首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Over the last two decades, soil cultivation practices in the southern Argentinean Pampas have been changing from a 7 year cash-crop production system alternated with 2–3 years under pasture, to a continuous cropping system. A better understanding of the impact of the period of time a field has been under continuous cropping on a broad spectrum of soil properties related to soil quality is needed to target for sustainable cropping systems. The objectives of this study were to: (i) assess the relationship between physical and chemical soil parameters related to soil quality and (ii) identify soil quality indicators sensitive to soil changes under continuous cropping systems in the Argentinean Pampas.

Correlation analysis of the 29 soil attributes representing soil physical and chemical properties (independent variables) and years of continuous cropping (dependent variable) resulted in a significant correlation (p < 0.05) in 78 of the 420 soil attribute pairs. We detected a clear relationship between hydraulic conductivity at tension h (Kh) and structural porosity (ρe); ρe being a simple tool for monitoring soil hydraulic conditions.

Soil tillage practice (till or no-till) affected most of the soil parameters measured in our study. It was not possible to find only one indicator related to the years under continuous cropping regardless of the cultivation practice. We observed a significant relationship between years under continuous cropping and Kh under no-till (NT) and wheat fallow (p < 0.001, R2 = 0.70). Under these conditions, K−40 diminished as the number of years under continuous cropping increased.

The change in mean weight diameter (CMWD) was the only physical parameter related to the number of years under continuous cropping, explaining 36% of the variability in the number of years under continuous cropping (p < 0.001) The combination of three soil quality indicators (CMWD, partial R2 = 0.38; slope of the soil water retention curve at its inflexion point (S), partial R2 = 0.14 and cation exchange capacity (CEC), partial R2 = 0.13) was able to explain, in part, the years under continuous cropping (R2 = 0.65; p value > 0.001), a measure related to soil quality.  相似文献   


2.
The effects of conservation tillage (CT) systems on crop production and erosion control have been well documented, but limited information is available concerning the effects of different CT systems on the hydraulic properties of layered soils. The effects of three CT treatments: chisel (CH), no-tillage (NT) and till-plant (TP) as compared with conventional modlboard plowing (CN) were investigated on a Griswold silt loam soil (Typic Argiudoll), formed in loess overlaying glacial till. Hydraulic properties were determined in situ. In addition, hydraulic conductivity was determined in the laboratory where more detailed hydraulic conductivity changes were monitored for the lower soil moisture tension range near soil saturation.

At or near saturation, there was no difference in hydraulic properties for all four tillage treatments. For example, mean saturated hydraulic conductivities (from laboratory determination) were 25.5, 25.1, 24.2 and 22.8 cm day−1 for CN, CH, TP and NT, respectively. However under unsaturated conditions, tillage treatments and soil layering (discontinuity between surface loess and glacial till beneath) affected hydraulic properties. In situ hydraulic conductivity (K) ranked CH>CN = NT = TP for the 0.32–0.33 m3 m−3 moisture content range. There were no differences in K for all treatments at other moisture ranges considered and at moisture contents 0.31 m3 m−3, in situ specific moisture capacity was, however, significantly lower in NT than in the other three treatments. Throughout the 20-day free drainage period for in situ K determination, the effect of layering is exhibited by the mean K values at the 50-cm depth being higher than those at 25 cm. There were negligible treatment-block interaction effects on the hydraulic properties as the soil became drier. Spatial variability in hydraulic properties was also noted for all treatments and soil depths considered.  相似文献   


