首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objectives To study in horses (1) the relationship between cardiovascular variables and muscle perfusion during propofol–ketamine anaesthesia, (2) the physiological effects of a single intravenous (IV) detomidine injection, (3) the metabolic response of muscle to anaesthesia, and (4) the effects of propofol–ketamine infusion on respiratory function. Study design Prospective experimental study. Animals Seven standardbred trotters, 5–12 years old, 416–581 kg. Methods Anaesthesia was induced with intravenous (IV) guaifenesin and propofol (2 mg kg?1) and maintained with a continuous IV infusion of propofol (0.15 mg kg?1 minute?1) and ketamine (0.05 mg kg?1 minute?1) with horses positioned in left lateral recumbency. After 1 hour, detomidine (0.01 mg kg?1) was administered IV and 40–50 minutes later anaesthesia was discontinued. Cardiovascular and respiratory variables (heart rate, cardiac output, systemic and pulmonary artery blood pressures, respiratory rate, tidal volume, and inspiratory and expiratory O2 and CO2) and muscle temperature were measured at pre‐determined times. Peripheral perfusion was measured continuously in the gluteal muscles and skin using laser Doppler flowmetry (LDF). Muscle biopsy samples from the left and right gluteal muscles were analysed for glycogen, creatine phosphate, creatine, adenine nucleotides, inosine monophosphate and lactate. Arterial blood was analysed for PO2, PCO2, pH, oxygen saturation and HCO3. Mixed venous blood was analysed for PO2, PCO2, pH, oxygen saturation, HCO3, cortisol, lactate, uric acid, hypoxanthine, xanthine, creatine kinase, creatinine, aspartate aminotransferase, electrolytes, total protein, haemoglobin, haematocrit and white blood cell count. Results Circulatory function was preserved during propofol–ketamine anaesthesia. Detomidine caused profound hypertension and bradycardia and decreased cardiac output and muscle perfusion. Ten minutes after detomidine injection muscle perfusion had recovered to pre‐injection levels, although heart rate and cardiac output had not. No difference in indices of muscle metabolism was found between dependent and independent muscles. Anaerobic muscle metabolism, indicated by decreased muscle and creatine phosphate levels was evident after anaesthesia. Conclusion Muscle perfusion was closely related to cardiac output but not arterial blood pressure. Total intravenous anaesthesia with propofol–ketamine deserves further study despite its respiratory depression effects, as the combination preserves cardiovascular function. Decreases in high‐energy phosphate stores during recovery show that muscle is vulnerable after anaesthesia. Continued research is required to clarify the course of muscle metabolic events during recovery.  相似文献   

2.
This study demonstrated that the feeding of treatment diets with calculated dietary cation-anion balances (DCAB) of +370.43 (H) and -25.69 (L) did not have significant effects on blood pH, pCO2, and HCO3-. Serum Ca2+, P, Na+, and Cl- as well as plasma PTH did not differ (P > .05) between the two treatment groups. Serum K+ was higher (P< .05) in horses fed diet H rather than diet L. The DCAB of the diet significantly affected urinary Ca2+, P, Na+, K+, and Cl- excretion in the young growing horse. Urine Ca2+ and Cl- levels were higher (P < .01) in horses fed diet H versus diet L. Furthermore, levels of P, Na+, and K+ in the urine were higher (P < .01) in horses on diet H as opposed to diet L. Results of this study indicate that horses were able to maintain acid-base status regardless of diet. However, these data imply that growing horses consuming diets low in DCAB may be predisposed to abnormal bone mineralization due to the increase in calcium excretion which could lead to a weakening of the skeletal system.  相似文献   

