首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Objective

To investigate whether an intravenous (IV) lidocaine bolus in calves premedicated with xylazine-butorphanol reduces the amount of ketamine required to allow endotracheal intubation.

Study design

Randomized, prospective clinical study.

Animals

In total, 41 calves scheduled for elective umbilical surgery.

Methods

Calves were randomly assigned to one of two groups (L: lidocaine or S: saline). The calves were administered xylazine (0.07 mg kg?1) and butorphanol (0.1 mg kg?1) intramuscularly and 10 minutes later lidocaine (2 mg kg?1; group L) or saline (group S) IV over 1 minute. After 2 minutes, ketamine (2.5 mg kg?1) was injected IV. If the depth of anaesthesia was insufficient for intubation, additional ketamine (1 mg kg?1) was administered every minute until intubation was successful. The amount of ketamine required for intubation, respiratory rate, pulse rate, arterial pressures, the depth of sedation and conditions of endotracheal intubation after induction of anaesthesia were compared between the two groups.

Results

The calves in group L were sedated more deeply than those in group S; however, neither the median (range) amount of ketamine required for intubation, 3.5 (2.5–4.5) mg kg?1 and 3.5 (2.5–3.5) mg kg?1, respectively, nor the induction quality differed significantly between the groups.

Conclusion and clinical relevance

A bolus of lidocaine (2 mg kg?1) administered 10 minutes after xylazine-butorphanol in calves deepened the degree of sedation but did not decrease the requirement of ketamine for endotracheal intubation. No adverse effects were recorded in the physiological variables measured.  相似文献   

2.
3.

Objective

To investigate the sedative effects in dogs of tiletamine–zolazepam–acepromazine (TZA) or ketamine–flunitrazepam (KF) administered orally and to evaluate the effectiveness of encapsulated TZA for capturing free-roaming dogs.

Study design

Experimental study followed by a field trial.

Animals

Six research dogs and 27 free-roaming dogs.

Methods

In a pilot study, six research dogs were administered liquid TZA (20 mg kg?1 tiletamine–zolazepam and 2 mg kg?1 acepromazine) or liquid KF (50 mg kg?1 ketamine and 2 mg kg?1 flunitrazepam) orally: treatment 1, forcefully squirting liquid medication into the mouth; treatment 2, encapsulating liquid medication for administration in canned food; treatment 3, administering liquid medication mixed with gravy. Sedation was scored. A follow-up field trial attempted capture of 27 free-roaming dogs.

Results

In the pilot study, the median time (range) to lateral recumbency (% dogs) after TZA administration was: treatment 1, 47.5 (35–80) minutes (67%); treatment 2, 30 (15–65) minutes (83%); and treatment 3, 75 (45–110) minutes (100%). No dogs in KF treatment 2 or 3 achieved lateral recumbency. Based on these results, 20 free-roaming dogs were offered encapsulated TZA in canned food: TZ (20 mg kg?1) and acepromazine (2 mg kg?1). Of these, no further drugs to four dogs (one dog captured), 10 dogs were administered a second dose within 30 minutes (five dogs captured) and six dogs were administered TZ (5 mg kg?1) and xylazine (1.1–2.2 mg kg?1) intramuscularly by blow dart (six dogs captured). Seven dogs were initially offered twice the TZA dose (five dogs captured). In total, 63% free-roaming dogs were captured after administration of encapsulated TZA in canned food.

Conclusions and clinical relevance

Oral administration of encapsulated TZA in canned dog food can aid in the capture of free-roaming dogs, but additional drugs may be required. The sedation onset time and medication palatability influenced the capture rate.  相似文献   

4.

Objective

To determine the dose of cis-atracurium needed to produce a moderate neuromuscular blockade (NMB) in pigs.

Study design

Prospective experimental study.

Animals

Seven pigs [five females and two males; median (range) body weight: 47 (36–64) kg].

Methods

Pigs were premedicated with intramuscular midazolam (0.3 mg kg?1) and ketamine (7 mg kg?1). Anaesthesia was induced with intravenous (IV) propofol 3 (1–4) mg kg?1 and maintained with isoflurane in oxygen. Based on a preliminary study, the subjects were administered 0.3 mg kg?1 cis-atracurium followed by 0.48 mg kg?1 hour?1 constant rate infusion (CRI) IV. A moderate NMB was defined as a train-of-four (TOF) count of ≤2 by acceleromyography. When the TOF count was >2, 0.1 mg kg?1 cis-atracurium was administered and the CRI was increased. The cis-atracurium CRI was decreased when the TOF count was under 2 for more than 15 minutes. The total dose of cis-atracurium required to maintain a moderate NMB was calculated as the total amount of cis-atracurium used (both CRI and supplementary boluses) divided by the administration time.