3.
Tillage management can affect crop growth by altering the pore size distribution, pore geometry and hydraulic properties of soil. In the present communication, the effect of different tillage management viz., conventional tillage (CT), minimum tillage (MT) and zero-tillage (ZT) and different crop rotations viz. [(soybean–wheat (S–W), soybean–lentil (S–L) and soybean–pea (S–P)] on pore size distribution and soil hydraulic conductivities [saturated hydraulic conductivity (Ksat) and unsaturated hydraulic conductivity {k(h)}] of a sandy clay loam soil was studied after 4 years prior to the experiment. Soil cores were collected after 4 year of the experiment at an interval of 75 mm up to 300 mm soil depth for measuring soil bulk density, soil water retention constant (b), pore size distribution, Ksat and k(h). Nine pressure levels (from 2 to 1500 kPa) were used to calculate pore size distribution and k(h). It was observed that b values at all the studied soil depths were higher under ZT than those observed under CT irrespective of the crop rotations. The values of soil bulk density observed under ZT were higher in 0–75 mm soil depth in all the crop rotations. But, among the crop rotations, soils under S–P and S–L rotations showed relatively lower bulk density values than S–W rotation. Average values of the volume fraction of total porosity with pores <7.5 μm in diameter (effective pores for retaining plant available water) were 0.557, 0.636 and 0.628 m3 m−3 under CT, MT and ZT; and 0.592, 0.610 and 0.626 m3 m−3 under S–W, S–L and S–P, respectively. In contrast, the average values of the volume fraction of total porosity with pores >150 μm in diameter (pores draining freely with gravity) were 0.124, 0.096 and 0.095 m3 m−3 under CT, MT and ZT; and 0.110, 0.104 and 0.101 m3 m−3 under S–W, S–L and S–P, respectively. Saturated hydraulic conductivity values in all the studied soil depths were significantly greater under ZT than those under CT (range from 300 to 344 mm day−1). The observed k(h) values at 0–75 mm soil depth under ZT were significantly higher than those computed under CT at all the suction levels, except at −10, −100 and −400 kPa suction. Among the crop rotations, S–P rotation recorded significantly higher k(h) values than those under S–W and S–L rotations up to −40 kPa suction. The interaction effects of tillage and crop rotations affecting the k(h) values were found significant at all the soil water suctions. Both S–L and S–P rotations resulted in better soil water retention and transmission properties under ZT.  相似文献   

4.
Intensive tillage for annual crop production may be affecting soil health and quality. However, tillage intensity effects on biological activities of volcanic-derived soils have not been systematically investigated. We evaluated the effects of three different tillage practices on some biological activities of an Ultisol from southern Chile during the third year of a wheat–lupin–wheat crop sequence. Treatments were: no tillage with stubble burning (NTB), no tillage without stubble burning (NT) and conventional tillage with disk-harrowing and stubble burning (CT). Biological activities were evaluated in winter and summer at 0–200 mm and at three soil depths (0–50, 50–100 and 100–200 mm) in winter. Total organic C and N were significantly higher under no-tillage systems than CT. In general, NT increased C and N of microbial biomass in comparison with CT, especially in winter. Microbial biomass C was closely associated with microbial biomass N (r = 0.986, P < 0.05); acid phosphomonoesterase (r = 0.999, P < 0.05); β-glucosidase (r = 0.978, P < 0.05), and others. Changes in biological activities occurred mainly in the upper soil layer (0–50 mm depth) in spite of the short duration of the experiment. Biological activities could be used as practical biological indicators to apply the more appropriate management systems for increasing soil sustainability or productivity.  相似文献   

5.
Glomalin was measured in soil from farming systems managed for 8 years by chisel tillage (CT), more intensive tillage for organic (ORG) production, and no tillage (NT) on Acrisols (FAO Soil Units) in the Mid-Atlantic region of the U.S. Whole soil and aggregate size classes of >2.00, 0.50–2.00 and 0.21–0.50 mm (macroaggregates), 0.05–0.21 mm (microaggregates), and <0.05 mm (fine material) were examined. Glomalin-related soil protein (GRSP) was extracted from 1-g samples (four plots per treatment) with 100 mM sodium pyrophosphate, pH 9.0, at 121 °C in three extraction cycles. Extracts were pooled and quantified by using the Bradford protein assay. Concentrations of GRSP and total carbon (C) in aggregates were linearly related across aggregate size classes for all treatments (GRSP = 0.101C + 0.56, r2 = 0.95). No tillage had significantly greater whole soil GRSP than did CT or ORG (P = 0.01). Mean values for GRSP in aggregates of NT were higher than for CT or ORG aggregates by 0.53 and 0.66 mg g−1 aggregates, respectively. There were no differences among treatments in GRSP concentrations in fine material. In NT the concentration of GRSP increased as aggregate size increased in contrast to the disturbed treatments, CT or ORG, where there were no differences in GRSP concentration across aggregate size fractions. Larger proportions of GRSP were distributed in macroaggregates of NT compared to CT and ORG in contrast to larger proportions in microaggregates of CT and ORG than in NT. Although soil disturbance in ORG farming is greater than for CT farming, both treatments had similar GRSP concentrations and distributions.  相似文献   