3.
OBJECTIVE: To determine whether peritoneal fluid pH, glucose concentration, and lactate dehydrogenase activity can be used to differentiate horses with septic peritonitis from those with nonseptic peritonitis. DESIGN: Prospective study. ANIMALS: 46 horses, including 10 healthy horses, 15 horses with septic peritonitis, and 21 horses with nonseptic peritonitis. PROCEDURE: Peritoneal fluid and blood samples were analyzed for pH, glucose concentration, and lactate dehydrogenase activity. Complete blood cell counts were performed, and peritoneal fluid samples were submitted for bacterial culture. RESULTS: Horses with septic peritonitis had significantly lower peritoneal fluid pH and glucose concentrations than horses with nonseptic peritonitis and healthy horses. Compared with other tests, serum-to-peritoneal fluid glucose concentration differences > 50 mg/dl had the highest diagnostic use for detection of septic peritonitis. Peritoneal fluid pH < 7.3, glucose concentration < 30 mg/dl, and fibrinogen concentration > 200 mg/dl were also highly indicative of septic peritonitis. CLINICAL IMPLICATIONS: Peritoneal fluid pH and glucose concentration can be used to assist in the identification of horses with septic peritonitis. These measurements can provide an early indication of sepsis, especially if cytologic evaluation of peritoneal fluid is unavailable or results are equivocal and peritoneal fluid bacterial culture results are pending.  相似文献   

4.
Six mature horses were used in a 6×6 Latin Square design experiment to study the effects of varying dietary cation-anion differences (DCAD) on the acid-base status and energy digestibility of horses fed varying levels and sources of starch. Rolled corn, whole oats, or dehydrated alfalfa meal were used to make up the concentrate portions of the diets. Three diets had a DCAD above 300 meq/kg DM, and three below 160 meq/kg DM. This trial consisted of 11-day adjustment periods followed by 72-hour experimental collection periods. During that time, venous blood samples were drawn for analysis of pH, pCO2, HCO3, pO2, and lactate concentrations. Total urine was collected and measured for pH and mineral content. Representative feed and fecal samples were taken to determine energy digestibility. Blood lactate concentration showed no variation among treatments. Energy digestibility showed no variation with respect to DCAD, but did vary with starch intake. Urine pH, blood pH and blood HCO3 concentrations were significantly lower for horses consuming diets with a low DCAD as compared with high DCAD diets regardless of starch source or intake. Thus, it may be possible to reverse any metabolic acidosis caused by high starch intake by increasing the DCAD of the diet.  相似文献   

5.
6.

Objective

To determine the degree of agreement between arterial and venous blood gases in anesthetized lambs using a point-of-care analyzer.

Study design

Prospective experimental study.

Animals

A group of 12 female Dorset cross-bred lambs, weighing 37.3 ± 7.4 kg (mean ± standard deviation).

Methods

Lambs were anesthetized with isoflurane for catheterization of the jugular vein and femoral artery, and blood samples were collected simultaneously for analysis of pH, PCO2, PO2, base excess (BE), bicarbonate (HCO3?), total carbon dioxide (tCO2), oxygen saturation (SO2), ionized calcium (iCa) and potassium (K+) using the Vet Scan i-STAT handheld analyzer. The Bland–Altman method was used to calculate agreement between arterial and venous measurements.

Results

Strong agreement was identified between arterial and venous pH (bias = 0.04; 95% limits of agreement = 0.02–0.06), K+ (bias = –0.1 and 95% limits of agreement = –0.8 to 0.5) and iCa (bias = 0.04; 95% limits of agreement = –0.08 to 0.0003). There was poor agreement for PO2 (bias = 168.0; 95% limits of agreement = 77.4–258.7) and SO2 (bias = 9.1; 95% limits of agreement = 2.8–15.3), as these values were higher in arterial blood than in venous blood. Moderate agreement was present for BE (bias = 1.7; 95% limits of agreement = –2.7 to 6.1), PCO2 (bias = –2.1; 95% limits of agreement = –7.5 to 3.4), HCO3? (bias = 1.1; 95% limits of agreement = –3.1 to 5.3) and tCO2 (bias = 1.0; 95% limits of agreement = –3.3 to 5.3).

