish dairy farms can only be realized if the average level of herbage production and utilization is increased.  相似文献   

20.
To support the further development of grazing practices for dairy production systems based on perennial ryegrass (Lolium perenne L.), allometric relationships among leaf‐stage categories and pseudostem were derived for perennial ryegrass tillers sampled from swards each month, from July 2008 to January 2010, within a dairy grazing‐system experiment in south‐west Victoria, Australia. The relative lamina mass of the first leaf that emerged on tillers following grazing (denoted L3) and the subsequent leaf to emerge (L2) was used as an indicator of the trajectory of regrowth. L2 was consistently 30–40% heavier than L3 during the period July–September (mid‐winter to early spring), but thereafter the difference between leaf stages lessened, and disappeared altogether in late spring. No substantial lag was observed in the rate of herbage accumulation during the early stages of regrowth of perennial ryegrass swards from 1500 kg DM ha?1 post‐grazing. Therefore, grazing at any time in the period between emergence of the second and third leaves after the previous defoliation event should lead to high efficiency of pasture harvest under most conditions. The dry‐matter digestibility (DMD) and crude protein (CP) content of the most recently emerged leaf (denoted L1) declined sharply during spring, whereas the DMD and CP content of older leaves were more consistent. Decision rules for grazing management should include sufficient flexibility to account for interactions between leaf stage and time of year in relative lamina mass and nutritive value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号