6.
Reduced tillage management is being adopted at an accelerated rate on the Canadian prairies. This may influence soil quality and productivity. A study conducted on a clay soil (Udic Haplustert) in southwestern Saskatchewan, Canada, to determine the effects of fallow frequency [fallow-wheat (F-W) vs. continuous wheat (Cont W)] and tillage [no-tillage (NT) vs. conventional (CT) or minimum tillage (MT)] on yields of spring wheat (Triticum aestivum L.), was sampled after 3, 7 and 11 years to assess changes in selected soil quality attributes. Tillage had no effect on amount of crop residues returned to the land, but the tilled systems had significantly (P<0.05) lower total organic C and N in the 0–7.5 cm soil depth, though not in the 7.5–15 cm depth. Further, these differences were observed after only 3 years and persisted for the entire 11 years of the study. For example, in the 0–7.5 cm depth, organic C in F-W (MT) after 3 years was 10 480 kg ha−1 and in F-W (NT) 13 380 kg ha−1, while in Cont W (CT) and Cont W (NT) corresponding values were 11 310 and 13 400 kg ha−1, respectively. After 11 years, values for F-W (MT) and F-W (NT) were 11 440 and 14 960 kg ha−1, respectively, and for Cont W (CT) and Cont W (NT), 12 970 and 16 140 kg ha−1, respectively. In contrast to total organic matter, two of the more labile soil quality attributes [i.e., C mineralization (Cmin) and N mineralization (Nmin)] did not respond to fallow frequency until after 7 years and only in the 0–7.5 cm depth. Microbial biomass (MB) and the ratio of Cmin to MB [specific respiratory activity (SRA)], two attributes also regarded as labile, were not influenced by the treatments even after 11 years. After 11 years, only Cmin and Nmin among the labile soil quality attributes responded to the treatments. Surprisingly, the labile attributes were no more sensitive to the treatments than was total organic C or N. More research is required to determine why responses in this soil differed from those reported elsewhere.  相似文献   

7.
8.
Improved-fallow agroforestry systems are increasingly being adopted in the humid tropics for soil fertility management. However, there is little information on trace gas emissions after residue application in these systems, or on the effect of tillage practice on emissions from tropical agricultural systems. Here, we report a short-term experiment in which the effects of tillage practice (no-tillage versus tillage to 15 cm depth) and residue quality on emissions of N2O, CO2 and CH4 were determined in an improved-fallow agroforestry system in western Kenya. Emissions were increased following tillage of Tephrosia candida (2.1 g N2O-N ha−1 kg N applied−1; 759 kg CO2-C ha−1 t C applied−1; 30 g CH4-C ha−1 t C applied−1) and Crotalaria paulina residues (2.8 g N2O-N ha−1 kg N applied−1; 967 kg CO2-C ha−1 t C applied−1; 146 g CH4-C ha−1 t C applied−1) and were higher than from tillage of natural-fallow residues (1.0 g N2O-N ha−1 kg N applied−1; 432 kg CO2-C ha−1 t C applied−1; 14.7 g CH4-C ha−1 t C applied−1) or from continuous maize cropping systems. Emissions from these fallow treatments were positively correlated with residue N content (r = 0.62–0.97; P < 0.05) and negatively correlated with residue lignin content (r = −0.56, N2O; r = −0.92, CH4; P < 0.05). No-tillage of surface applied Tephrosia residues lowered the total N2O and CO2 emitted over 99 days by 0.33 g N2O-N ha−1 kg N applied−1 and 124 kg CO2-C ha−1 t C applied−1, respectively; estimated to provide a reduction in global warming potential of 41 g CO2 equivalents. However, emissions were increased from this treatment over the first 2 weeks. The responses to tillage practice and residue quality reported here need to be verified in longer term experiments before they can be used to suggest mitigation strategies appropriate for all three greenhouse gases.  相似文献   