Conclusions and clinical relevance

Venous blood can be used for the measurement of pH, K+ and iCa in anesthetized Dorset cross-bred lambs. Arterial blood is required for accurate measurement of PO2, SO2, PCO2, HCO3?, tCO2 and BE to assess systemic blood oxygenation and pulmonary function in anesthetized Dorset cross-bred lambs.  相似文献   

7.
Blood acid-base and electrolyte status was studied in four sedentary Miniature Horses treated with 200, 300, 400 and 500 mg of sodium bicarbonate (NaHCO3) per kg of body weight (BW). Arterial blood was collected before treatment with NaHC03 and each hour for 5 h after treatment. All treatments resulted in an increase in blood pH, bicarbonate (HCO3) concentration and base excess (BE) by 1 h post-dosage, which continued through the 5th hour (P < .05). Treatment with 200 mg NaHC03/kg BW resulted in less elevated blood HCO3 concentrations (P < .03) and BE values (P < .01) when compared to the other treatments. Following dosing with NaHCO3, plasma Na+ concentrations increased among all treatments but declined to initial values by 3 h post-treatment. The 200 mg NaHCO3/kg BW dosage resulted in the smallest increases in plasma Na+ concentrations (P < .03). Both plasma K+ and Ca++ concentrations were lower (P < .05) among all treatment groups 1 h post-dosage but returned to initial values by 5 h and 3 h posttreatment, respectively, with no differences (P >.05) among treatments. All NaHCO3 dosages increased blood buffering capacity as indicated by increased blood pH, HCO3 concentration and BE. Maximum blood pH, HCO3 concentration and BE was reached using a dosage of 300 mg NaHCO3/kg BW. Also, all treatments altered the plasma electrolyte concentrations.  相似文献   

8.
Objective: The purpose of this study was to determine the effect of timing of analysis, collection tube type and repeated opening of sample tubes on venous PCO2, pH, HCO3, and base excess (BE) results. Design: Prospective experimental study, paired sample analysis. Setting: Veterinary Medical Teaching Hospital. Animals: Twenty dogs. Interventions: Jugular venous blood samples. Measurements and main results: PCO2, pH, HCO3, and BE were determined immediately following collection (control) and at selected times up to 30 minutes after placement in either screw top or vacuum heparin collection tubes. A different set of screw top and vacuum heparin collection tubes were sampled repeatedly over time for up to 15 minutes. In the screw top delayed analysis group, only pH changed significantly at one time point. PCO2 decreased significantly in all other groups and resulted in a significant reciprocal pH change in the vacuum tubes with either delayed single analysis or repeated sampling. HCO3 and BE declined significantly in multi‐sampled vacuum tubes and HCO3 also decreased significantly in multi‐sampled screw top tubes. Conclusions: Analysis of acid–base status is optimally performed on freshly drawn blood. However, when it is anticipated there will be a delay in analysis of samples kept at room temperature, the use of 2.0 mL plastic screw top heparin anticoagulant tubes may result in fewer pre‐analytical errors than 3.5 mL glass vacuum tubes.  相似文献   

9.
Objective: To determine the effects of storage of arterial and venous blood samples in ice water on blood gas and acid–base measurements. Design: Prospective, in vitro, laboratory study. Setting: School of veterinary medicine. Subjects: Six healthy dogs. Measurements and main results: Baseline measurements of partial pressure of oxygen (PO2), partial pressure of carbon dioxide (PCO2), pH, hemoglobin concentration (tHb), oxyhemoglobin saturation, and oxygen content (ContO2) were made. Bicarbonate (HCO3) and standard base excess (SBE) were calculated. Arterial and venous blood samples were separated into 1 and 3 mL samples, anaerobically transferred into 3 mL plastic syringes, and stored in ice water for 6 hours. Measurements were repeated at 15, 30 minutes, and 1, 2, 4, and 6 hours after baseline measurements. Arterial (a) PO2 increased significantly from baseline after 30 minutes of storage in the 1 mL samples and after 2 hours in the 3 mL samples. Venous (v) PO2 was significantly increased from baseline after 4 hours in the 1 mL samples and after 6 hours in the 3 mL samples. The pHa significantly decreased after 2 hours of storage in the 1 mL samples and after 4 hours in the 3 mL samples. In both the 1 and 3 mL samples, pHv decreased significantly only after 6 hours. Neither the arterial nor the venous PCO2 values changed significantly in the 1 mL samples and increased only after 6 hours in the 3 mL samples. No significant changes in tHb, ContO2, SBE, or HCO3 were detected. Conclusions: The PO2 of arterial and venous blood increased significantly when samples were stored in plastic syringes in ice water. These increases are attributable to the diffusion of oxygen from and through the plastic of the syringe into the blood, which occurred at a rate that exceeded metabolic consumption of oxygen by the nucleated cells.  相似文献   