Results

The cis-atracurium CRI lasted for 87 (76–151) minutes. To induce and maintain a moderate neuromuscular blockade, the initial dose of cis-atracurium was 0.3 (0.3– 0.5) mg kg?1 and the CRI was 0.71 (0.37–0.98) mg kg?1 hour?1.

Conclusions and clinical relevance

The doses described in our study may help researchers obtain a moderate NMB using cis-atracurium in pigs.  相似文献   

5.

Objective

The evaluation of alfaxalone as a premedication agent and intravenous anaesthetic in pigs.

Study design

Prospective, clinical trial.

Animals

Nine healthy, 6–8-week-old female Landrace pigs weighing 22.2 ± 1.0 kg, undergoing epidural catheter placement.

Methods

All pigs were premedicated with 4 mg kg?1 alfaxalone, 40 μg kg?1 medetomidine and 0.4 mg kg?1 butorphanol administered in the cervical musculature. Sedation was subjectively scored by the same observer from 1 (no sedation) to 10 (profound sedation) prior to induction of anaesthesia with alfaxalone intravenously to effect. All pigs were maintained on alfaxalone infusions with the rate of administration adjusted to maintain appropriate anaesthetic depth. Quality of induction was scored from 1 (poor) to 3 (smooth) and basic cardiorespiratory variables were recorded every 5 minutes during anaesthesia. Results are reported as mean ± standard deviation or median (range) as appropriate.

Results

Sedation scores were 9 (7–10). Inductions were smooth in all pigs and cardiovascular variables remained within normal limits for the duration of anaesthesia. The induction dose of alfaxalone was 0.9 (0.0–2.3) mg kg?1. Three pigs did not require additional alfaxalone after premedication to facilitate intubation.

Conclusions and clinical relevance

Intramuscular alfaxalone in combination with medetomidine and butorphanol produced moderate to deep sedation in pigs. Alfaxalone produced satisfactory induction and maintenance of anaesthesia with minimal cardiovascular side effects. Appropriate monitoring of pigs premedicated with this protocol is required as some pigs may become anaesthetized after intramuscular administration of this combination of drugs.  相似文献   

6.

Objective

To compare dexmedetomidine–midazolam with alfaxalone–midazolam for sedation in leopard geckos (Eublepharis macularius).

Study design

Prospective, randomized, blinded, complete crossover study.

Animals

Nine healthy adult leopard geckos.

Methods

Geckos were administered a combination of dexmedetomidine (0.1 mg kg?1) and midazolam (1.0 mg kg?1; treatment D–M) or alfaxalone (15 mg kg?1) and midazolam (1.0 mg kg?1; treatment A–M) subcutaneously craniodorsal to a thoracic limb. Heart rate (HR), respiratory rate (fR), righting reflex, palpebral reflex, superficial and deep pain reflexes, jaw tone and escape response were assessed every 5 minutes until reversal. Conditions for intubation and response to needle prick were evaluated. Antagonist drugs [flumazenil (0.05 mg kg?1) ± atipamezole (1.0 mg kg?1)] were administered subcutaneously, craniodorsal to the contralateral thoracic limb, 45 minutes after initial injection, and animals were monitored until recovery.

Results

HR, but not fR, decreased significantly over time in both treatments. HR was significantly lower than baseline at all time points in D–M and for all but the 5 and 10 minute time points in A–M. HR was significantly higher in A–M at all time points after drug administration when compared with D–M. Sedation scores between protocols were similar for most time points. All animals in A–M lost righting reflex compared with seven out of nine (78%) geckos in D–M. Geckos in A–M lost righting reflex for significantly longer time. Mean ± standard deviation time to recovery after antagonist administration was 6.1 ± 2.2 minutes for D–M and 56 ± 29 minutes for A–M, and these times were significantly different.