9.
D. Blaise   《Soil & Tillage Research》2006,91(1-2):207-216
Asiatic diploid (n = 13) cotton (Gossypium arboreum L.) is grown on Vertisols of central India with limited amounts of fertilizers and pesticides under rainfed conditions. In an earlier study it was established that reduced tillage (RT) systems improved productivity of tetraploid (n = 26) upland cotton (G. hirsutum L.). Such information is currently not available for the Asiatic cotton. Field studies were continued from 2002–2003 through 2004–2005, to determine the effect of tillage systems on weed control, yield and fibre quality. Tillage treatments continued for 6 years before this phase of the study. The experiment was conducted in a split plot design, with three tillage systems as main plots and combination of species (G. arboreum and G. hirsutum) and N rates (60 and 75 kg N ha−1) as subplots. Conventional tillage (CT) involved mouldboard ploughing + four to five inter-row cultivations and was compared with two levels of RT. RT1 being pre-emergence herbicide application with two inter-row cultivations by a bullock drawn hoe and RT2 was only herbicide application with no inter-row cultivation. Weed density (monocot and dicot weeds) was significantly lower on the RT than on the CT plots. Consequently, the RT plots had accumulated less weed dry matter. Seed cotton yield was affected by tillage systems in 1 out of 3 years. In 2002–2003, the yield trend was: RT1 > CT > RT2. The tillage × species interaction was significant in 2002–2003 and 2004–2005 and combined-across-years. Averaged over years, Asiatic G. arboreum produced 8% less seed cotton with treatment RT2 than with CT. Upland, G. hirsutum produced 118–134 kg ha−1 additional seed cotton on the RT than with CT. Differences in maturity and rooting habit probably contributed to the two species differing in their tillage requirement. The Asiatic cottons were early maturing and are known to possess a deeper root system than the upland cotton. The tillage × N and species × N interactions were not significant. Average seed cotton yield with the 75 kg N was 15.7% more than the 60 kg N ha−1 plots. Among fibre properties, fibre length was significantly better with treatment RT1 than with the CT in 2 out of 3 years. In summary, seed cotton yield of upland G. hirsutum cotton was higher with RT system, whereas converse occurred with G. arboreum. There were no adverse effects of RT on fibre quality.  相似文献   

10.
Earthworms are often referred to as ecosystem engineers due to their ability to alter the soil environment. Since earthworms influence a wide range of critical chemical and physical soil properties it is important to understand how their populations are impacted by soil management. Earthworms were sampled during the spring and summer of 2001, 2002, and 2003 from conventional tillage (CT) and no-till (NT) plots established in 2000. Although there was a strong trend for higher earthworm density in NT plots in 2001 (p = 0.08) and 2002 (p = 0.19), statistically significant differences were not detected between tillage treatments until 2003 (p = 0.04) when mean earthworm density was 37.7 individuals m−2 in CT and 149.9 individuals m−2 in NT during spring and 17.1 individuals m−2 in CT and 58.4 individuals m−2 in NT in summer. A high mortality rate between spring and summer, combined with greater cocoon production under NT suggests that the earthworm population turns over rapidly in NT plots. Data also suggest that adverse soil environmental conditions will limit earthworm density in these dryland agroecosystems. Despite significantly higher earthworm density after three years of NT management, soil bulk density, saturated hydraulic conductivity, and aggregate stability of the 0.5- to 1-mm size fraction were not different between the two tillage treatments. The apparent lack of impact of reduced disturbance and increased earthworm density on soil physical properties may be due to the short time this soil has been under NT management, limited seasonal earthworm activity due to environmental conditions, or differences in the scale at which soil physical properties have been affected after three years of NT management and the scale at which our measurements were made.  相似文献   

11.
No-till (NT) system for grain cropping is increasingly being practised in Australia. While benefits of NT, accompanied by stubble retention, are almost universal for soil erosion control, effects on soil organic matter and other soil properties are inconsistent, especially in a semi-arid, subtropical environment. We examined the effects of tillage, stubble and fertilizer management on the distribution of organic matter and nutrients in the topsoil (0–30 cm) of a Luvisol in a semi-arid, subtropical environment in southern Queensland, Australia. Measurements were made at the end of 9 years of NT, reduced till (RT) and conventional till (CT) practices, in combination with stubble retention and fertilizer N (as urea) application strategies for wheat (Triticum aestivum L.) cropping.