10.
REASONS FOR PERFORMING STUDY: The most common cause of death as a direct result of colic is acute circulatory failure secondary to intestinal ischaemia. Early and accurate recognition of ischaemic bowel is essential to decrease complications and increase survival. Blood to peritoneal lactate values have been evaluated as a prognostic indicator, but lactate values characterised by type of lesion have not been reported. HYPOTHESIS: Plasma and peritoneal lactate values are higher in horses with intestinal ischaemia secondary to a strangulating obstruction (ISSO). METHODS: Venous blood and peritoneal fluid were collected sequentially from 20 clinically healthy horses and 189 horses admitted for colic during a one-year period. Blood gas, pH, electrolyte (K+, Na+, Ca++, Cl-), glucose and lactate values were determined for blood and peritoneal fluid samples; other values recorded for peritoneal fluid included gross appearance, total protein and nucleated cell count. Information regarding diagnosis, treatment and outcome was retrieved from the medical records. RESULTS: Peritoneal and plasma levels of lactate were lower in control compared to clinical cases. Horses with ISSO had a higher peritoneal lactate value (8.45 mmol/l) than those with nonstrangulating obstruction (2.09 mmo/l). Factors with the strongest correlations with the presence of ISSO were changes in the gross appearance of the peritoneal fluid and values of peritoneal fluid chloride, pH and log10 lactate. CONCLUSIONS: Analysis of peritoneal fluid gross appearance, pH, lactate and chloride can be used for diagnosis of ISSO. POTENTIAL RELEVANCE: Peritoneal fluid lactate is a better predictor of ISSO than blood lactate and may aid in early detection of catastrophic peritoneal lesions such as intestinal strangulation and rupture.  相似文献   

11.
Fifty-six horses with colic were examined over a period of three months. The concentrations of glucose, lactate, sodium, potassium and chloride, and the pH of samples of blood and peritoneal fluid, were determined with a portable clinical analyser and with an in-house analyser and the results were compared. Compared with the in-house analyser, the portable analyser gave higher pH values for blood and peritoneal fluid with greater variability in the alkaline range, and lower pH values in the acidic range, lower concentrations of glucose in the range below 8.3 mmol/l, and lower concentrations of lactate in venous blood in the range below 5 mmol/l and in peritoneal fluid in the range below 2 mmol/l, with less variability. On average, the portable analyser underestimated the concentrations of lactate and glucose in peritoneal fluid in comparison with the in-house analyser. Its measurements of the concentrations of sodium and chloride in peritoneal fluid had a higher bias and were more variable than the measurements in venous blood, and its measurements of potassium in venous blood and peritoneal fluid had a smaller bias and less variability than the measurements made with the in-house analyser.  相似文献   