Conclusions and clinical relevance

Combination D–M or A–M provided sedation of a level expected to allow physical examinations and venipuncture in leopard geckos. A–M provided a faster onset of sedation compared with D–M. Recovery was significantly faster following antagonist reversal of D–M, compared with A–M.  相似文献   

7.

Objective

To determine the cardiovascular and acid-base effects of 6% hydroxyethyl starch (HES) 130/0.4 and 0.9% sodium chloride (NaCl) administered to anaesthetized greyhounds with haemorrhagic shock.

Study design

Prospective, experimental, complete randomized block design.

Animals

Twelve healthy adult greyhounds.

Methods

After 60 minutes of isoflurane anaesthesia, 48 mL kg?1 of blood was removed to induce hypotension. Dogs were randomized to receive either 20 mL kg?1 of HES 130/0.4 or 80 mL kg?1 of 0.9% NaCl over 20 minutes. Haemoglobin, arterial and central venous blood gas and electrolytes, lactate, mean arterial pressure (MAP) and cardiac index were measured at: T0, 60 minutes after induction of anaesthesia, immediately prior to blood removal; T1, immediately after blood removal; T2, immediately after fluid administration; and T3, 40 minutes after fluid administration. Oxygen extraction ratio (O2ER) was calculated at each sample time.

Results

O2ER increased at T1 and decreased at T2 and T3, with no difference between the two groups. Dogs administered HES 130/0.4 had higher lactate at T2 [mean (95% confidence interval) 1.3 (0.8–1.9) mmol L?1] than dogs administered 0.9% NaCl [0.8 (0.5–1.1) mmol L?1]; p = 0.045. Dogs administered HES 130/0.4 had a higher MAP at T3 [88 (74–102) mmHg] than dogs administered 0.9% NaCl [69 (60–79) mmHg]; p = 0.019. Dogs administered 0.9% NaCl were more acidaemic at T2 and T3, including higher hydrogen ion, lower bicarbonate, lower base excess and higher chloride concentrations.

Conclusion

and clinical relevance The effect of 20 mL kg?1 of HES 130/0.4 on shock, as measured by O2ER, was no different than that of 80 mL kg?1 of 0.9% NaCl in dogs under general anaesthesia. Acidaemia in the NaCl group is likely attributable to hyperchloraemic metabolic acidosis from the larger volume administered.  相似文献   

8.

Objective

To characterize the pharmacokinetics of dexmedetomidine when administered as a short intravenous (IV) infusion to isoflurane-anesthetized rabbits.

Study design

Experimental study.

Animals

A total of six healthy adult female New Zealand White rabbits.

Methods

Rabbits were anesthetized with isoflurane in oxygen. Following determination of isoflurane minimum alveolar concentration (MAC), the anesthetic dose was reduced to 0.7 × MAC, and dexmedetomidine hydrochloride (20 μg kg?1) was infused IV over 5 minutes. Arterial blood samples were obtained immediately before and at 1, 2, 5, 6, 7, 10, 15, 30, 60, 90, 120, 240 and 360 minutes following termination of the infusion. Samples were transferred into tubes containing ethylenediaminetetraacetic acid and centrifuged immediately. The plasma was harvested and stored at –80 °C until analyzed. Concentrations of dexmedetomidine in plasma were determined by liquid chromatography mass spectrometry. Compartment models were fitted to the time and concentration data using nonlinear regression.

Results

A three-compartment model best fit the data set. Median volume of distribution at steady state and terminal half-life were 3169 mL kg?1 (range, 2182–3859 mL kg?1) and 80 minutes (range, 72–88 minutes), respectively.

Conclusions and clinical relevance

The pharmacokinetics of dexmedetomidine in isoflurane-anesthetized, healthy, New Zealand White rabbits were characterized in this study. Data from this study can be used to determine dosing regimens for dexmedetomidine in isoflurane-anesthetized rabbits.  相似文献   

9.

Objective

To assess the temporal effects of a single fentanyl intravenous (IV) bolus on the minimum anesthetic concentration (MAC) of isoflurane in chickens and to evaluate the effects of this combination on heart rate (HR) and rhythm, systemic arterial pressures (sAP) and ventilation.

Study design

Prospective experimental trial.

Animals

Seventeen adult chickens weighing 1.8 ± 0.2 kg.