In the top 30 cm depth, the mean amount of organic C increased slightly after 9 years, although it was similar under all tillage practices, while the amount of total N declined under CT and RT practices, but not under NT. In the 0–10 cm depth, the amounts of organic C and total N were significantly greater under NT than under RT or CT. No-till had 1.94 Mg ha−1 (18%) more organic C and 0.20 Mg ha−1 (21%) more total N than CT. In the 0–30 cm depth, soil under NT practice had 290 kg N ha−1 more than that under the CT practice, most of it in the top 10 cm depth. Microbial biomass N was similar for all treatments. Under NT, there was a concentration gradient in organic C, total N and microbial biomass N, with concentrations decreasing from 0–2.5 to 5–10 cm depths.

Soil pH was not affected by tillage or stubble treatments in the 0–10 cm depth, but decreased significantly from 7.5 to 7.2 with N fertilizer application. Exchangeable Mg and Na concentration, cation exchange capacity and exchangeable Na percentage in the 0–10 cm depth were greater under CT than under RT and NT, while exchangeable K and bicarbonate-extractable P concentrations were greater under NT than under CT.

Therefore, NT and RT practices resulted in significant changes in soil organic C and N and exchangeable cations in the topsoil of a Luvisol, when compared with CT. The greater organic matter accumulation close to the soil surface and solute movement in these soils under NT practice would be beneficial to soil chemical and physical status and crop production in the long-term, whereas the concentration of nutrients such as P and K in surface layers may reduce their availability to crops.  相似文献   


12.
Soil erosion and depositional processes in relation to land use and soil management need to be quantified to better understand the soil organic carbon (SOC) dynamics. This study was undertaken on a Miamian soil (Oxyaquic Hapludalfs) under on-farm conditions in western Ohio with the objectives of evaluating the effects of degree of erosion on SOC stock under a range of tillage systems. Six farms selected for this study were under: no-till (NT) for 15, 10, 6 and 1.5 years; chisel till every alternate year with annual manure application (MCT); and annual chisel till (ACT). A nearby forest (F) site on the same soil was chosen as control. Using the depth of A horizon as an indicator of the degree of erosion, four erosion phases identified were: uneroded (flat fields under F, NT15, and on the summit of sloping fields under NT10, NT6, NT1.5 and MCT); deposition (NT10, NT6, NT1.5 and ACT); slight (NT10, MCT and ACT); and moderate erosion (NT10 and ACT). Core and bulk soil samples were collected in triplicate from four depths (i.e., 0–10, 10–20, 20–30 and 30–50 cm) for each erosional phase in each field for the determination of bulk density, and SOC concentrations and stocks. SOC concentration in NT fields increased at a rate of 5% year−1 for 0–10 cm and 2.5% year−1 for 10–20 cm layer with increasing duration under NT. High SOC concentration for NT15 is indicative of SOC-sequestration potential upon conversion from plow till to NT. SOC concentration declined by 19.0–14.5 g kg−1 in MCT and 11.3–9.7 g kg−1 in NT10 between uneroded and slight erosion, and 12.0–11.2 g kg−1 between slight and moderate erosion in ACT. Overall SOC stock was greatest in the forest for each of the four depths. Total SOC stock for the 50 cm soil layer varied in the order F (71.99 Mg ha−1) > NT15 (56.10 Mg ha−1) > NT10 (37.89 Mg ha−1) = NT6 (36.58 Mg ha−1) for uneroded phase (P < 0.05). The lack of uneroded phase in ACT indicated high erosion risks of tillage, as also indicated by the high SOC stock for deposition phase from 0 to 50 cm soil layer (ACT (56.56 Mg ha−1) > NT1.5 (42.70 Mg ha−1) > NT10 (30.97 Mg ha−1)). Tillage increased soil erosion and decreased SOC stock for top 10 cm layer for all erosional phases except deposition.  相似文献   

13.
An energy analysis of three cropping systems with different intensities of soil tillage (conventional tillage, CT; ridge tillage, RT; no tillage, NT) was done in a loamy-silt soil (fulvi-calcaric Cambisol) at Legnaro, NE Italy (45°21′N, 11°58′E, 8 m above sea-level (a.s.l.), average rainfall 822 mm, average temperature 11.7°C). This and measurements of the evolution of the organic matter content in the soil also allowed the consequences to be evaluated in terms of CO2 emissions.