12.
Reasons for performing the study: In man, peritoneal transforming growth factor beta (TGF‐β) is associated with peritoneal diseases and subsequent adhesion formation. No studies on plasma and peritoneal TGF‐β concentrations in horses with colic are available. Objectives: 1) To determine both plasma and peritoneal TGF‐β1 and TGF‐β3 concentrations in horses with different types of colic (not previously subjected to abdominal surgery); 2) to compare these concentrations according to the type of peritoneal fluid (transudate, modified transudate and exudate); and 3) to compare and correlate plasma and peritoneal concentrations of TGF‐β1 and TGF‐β3 and the types of peritoneal fluid according to the colic group and outcome. Methods: Peritoneal fluid and plasma samples from 78 horses with colic and 8 healthy horses were obtained. Patients were classified according to diagnosis (obstructions, enteritis, ischaemic disorders and peritonitis), peritoneal fluid analysis (transudate, modified transudate and exudate), and outcome (survivors and nonsurvivors). Plasma and peritoneal TGF‐β1 and TGF‐β3 concentrations were determined by ELISA. Data were analysed by parametric and nonparametric tests. P≤0.05 was considered as statistically significant. Results: Concentrations of peritoneal fluid TGF‐β1 were significantly (P = 0.01) higher in horses with peritonitis in comparison with all other colic groups and controls. Horses with ischaemic lesions had significantly (P = 0.01) higher concentrations of peritoneal TGF‐β1 in comparison with controls and the group of horses with obstructions. Peritoneal TGF‐β1 concentration also was significantly (P = 0.01) higher in exudates in comparison with transudates. Peritoneal TGF‐β1 and TGF‐β3 concentrations and plasma TGF‐β1 concentration were significantly increased in nonsurvivors compared to survivors (P = 0.001, P = 0.004 and P = 0.05, respectively). Conclusions: Peritoneal TGF‐β1 concentration was higher in horses with severe gastrointestinal diseases (ischaemic intestinal lesions and peritonitis), in horses with an altered peritoneal fluid (exudate), and in nonsurvivors. Potential relevance: Peritoneal TGF‐β concentration increases in horses with severe gastrointestinal disease as an anti‐inflammatory response.  相似文献   

13.
Objective To characterize intravenous anaesthesia with detomidine, ketamine and guaiphenesin in pregnant ponies. Animals Twelve pony mares, at 260–320 days gestation undergoing abdominal surgery to implant fetal and maternal vascular catheters. Materials and methods Pre‐anaesthetic medication with intravenous (IV) acepromazine (30 µg kg?1), butorphanol (20 µg kg?1) and detomidine (10 µg kg?1) preceded induction of anaesthesia with detomidine (10 µg kg?1) and ketamine (2 mg kg?1) IV Maternal arterial blood pressure was measured directly throughout anaesthesia and arterial blood samples were taken at 20‐minute intervals for measurement of blood gases and plasma concentrations of cortisol, glucose and lactate. Anaesthesia was maintained with an IV infusion of detomidine (0.04 mg mL?1), ketamine (4 mg mL?1) and guaiphenesin (100 mg mL?1) (DKG) for 140 minutes. Oxygen was supplied by intermittent positive pressure ventilation (IPPV) adjusted to maintain PaCO2 between 5.0 and 6.0 kPa (38 and 45 mm Hg), while PaO2 was kept close to 20.0 kPa (150 mm Hg) by adding nitrous oxide. Simultaneous fetal and maternal blood samples were withdrawn at 90 minutes. Recovery quality was assessed. Results DKG was infused at 0.67 ± 0.17 mL kg?1 hour?1 for 1 hour then reduced, reaching 0.28 ± 0.14 mL kg?1 hour?1 at 140 minutes. Arterial blood gas values and pH remained within intended limits. During anaesthesia there was no change in heart rate, but arterial blood pressure decreased by 10%. Plasma glucose and lactate increased (10‐fold and 2‐fold, respectively) and cortisol decreased by 50% during anaesthesia. Fetal umbilical venous pH, PO2 and PCO2 were 7.34 ± 0.06, 5.8 ± 0.9 kPa (44 ± 7 mm Hg) and 6.7 ± 0.8 kPa (50 ± 6 mm Hg); and fetal arterial pH, PO2 and PCO2 were 7.29 ± 0.06, 4.0 ± 0.7 kPa (30 ± 5 mm Hg) and 7.8 ± 1.7 kPa (59 ± 13 mm Hg), respectively. Surgical conditions were good but four ponies required a single additional dose of ketamine. Ponies took 60 ± 28 minutes to stand and recovery was good. Conclusions and clinical relevance Anaesthesia produced with DKG was smooth while cardiovascular function in mare and fetus was well preserved. This indicates that DKG infusion is suitable for maintenance of anaesthesia in pregnant equidae.  相似文献   