Methods

Individual isoflurane MAC for 17 chickens was previously determined using the bracketing method. Chickens were anesthetized with isoflurane to evaluate the effects of a single IV fentanyl bolus (10 or 30 μg kg?1) on isoflurane MAC over time using the up-and-down method. Ventilation was controlled. The isoflurane MAC reduction was estimated by logistic regression at 5 and 15 minutes after fentanyl administration. In the second phase, seven chickens were anesthetized with isoflurane, and fentanyl was administered (30 μg kg?1) IV over 1 minute during spontaneous ventilation and HR and rhythm, sAP and ventilation variables were measured.

Results

At 5 minutes after IV administration of fentanyl (10 or 30 μg kg?1), isoflurane MAC was significantly reduced by 17.6% (6.1–29.1%) [logistic regression estimate (95% Wald confidence interval)] and 42.6% (13.3–71.9%), respectively. Isoflurane MAC reduction at 15 minutes after IV administration of fentanyl (10 or 30 μg kg?1) was 6.2% (?0.6 to 12.9%) and 13.2% (?0.9 to 27.3%), respectively; however, this reduction was not significant. No clinically significant cardiopulmonary changes or arrhythmias were detected after the administration of fentanyl (30 μg kg?1).

Conclusions and clinical relevance

Administration of a single fentanyl bolus induced a dose-dependent and short-lasting reduction in isoflurane MAC. The higher dose induced no significant cardiopulmonary depression in isoflurane-anesthetized chickens during spontaneous ventilation. In chickens anesthetized with isoflurane, the clinical usefulness of a single fentanyl bolus is limited by its short duration of effect.  相似文献   

10.

Objective

To investigate the nociceptive and clinical effects of buffering a lidocaine–epinephrine solution with sodium bicarbonate in caudal epidural block in mares.

Study design

Prospective randomized controlled trial.

Animals

Six mixed-breed mares weighing 350–440 kg.

Methods

Each animal was administered two caudal epidural injections, 72 hours apart, using different solutions prepared immediately before injection. The control solution was 7 mL 2% lidocaine hydrochloride with epinephrine hemitartrate (1:200,000) added to 3 mL sterile water for injection (pH 2.9). The alkalinized solution was 7 mL of lidocaine–epinephrine solution added to 2.3 mL sterile water for injection and 0.7 mL 8.4% sodium bicarbonate (pH 7.4). Nociception was evaluated by response to skin pinching at 31 sites in the sacral region and around the perimeter of the anogenital area (distances of 10, 15 and 20 cm) before, and 5, 10 and 15 minutes after epidural injection, then every 15 minutes until the return of nociception in all evaluated sites. The onset and duration times, and intensity of ataxia (grades 0 to 3) were recorded. The paired t test was used to compare the onset and duration of anesthesia and ataxia (p < 0.05).

Results

Alkalization of the solution resulted in significant decreases in the average time of onset of loss of nociception in the sacral region (40%) and around the perimeter of the anogenital area extending up to 5 cm (36%) and from 5 to 10 cm (32%) from the anus and vulva. Alkalization also decreased the average duration of ataxia (33%), without affecting the duration and extent of anesthesia or the degree of ataxia.

Conclusions and clinical relevance

Alkalization of lidocaine–epinephrine solution is advantageous in shortening the duration of ataxia and hastening the onset of anesthesia in areas adjacent to the anogenital area, without reducing the duration of epidural anesthesia, in mares.  相似文献   

11.

Objective

To evaluate intraoperative and postoperative efficacy of ultrasound (US)-guided femoral (FN) and obturator (ON) nerves block, in the iliopsoas muscle compartment (IPM), using an in-plane technique.

Study design

Anatomical research and randomized, prospective, ‘blinded’ clinical study.

Animals

Six dog cadavers and 20 client-owned dogs undergoing tibial plateau levelling osteotomy (TPLO) surgery.

Methods

In phase 1, anatomical dissections and US imaging of the IPM were performed to design an US-guided nerve block involving the FN and ON simultaneously. The technique was considered successful if new methylene blue solution injection (0.1 mL kg?1) stained FN–ON for ≥2 cm. In phase 2, the US-guided nerve block designed in phase 1, combined with US-guided sciatic nerve (ScN) block, was performed in 20 dogs undergoing TPLO surgery. Patients were assigned randomly to one of two treatment groups: ropivacaine 0.3% (R3, n = 10) and ropivacaine 0.5% (R5, n = 10) at a volume of 0.1 mL kg?1 for each nerve block. Intraoperative success rate (fentanyl requirement < 2.1 mcg kg?1 hour?1) and postoperative pain score [Short Form-Glasgow Composite Measure Pain Scale (SF-GCMPS) ≥ 5/20] were evaluated.