The weighted average energy input per hectare was directly proportional to tillage intensity (CT > RT > NT). Compared with CT, total energy savings per hectare were 10% with RT and 32% with NT. Average energy costs per unit production were fairly similar (between 4.5 and 5 MJ kg−1), with differences of 11%. The energy outputs per unit area were highest in CT for all crops, and lowest in NT. The RT outputs were on average more similar to CT (−12%). The output/input ratio tended to increase when soil tillage operations were reduced, and was 4.09, 4.18 and 4.57 for CT, RT and NT, respectively. As a consequence of fewer mechanical operations and a greater working capacity of the machines, there was lower fuel consumption and a consistently higher organic matter content in the soil with the conservation tillage methods.

These two effects result in less CO2 emission into the atmosphere (at 0°C and pressure of 101.3–103 kPa) with respect to CT, of 1190 m3 ha−1 year−1 in RT and 1553 m3 ha−1 year−1 in NT. However, the effect owing to carbon sequestration as organic matter will decline to zero over a period of years.  相似文献   


14.
The objective of this study was to investigate the effect of tillage and cropping system on near-saturated hydraulic conductivity, residue cover and surface roughness to improve soil management for moisture conservation under semiarid Mediterranean conditions. Three tillage systems were compared (subsoil tillage, minimum tillage and no-tillage) under three field situations (continuous crop, fallow and crop after fallow) on two soils (Fluventic Xerochrept and Lithic Xeric Torriorthent). Soil under no-tillage had lower hydraulic conductivity (5.0 cm day−1) than under subsoil tillage (15.5 cm day−1) or minimum tillage (14.3 cm day−1) during 1 of 2 years in continuous crop due to a reduction of soil porosity. Residue cover at sowing was greater under no-tillage (60%) than under subsoil or minimum tillage (<10%) in continuous crop. Under fallow, residue cover was low (10%) at sowing of the following crop for all tillage systems in both soils. Surface roughness increased with tillage, with a high value of 16% and decreasing following rainfall. Under no-tillage, surface roughness was relatively low (3–4%). Greater surface residue cover under no-tillage helped conserve water, despite indications of lower hydraulic conductivity. To overcome the condition of low infiltration and high evaporation when no-till fallow is expected in a cropping sequence, either greater residue production should be planed prior to fallow (e.g. no residue harvest) or surface tillage may be needed during fallow.  相似文献   

15.
Soil erodibilty during concentrated flow (Kc) and critical flow shear stress (τcr), both reflecting the soil's resistance to erosion by concentrated runoff, are important input parameters in many physically-based soil erosion models. Field data on the spatial and temporal variability of these parameters is limited but crucial for accurate prediction of soil loss by rill or gully erosion. In this study, the temporal variations in Kc and τcr for a winter wheat field on a silt loam soil under three different tillage practices (conventional ploughing, CP; shallow non-inversion tillage, ST; deep non-inversion tillage, DT) in the Belgian Loess Belt were monitored during one growing season. Undisturbed topsoil samples (0.003 m3) were taken every three weeks and subjected to five different flow shear stresses (τ = 4–45 Pa) in a laboratory flume to simulate soil detachment by concentrated flow. To explain the observed variation, relevant soil and environmental parameters were measured at the time of sampling. Results indicated that after two years of conservation tillage, Kc(CP) > Kc(DT) > Kc(ST). Kc values can be up to 10 times smaller for ST compared to CP but differences strongly vary over time, with an increasing difference with decreasing soil moisture content. The beneficial effects of no-tillage are not reflected in τcr. Kc values vary from 0.006 to 0.05 sm−1 for CP and from 0.0008 to 0.01 sm−1 for ST over time. Temporal variations in Kc can be mainly explained by variations in soil moisture content but consolidation effects, root growth, residue decomposition and the presence of microbiotic soil crusts as well play a role. τcr values increase with increasing soil shear strength but Kc seems more appropriate to represent the temporal variability in soil erosion resistance during concentrated flow. The large intra-seasonal variations in Kc, which are shown to be at least equally important as differences between different soil types reported in literature, demonstrate the importance of incorporating temporal variability in soil erosion resistance when modelling soil erosion by concentrated flow.  相似文献   