14.
Seminal plasma (SP) and ovarian fluid (OF) plays an important role as storage media to prevent the activation of gametes both in vivo and under artificial conditions. The objectives of this study were to quantify gamete biochemistry and explore correlations among quantitative characteristics of SP, OF and sperm performance traits of Ide Leuciscus idus and Northern pike Esox lucius. Generally, Na+, K+ and Cl? were found to be the most dominating ions, although concentrations of K+ were higher in SP, while Na+ and Cl? concentrations were higher in OF for both species. Several significant correlations among the biochemical properties such as total protein, glucose, osmolality, cholesterol, K+, Ca2+, Cl? and Mg2+ were observed for SP and OF. Total protein content of Ide SP was positively correlated with sperm activity traits (r ≥ .89, p ≤ .05), while K+ concentration was negatively correlated with sperm traits (r ≥ ?.89, p ≤ .05). Moreover, Ca2+ concentration in Northern pike SP was positively correlated with the percentage of sperm motility (r = . 98, p < .01). In conclusion, these results can be used to better understand the biochemistry of SP and OF, improve methods for short‐ and long‐term storage of gametes and standardize fertilization protocols.  相似文献   

15.
BACKGROUND: Intestinal hypoperfusion can lead to increased lactate concentrations in plasma and peritoneal fluid of horses with colic. HYPOTHESIS: The purposes of this study were to (1) evaluate the reliability of the Accusport analyzer to assess peritoneal fluid lactate (PFL) concentrations in healthy horses and those with colic, (2) identify clinical features associated with abnormal blood plasma lactate (BPL) and PFL concentrations, and (3) evaluate the prognostic value of BPL and PFL. ANIMALS: BPL and PFL were determined in 20 healthy horses and in 106 horses with colic. RESULTS: The Accusport was reliable for determining BPL concentrations < 13 mM and PFL concentrations < 20 mM. Multivariate analysis indicated that PCV and the need for intestinal resection were independently associated with the BPL; pulse, PCV, venous pO2, the presence of necrotic intestine, an increased amount of peritoneal fluid, and fluid total protein content were independently associated with PFL. With a 1 mM increase in BPL or PFL, the respective odds ratios for required abdominal surgery increase to 1.23 (BPL) and 1.58 (PFL), odds ratios for a required intestinal resection increase to 1.20 (BPL) and 1.41 (PFL), and odds ratios for developing ileus increase by 1.33 (BPL) and 1.36 (PFL). PFL concentrations of 1, 6, 12, and 16 mM correspond to a probability of death of 11, 29, 63, and 82%, respectively, in horses without strangulating obstruction and of 25, 52, 82, and 92%, respectively, in horses with strangulating obstruction. CONCLUSION: PFL is more useful and sensitive than BPL for prognostic purposes in horses with colic.  相似文献   

16.
Intravenous fluid therapy can alter plasma acid‐base balance. The Stewart approach to acid‐base balance is uniquely suited to identify and quantify the effects of the cationic and anionic constituents of crystalloid solutions on plasma pH. The plasma strong ion difference (SID) and weak acid concentrations are similar to those of the administered fluid, more so at higher administration rates and with larger volumes. A crystalloid's in vivo effects on plasma pH are described by 3 general rules: SID > [] increases plasma pH (alkalosis); SID < [] decreases plasma pH (alkalosis); and SID = [] yields no change in plasma pH. The in vitro pH of commercially prepared crystalloid solutions has little to no effect on plasma pH because of their low titratable acidity. Appreciation of IV fluid composition and an understanding of basic physicochemical principles provide therapeutically valuable insights about how and why fluid therapy can produce and correct alterations of plasma acid‐base equilibrium. The ideal balanced crystalloid should (1) contain species‐specific concentrations of key electrolytes (Na+, Cl?, K+, Ca++, Mg++), particularly Na+ and Cl?; (2) maintain or normalize acid‐base balance (provide an appropriate SID); and (3) be isosmotic and isotonic (not induce inappropriate fluid shifts) with normal plasma.  相似文献   

17.

Objective

To investigate the effects of intravenous (IV) administration of terbutaline on PaO2, PaCO2, pH, heart rate (HR) and arterial pressures in healthy, laterally recumbent horses breathing ambient air under total intravenous anesthesia (TIVA).