Results

In phase 1, the US image of FN–ON was detected between L6 and L7. In-plane needling technique produced a staining of >4 cm in six of six cases. No abdominal or epidural dye spread was found. In phase 2, median fentanyl infusion rates were 0.5 (0.0–0.9) μg kg?1 hour?1 for R3 and 0.6 (0.0–2.2) μg kg?1 hour?1 for R5. At 9 and 11 hours after the peripheral nerve blocks, an SF-GCMPS ≥ 5 was observed for R3 and R5, respectively.

Conclusions and clinical relevance

The US-guided FN–ON block in the IPM, using an in-plane technique, combined with US-guided ScN block, provided sufficient analgesia to minimize the use of fentanyl during TPLO surgery. A longer postoperative analgesia was observed in group R5 compared with R3.  相似文献   

12.

Objectives

To compare the effects of a lidocaine constant rate infusion (CRI) combined with 1% isoflurane versus those of 2% isoflurane alone on cardiovascular variables in anaesthetized horses, and to estimate the sample size required to detect a difference in recovery quality.

Study design

Prospective, randomized, blinded, crossover study.

Animals

Twelve healthy experimental horses.

Methods

Horses were anaesthetized twice using an intravenous (IV) administration of acepromazine, romifidine, diazepam and ketamine. Horses were placed in dorsal recumbency and ventilated mechanically. During the first 10 minutes (P1), anaesthesia was maintained with a 2% inspired isoflurane fraction (FIIso). During the following 20 minutes (P2), horses received IV lidocaine (1.5 mg kg?1) (group IL) or saline (group I). During the last 60 minutes (P3), group IL received a lidocaine CRI (50 μg kg?1 minute?1 IV) and FIIso 1%, whereas group I received a saline CRI and FIIso 2%. Three weeks later, the horses received the alternative treatment. Painful stimuli were induced by introducing an 18 gauge needle intramuscularly. Ketamine and dobutamine requirements and physiological variables were recorded. Recoveries were assessed by two anaesthetists unaware of the treatment. Lidocaine plasma concentrations were measured during recovery. Data were analysed with anova.

Results

During P3, group IL had a lower heart rate (p = 0.002), higher mean arterial pressure (p < 0.001) and lower dobutamine requirement (p < 0.001) than group I. One horse had lidocaine plasma concentrations above toxic levels. Recoveries did not differ significantly between groups. Sample sizes of 208 horses in each group would be necessary to detect a statistically significant difference (85% statistical power) in recovery quality.

Conclusions and clinical relevance

A lidocaine CRI combined with FIIso 1% rather than FIIso 2% alone may improve cardiovascular variables in healthy anaesthetized horses.  相似文献   

13.

Objective

The aim of this study was to determine whether lumbosacral epidural administration of magnesium sulphate added to ropivacaine prolongs and improves perioperative analgesia, without adverse effects on motor block duration or hind limb neurological function, in dogs undergoing hip arthroplasty.

Study design

Investigator-blind, controlled, randomized, prospective clinical trial.

Animals

A group of 20 client-owned dogs undergoing hip arthroplasty were allocated randomly to either group C (control, 1 mg kg?1epidural ropivacaine) or group M (magnesium, epidural injection of 1 mg kg?1 ropivacaine and 2 mg kg?1magnesium sulphate).

Methods

All dogs were premedicated with intramuscular acepromazine. General anaesthesia was induced with propofol and maintained with isoflurane in oxygen. Intraoperatively, nociception was assessed based on changes in heart rate, respiratory rate and mean arterial pressure above baseline values. Postoperatively, pain was evaluated with a Sammarco pain score, a Glasgow pain scale and a visual analogue scale (VAS). Tarlov’s scale was used to quantify motor block. All dogs were evaluated at recovery and then 1, 2, 3, 4, 5 and 24 hours after that. Rescue analgesia was provided during surgery with fentanyl and, postoperatively, with buprenorphine. Groups were compared using one-way repeated-measure analysis of variance followed by the Holm–Sidak method for multiple comparison or nonparametric tests when appropriate.