16.
可耕种坡地的土壤水力参数非均质性变化   总被引:3,自引:0,他引:3  
The spatial variations of the soil hydraulic properties were mainly considered in vertical direction. The objectives of this study were to measure water-retention curves, θ(ψ), and unsaturated hydraulic conductivity functions, K(ψ), of the soils sampled at different slope positions in three directions, namely, in vertical direction, along the slope and along the contour, and to determine the effects of sampling direction and slope position of two soil catenas. At the upper slope positions, the surface soils (0-10 cm) sampled in the vertical direction had a lower soil water content, 0, at a certain soil water potential (-1 500 kPa 〈 ψ 〈 -10 kPa) and had the greatest unsaturated hydraulic conductivity, K, at ψ 〉 -10 kPa. At the lower slope positions, K at ψ〉 -10 kPa was smaller in the vertical direction than in the direction along the slope. The deep soils (100 110 cm) had similar soil hydraulic properties in all the three directions. The anisotropic variations of the hydraulic properties of the surface soils were ascribed to the effects of natural wetting and drying cycles on the structural heterogeneity. These results suggested that the anisotropy of soil hydraulic properties might be significant in influencing soil water movement along the slope and need to be considered in modeling.  相似文献   

17.
Although reduced tillage (RT) may preserve soil biota and improve the productivity and sustainability of arable lands in temperate regions, the extension of RT is limited by difficulties in controlling weeds. We studied the effect of RT without herbicide application on weed communities and soil biota in a 1-year 2-crop rotation system with winter wheat (Triticum aestivum L.) and maize (Zea mays L.) on Andosols in Japan. RT of the surface 3 cm and conventional moldboard plowing (CT) were conducted before seeding twice per year. For the first 3 years, from autumn 1997 to spring 2000, one field was managed with RT and another with CT. For the second 3 years, from autumn 2000 to spring 2003, RT and CT were conducted in two replicated plots in each field. Weed communities and soil biota were studied in the last 2 years. Dominant weed species in winter wheat cropping were Italian ryegrass (Lolium multiflorum Lam.) in 2002 and common vetch (Vicia angustifolia L.) in 2003, and their biomass was high where RT or CT was continuously conducted. Switching of tillage methods, from RT to CT or vice versa, reduced the biomass of winter weeds. In summer maize cropping, several annual and perennial weed species tended to increase under RT in the second 3 years. However, redroot pigweed (Amaranthus retroflexus L.), the most dominant weed in 2002 and 2003, responded to tillage inconsistently and its biomass was not always increased by RT. Species diversity of winter weeds was decreased by CT conducted in the first 3 years, and that of summer weeds was decreased by CT conducted in the second 3 years. The seedbank in the 0–10-cm soil layer under recent RT was large (7200–16 300 seeds m−2) compared with that under CT (2900–7300 seeds m−2). The microbial substrate-induced respiration (SIR) and the population densities of nematodes and mites were higher under RT in the second 3 years and were not affected by previous tillage practices. Both were highly correlated with soil total nitrogen. The positive effect of RT on these soil organisms was primarily attributable to the accumulation of organic matter in soil, but not to plant cover as a result of incomplete weed control by RT. Occasional adoption of RT in current CT systems may be effective at enriching soil organisms with little risk of weed infestation.  相似文献   