Study design

Prospective experimental study.

Animals

Eight healthy adult horses were enrolled. Six horses, four mares and two geldings weighing 433-624 kg, completed the study.

Methods

Horses were sedated with xylazine (1.0 mg kg?1) IV for placement of arterial and venous catheters. Anesthesia was induced with midazolam (0.1 mg kg?1) and ketamine (2.2 mg kg?1) IV and maintained with an IV infusion of guaifenesin (50 mg mL?1), ketamine (2 mg mL?1) and xylazine (0.5 mg mL?1) at 1.9 ± 0.3 mL kg?1 hour?1. Horses were in left lateral recumbency and breathed air spontaneously. Arterial blood was collected for pH and blood gas analysis during xylazine sedation, 15 minutes after induction of anesthesia, immediately before and 5, 15 and 30 minutes after administration of terbutaline (2 μg kg?1), and when the horse was standing after recovery from anesthesia. HR, systolic (SAP), mean (MAP) and diastolic (DAP) arterial pressures were recorded at 5 minute intervals during anesthesia. Normal data were analyzed with anova and non-normal data were analyzed with a Friedman test with a p < 0.05 considered significant.

Results

The mean PaO2 decreased from baseline to <60 mmHg (8.0 kPa) during anesthesia (p < 0.0001) and did not improve after administration of terbutaline. After terbutaline administration, HR increased (p = 0.002), and SAP, MAP and DAP decreased (p < 0.001) with the greatest changes occurring immediately after terbutaline administration.

Conclusions and clinical relevance

Terbutaline (2 μg kg?1) IV did not improve PaO2 and was associated with adverse cardiovascular effects during TIVA in healthy, laterally recumbent horses breathing air.  相似文献   

18.
Propofol anaesthesia for surgery in late gestation pony mares   总被引:2,自引:0,他引:2  
Objective To characterize propofol anaesthesia in pregnant ponies. Animals Fourteen pony mares, at 256 ± 49 days gestation, undergoing abdominal surgery to implant fetal and maternal vascular catheters. Materials and methods Pre‐anaesthetic medication with intravenous (IV) acepromazine (20 µg kg?1), butorphanol (20 µg kg?1) and detomidine (10 µg kg?1) was given 30 minutes before induction of anaesthesia with detomidine (10 µg kg?1) and ketamine (2 mg kg?1) IV Maternal arterial blood pressure was recorded (facial artery) throughout anaesthesia. Arterial blood gas values and plasma concentrations of glucose, lactate, cortisol and propofol were measured at 20‐minute intervals. Anaesthesia was maintained with propofol infused initially at 200 µg kg?1 minute?1, and at 130–180 µg kg?1 minute?1 after 60 minutes, ventilation was controlled with oxygen and nitrous oxide to maintain PaCO2 between 5.0 and 6.0 kPa (37.6 and 45.1 mm Hg) and PaO2 between 13.3 and 20.0 kPa (100 and 150.4 mm Hg). During anaesthesia flunixin (1 mg kg?1), procaine penicillin (6 IU) and butorphanol 80 µg kg?1 were given. Lactated Ringer's solution was infused at 10 mL kg?1 hour?1. Simultaneous fetal and maternal blood samples were withdrawn at 85–95 minutes. Recovery from anaesthesia was assisted. Results Arterial blood gas values remained within intended limits. Plasma propofol levels stabilized after 20 minutes (range 3.5–9.1 µg kg?1); disposition estimates were clearance 6.13 ± 1.51 L minute?1 (mean ± SD) and volume of distribution 117.1 ± 38.9 L (mean ± SD). Plasma cortisol increased from 193 ± 43 nmol L?1 before anaesthesia to 421 ± 96 nmol L?1 60 minutes after anaesthesia. Surgical conditions were excellent. Fetal umbilical venous pH, PO2 and PCO2 were 7.35 ± 0.04, 6.5 ± 0.5 kPa (49 ± 4 mm Hg) and 6.9 ± 0.5 kPa (52 ± 4 mm Hg); fetal arterial pH, PO2 and PCO2 were 7.29 ± 0.06, 3.3 ± 0.8 kPa (25 ± 6 mm Hg) and 8.7 ± 0.9 kPa (65 ± 7 mm Hg), respectively. Recovery to standing occurred at 46 ± 17 minutes, and was generally smooth. Ponies regained normal behaviour patterns immediately. Conclusions and clinical relevance Propofol anaesthesia was smooth with satisfactory cardiovascular function in both mare and fetus; we believe this to be a suitable anaesthetic technique for pregnant ponies.  相似文献   