Results

The two treatment groups did not differ (p > 0.05) with respect to intraoperative physiological variables, rescue analgesia, postoperative pain scores (Sammarco q = 1.00; Glasgow q = 3.10; VAS q = 0.50) and duration of the motor block (Tarlov’s q = 2.40).

Conclusions and clinical relevance

The addition of epidural magnesium to ropivacaine did not improve or prolong the analgesia provided by ropivacaine alone. Further studies are needed to determine whether an epidural magnesium dose of >2 mg kg?1 would exert better analgesia, without causing adverse effects, in dogs undergoing orthopaedic surgery.  相似文献   

14.

Objective

To evaluate the analgesic efficacy of Yamamoto New Scalp Acupuncture (YNSA) as an adjuvant for postoperative pain management in cats.

Study design

Prospective, randomized, blinded, clinical study.

Animals

Twenty cats aged (mean ± standard deviation) 25 ± 9 months and weighing 2.7 ± 0.6 kg undergoing ovariohysterectomy.

Methods

The cats were sedated with intramuscular (IM) ketamine (5 mg kg?1), midazolam (0.5 mg kg?1) and tramadol (2 mg kg?1). The cats were randomly distributed before induction of anesthesia into two groups of 10 cats each: group YNSA, in which bilateral basic D points were stimulated with a dry needle from 20 minutes prior to anesthetic induction to the end of the surgery; group Control, in which no acupuncture was applied. Postoperative analgesia was assessed at 1, 2, 4, 8, 12, 18 and 24 hours postextubation using an Interactive Visual Analog Scale and Universidade Estadual Paulista-Botucatu Multidimensional Composite Pain Scale (UNESP-Botucatu MCPS). Rescue analgesia was provided with IM tramadol (2 mg kg?1), and the pain scores were reassessed 30 minutes after rescue intervention. If the analgesia remained insufficient, meloxicam (0.2 mg kg?1 as a single dose) was administered IM. Data were analyzed using Student t-test, Fisher exact test, Mann–Whitney U test and Friedman test (p < 0.05).

Results

Significantly lower pain scores were observed in YNSA when compared with Control at 1–4 hours based on the UNESP-Botucatu MCPS scores. Although significant differences were not identified between groups requiring rescue analgesia, additional postoperative analgesia was administered to four of 10 cats in Control and no cats in YNSA.

Conclusion and clinical relevance

Perioperative YNSA resulted in decreased pain scores and a reduction in postoperative requirement for rescue analgesia in cats. This method should be considered a viable option as an adjuvant analgesic therapy for cats undergoing ovariohysterectomy.  相似文献   

15.

Objective

To evaluate intravenous (IV) detomidine with methadone in horses to identify a combination which provides sedation and antinociception without adverse effects.

Study design

Randomized, placebo-controlled, blinded, crossover.

Animals

A group of eight adult healthy horses aged (mean ± standard deviation) 7 ± 2 years and 372 ± 27 kg.

Methods

A total of six treatments were administered IV: saline (SAL); detomidine (5 μg kg?1; DET); methadone (0.2 mg kg?1; MET) alone or combined with detomidine [2.5 (MLD), 5 (MMD) or 10 (MHD) μg kg?1]. Thermal, mechanical and electrical nociceptive thresholds were measured, and sedation, head height above ground (HHAG), cardiopulmonary variables and intestinal motility were evaluated at 5, 15, 30, 45, 60, 75, 90, 120 and 180 minutes. Normal data were analyzed by mixed-model analysis of variance and non-normal by Kruskal–Wallis (p < 0.05).

Results

Nociceptive thresholds in horses administered methadone with the higher doses of detomidine (MMD, MHD) were increased above baseline to a greater degree and for longer duration (MMD: 15–30 minutes, MHD: 30–60 minutes) than in horses administered low dose with methadone or detomidine alone (MLD, DET: 5–15 minutes). No increases in nociceptive thresholds were recorded in SAL or MET. Compared with baseline, HHAG was lower for 30 minutes in MMD and DET, and for 45 minutes in MHD. No significant sedation was observed in SAL, MET or MLD. Intestinal motility was reduced for 75 minutes in MHD and for 30 minutes in all other treatments.

Conclusions

Methadone (0.2 mg kg?1) potentiated the antinociception produced by detomidine (5 μg kg?1), with minimal sedative effects.

Clinical relevance

Detomidine (5 μg kg?1) with methadone (0.2 mg kg?1) produced antinociception without the adverse effects of higher doses of detomidine.  相似文献   

16.

Objective

To evaluate skin temperature increase as an early predictive measure for evaluating epidural and femoral-sciatic block success in dogs.

Study design

Prospective clinical trial.

Animals

A total of 29 dogs undergoing orthopaedic surgery on one hindlimb.

Methods

Dogs were anaesthetized and placed into lateral recumbency with the affected limb uppermost and the coat was clipped. Baseline infrared thermographic images (T0) of the affected limb, of the paw pad of the affected leg and of the ipsilateral paw pad were taken. Subsequently, dogs were administered either an epidural (EPI; n = 11) or a femoral–sciatic block (FS; n = 18) using bupivacaine 1 mg kg?1. Then, 2 minutes after placement of the block, thermographic images were obtained every 3 minutes for a total of four measurements (T1–T4) and surgery was commenced. Rescue analgesia consisting of fentanyl 1 μg kg?1 was administered if needed. A regional block was considered successful if the dose of fentanyl administered was less than the lower 95% confidence interval of the geometric mean of the total fentanyl used in each group. A ≥ 1 °C increase of skin temperature was considered as the minimum increase required for detection of a successful block.

Results

A total of 12 out of 18 blocks in the FS and eight of 11 in the EPI group were considered successful based on fentanyl consumption. Out of these, only four of 12 in the FS and one of eight in the EPI group developed an increase in temperature of ≥ 1 °C. Contrarily, four of six of the nonsuccessful cases in the FS and three of three in the EPI group developed an increase in temperature of ≥ 1 °C.

Conclusions and clinical relevance

Contrary to reports in humans, thermography did not indicate regional block success prior to surgery in dogs. However further studies under more controlled conditions are needed to determine whether thermography can be used to indicate failure of regional blockade.  相似文献   

17.

Objective

To evaluate the onset and duration of hematological changes and the use of Doppler ultrasound (spleen) in dogs sedated with acepromazine or xylazine.

Study design

Clinical study.

Animals

A total of 24 mixed breed dogs aged 1–4 years and weighing 15–25 kg.

Methods

Dogs were randomly distributed into two groups: acepromazine group (AG) which were administered acepromazine (0.05 mg kg?1) intramuscularly and xylazine group (XG) administered xylazine (0.5 mg kg?1) intramuscularly. Sonographic evaluations (morphologic and hemodynamic splenic vascularization) and hematologic tests were performed before drug administration (baseline) and 5, 15, 30, 60, 120, 240, 360, 480 and 720 minutes after drug administration.

Results

A significant reduction occurred in erythrogram variables in AG at 15–720 minutes corresponding with a significant enlargement of the spleen. In XG, a significant reduction was observed in the erythrogram variables at 30–60 minutes without a significant enlargement of the spleen. Hilar diameter did not change over time in either group. Flow alterations were found only in the splenic artery in AG, with a decreased final diastolic velocity observed at 60–120 minutes.

Conclusions

Administration of acepromazine resulted in decreased red blood cell count, hemoglobin, packed cell volume and an increased diameter of the spleen. Xylazine administration resulted in similar hematologic changes but of smaller magnitude and duration and without splenic changes. The absence of significant changes in the Doppler flow parameters of the splenic artery and vein and the hilar diameter suggests that the splenomegaly that was observed in AG was not due to splenic vasodilation. No splenic sequestration occurred after xylazine administration.

Clinical relevance

The results indicate that acepromazine decreases the erythrocyte concentrations by splenic erythrocyte sequestration and concomitant splenomegaly. Xylazine can cause slight hematologic changes, but without splenic changes.  相似文献   

18.
19.

Objective

To characterize a propofol–medetomidine-ketamine total intravenous anaesthetic in impala (Aepyceros melampus).

Study design

Prospective clinical study.

Animals

Ten adult female impala.