19.
ObjectiveTo characterize the hemodynamic effects of dexmedetomidine in isoflurane-anesthetized cats.Study designProspective experimental study.AnimalsSix healthy adult female cats weighing 4.6 ± 0.8 kg.MethodsDexmedetomidine was administered intravenously using target-controlled infusions to maintain nine plasma concentrations between 0 and 20 ng mL?1 in isoflurane-anesthetized cats. The isoflurane concentration was adjusted for each dexmedetomidine concentration to maintain the equivalent of 1.25 times the minimum alveolar concentration, based on a previous study. Heart rate, systemic and pulmonary arterial pressures, central venous pressure, pulmonary artery occlusion pressure, body temperature, and cardiac output were measured at each target plasma dexmedetomidine concentration. Additional variables were calculated. Arterial and mixed-venous blood samples were collected for blood gas, pH, and (on arterial blood only) electrolyte, glucose and lactate analysis. Plasma dexmedetomidine concentration was determined for each target. Pharmacodynamic models were fitted to the data.ResultsHeart rate, arterial pH, arterial bicarbonate concentration, mixed-venous PO2, mixed-venous pH, mixed-venous hemoglobin oxygen saturation, cardiac index, stroke index, and venous admixture decreased following dexmedetomidine administration. Arterial blood pressure, central venous pressure, pulmonary arterial pressure, pulmonary arterial occlusion pressure, packed cell volume, PaO2, PaCO2, arterial hemoglobin concentration, mixed-venous PCO2, mixed-venous hemoglobin concentration, ionized calcium concentration, glucose concentration, rate-pressure product, systemic and pulmonary vascular resistance indices, left ventricular stroke work index, arterial oxygen concentration, and oxygen extraction increased following dexmedetomidine administration. Most variables changed in a dexmedetomidine concentration-dependent manner.Conclusion and clinical relevanceThe use of dexmedetomidine as an anesthetic adjunct is expected to produce greater negative hemodynamic effects than a higher, equipotent concentration of isoflurane alone.  相似文献   

20.
The objectives of this study were to describe pharmacokinetic and pharmacodynamic changes as a result of a single intravenous administration of magnesium sulfate (MgSO4) to healthy horses. MgSO4 is a magnesium salt that has been used to calm horses in equestrian competition and is difficult to regulate because magnesium is an essential constituent of all mammals. Six healthy adult female horses were administered a single intravenous dose of MgSO4 at 60 mg/kg of body weight over 5 min. Blood, urine, and cerebrospinal fluid (CSF) samples were collected, and cardiovascular parameters were monitored and echocardiograms performed at predetermined times. Noncompartmental pharmacokinetic analysis was applied to plasma concentrations of ionized magnesium (Mg2+). Objective data were analyzed using the Wilcoxon rank-sum test with p < .05 used as a determination for significance. Plasma concentrations of Mg2+ increased nearly fivefold, ionized calcium (Ca2+) decreased by nearly 10%, and the Ca2+ to Mg2+ ratio declined more than 3.5-fold and remained different than baseline until 24 hr (p < .05). Significant changes were seen with urinary fractional excretion of electrolytes, cardiovascular parameters, and echocardiographic measurements. No changes were detected in CSF electrolyte concentrations. The decrease in Ca2+ result of hypermagnesemia supports the interaction between these cations. Alterations detected in plasma electrolyte concentrations and urinary fractional excretion of electrolytes may serve as biomarkers for regulatory control for the nefarious administration of MgSO4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号