Materials and methods

Impala were immobilized at 1253 m above sea level with 2.0 mg thiafentanil and 2.2 mg medetomidine via projectile darts. Propofol was given to effect (0.5 mg kg?1 boluses) to allow endotracheal intubation, following which oxygen was supplemented at 2 L minute?1. Anaesthesia was maintained with a constant-rate infusion of medetomidine and ketamine at 5 μg kg?1 hour?1 and 1.5 mg kg?1 hour?1, respectively, and propofol to effect (initially 0.2 mg kg?1 minute?1) for 120 minutes. The propofol infusion was titrated according to reaction to nociceptive stimuli every 15 minutes. Cardiopulmonary parameters were monitored continuously and arterial blood gas samples were analysed intermittently. After 120 minutes' maintenance, the thiafentanil and medetomidine were antagonized using naltrexone (10:1 thiafentanil) and atipamezole (5:1 medetomidine), respectively.

Results

All impala were successfully immobilized. The median dose [interquartile range (IQR)] of propofol required for intubation was 2.7 (1.9–3.3) mg kg?1. The propofol–medetomidine–ketamine combination abolished voluntary movement and ensured anaesthesia for the 120 minute period. Propofol titration showed a generally downward trend. Median (IQR) heart rate [57 (53–61) beats minute?1], respiratory rate [10 (9–12) breaths minute?1] and mean arterial blood pressure [101 (98–106) mmHg] were well maintained. Arterial blood gas analysis indicated hypoxaemia, hyper- capnia and acidaemia. Butorphanol (0.12 mg kg?1) was an essential rescue drug to counteract thiafentanil-induced respiratory depression. All impala regurgitated frequently during the maintenance period. Recovery was calm and rapid in all animals. Median (IQR) time to standing from antagonist administration was 4.4 (3.2–5.6) minutes.

Conclusions and clinical relevance

A propofol–medetomidine–ketamine combination could provide adequate anaesthesia for invasive procedures in impala. The propofol infusion should begin at 0.2 mg kg?1 minute?1 and be titrated to clinical effect. Oxygen supplementation and airway protection with a cuffed endotracheal tube are essential.  相似文献   

20.

Objective

To determine the effects of two dexmedetomidine continuous rate infusions on the minimum infusion rate of alfaxalone for total intravenous anaesthesia (TIVA), and subsequent haemodynamic and recovery effects in Greyhounds undergoing laparoscopic ovariohysterectomy.

Study design

Prospective, randomized and blinded clinical study.

Animals

Twenty-four female Greyhounds.

Methods

Dogs were premedicated with dexmedetomidine 3 μg kg?1 and methadone 0.3 mg kg?1 intramuscularly. Anaesthesia was induced with IV alfaxalone to effect and maintained with a TIVA mixture of alfaxalone in combination with two different doses of dexmedetomidine (0.5 μg kg?1 hour?1 or 1 μg kg?1 hour?1; groups DEX0.5 and DEX1, respectively). The alfaxalone starting dose rate was 0.07 mg kg?1 minute?1 and was adjusted (± 0.02 mg kg?1 minute?1) every 5 minutes to maintain a suitable depth of anaesthesia. A rescue alfaxalone bolus (0.5 mg kg?1 IV) was administered if dogs moved or swallowed. The number of rescue boluses was recorded. Heart rate, arterial blood pressure and arterial blood gas were monitored. Qualities of sedation, induction and recovery were scored. Differences between groups were tested for statistical significance using a Student’s t test or Mann–Whitney U test as appropriate.

Results

There were no differences between groups in sedation, induction and recovery quality, the median (range) induction dose of alfaxalone [DEX0.5: 2.2 (1.9–2.5) mg kg?1; DEX1: 1.8 (1.2–2.9) mg kg?1], total dose of alfaxalone rescue boluses [DEX0.5: 21.0 (12.5–38.8) mg; DEX1: 22.5 (15.5–30.6) mg] or rate of alfaxalone (DEX0.5: 0.12 ± 0.04 mg kg?1 minute?1; DEX1: 0.12 ± 0.03 mg kg?1 minute?1).

Conclusions and clinical relevance

Co-administration of dexmedetomidine 1 μg kg?1 hour?1 failed to reduce the dose rate of alfaxalone compared with dexmedetomidine 0.5 μg kg?1 hour?1 in Greyhounds undergoing laparoscopic ovariohysterectomy. The authors recommend an alfaxalone starting dose rate of 0.1 mg kg?1 minute?1. Recovery quality was good in the majority of dogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号