18.
Management practices that simultaneously improve soil properties and yield are crucial to sustain high crop production and minimize detrimental impact on the environment. The objective of this study was to determine the influence of tillage and crop residue management on crop yield, N uptake and C removal in crop, soil organic C and N, inorganic N and aggregation, and nitrous oxide (N2O) emissions on a Gray Luvisol (Boralf) soil near Star City, Saskatchewan, Canada. The 4-year (1998–2001) field experiment was conducted with two tillage systems: no tillage (NT), and conventional tillage (CT); two levels of straw: straw retained (S), and straw removed (NS); and four rates of fertilizer N: 0, 40, 80, and 120 kg N ha−1, except no N to pea phase of the rotation. The plots were seeded to barley (Hordeum vulgare L.) in 1998, pea (Pisum sativum L.) in 1999, wheat (Triticum aestivum L.) in 2000 and canola (Brassica napus L.) in 2001. Tillage and straw treatments generally had no effect on crop yield during the first three years. But in 2001, NT produced 55, 32, and 20% greater canola seed, straw and chaff than CT, respectively, whereas straw retention increased seed and straw yield by 33 and 19% compared to straw removal. Seed, straw and chaff yield of canola increased with N rate up to 40 kg N ha−1, and root mass (0–15 cm depth) with N rate to 80 kg N ha−1. Amount of N uptake and C removed in wheat and canola generally increased with N rate, but tillage and straw management had no consistent effect. After four crop seasons, total organic C (TOC) and N (TN), light fraction organic matter (LFOM), C (LFC), and N (LFN) were generally greater with S than NS treatments. Tillage did not affect TOC and TN in soil, but LFOM, LFC, and LFN were greater or tended to be greater under NT than CT. There was no effect of tillage, straw and N fertilization on NH4-N in soil, but CT and S tended to have higher NO3-N concentration in 0–15 cm soil than NT and NS, respectively. Concentration of NO3-N increased substantially with N rate ≥80 kg ha−1. The NT + S treatment had the lowest proportion (34%) of wind-erodible (<0.83 mm diameter) aggregates and greatest proportion (37%) of larger (>12.7 mm) dry aggregates, compared to highest (50%) and lowest (18%) proportion of corresponding aggregates in CT + NS, indicating less potential for soil erosion when tillage was omitted and crop residues were retained. Amount of N lost as N2O was higher from N-fertilized than from zero-N plots, and it was substantially higher from N-applied CT plots than from N-applied NT plots. Retaining crop residues along with no-tillage improved soil properties and may also be better for the environment.  相似文献   

19.
Determining temporal changes in field-saturated hydraulic conductivity (Kfs) is important for understanding and modeling hydrological phenomena at the field scale. Little is known about temporal variability of Kfs values measured at permanent sampling points. In this investigation, the simplified falling head (SFH) technique was used for an approximately 2-year period to determine temporal changes in Kfs at 11 permanent sampling points established at the surface of a sandy loam soil. Additional Kfs measurements were obtained by the single-ring pressure infiltrometer (PI) technique to also compare the SFH and PI techniques. The lowest mean values of Kfs, M(Kfs), were detected in December and January (20.5 ≤ M(Kfs) ≤ 146.2 mm h−1), whereas higher results (190.5 ≤ M(Kfs) ≤ 951.9 mm h−1) were obtained in the other months of the year. The Kfs values were higher and less variable in the dry soil (θi ≤ 0.21 m3 m−3, M(Kfs) = 340.6 mm h−1, CV(Kfs) = 106%) than in the wet one (θi > 0.21 m3 m−3, M(Kfs) = 78.4 mm h−1, CV(Kfs) = 185%). Both wet and dry soil were less conductive at the end of the study period than at the beginning one but a more appreciable change was detected for the dry soil (Kfs decreasing by 83.4%) than for the wet one (Kfs decreasing by 63.0%). The simple SFH technique yielded Kfs results similar to the more laborious and time-consuming PI technique (i.e., mean values differing at the most by a factor of two). It was concluded that (i) the soil water content was an important factor affecting the Kfs results obtained in a relatively coarse-textured soil, (ii) the impact of time from the beginning of the experiment on the saturated hydraulic conductivity was larger for a repeated sampling of dry soil than of wet soil and (iii) the SFH technique yielded reliable Kfs results in a relatively short period of time without the need for extensive instrumentation or analytical methodology.  相似文献   

20.
An 8-yr (1998–2005) field experiment was conducted on a Gray Luvisol (Boralf) soil near Star City, Saskatchewan, Canada, to determine the effects of tillage (no-tillage – NT and conventional tillage – CT), straw management (straw retained – R and straw not retained – NR) and N fertilizer (0, 40, 80 and 120 kg N ha−1, except no N to pea (Pisum sativum L.) phase of the rotation) on seed and straw yield, mass of N and C in crop, organic C and N, inorganic N and aggregation in soil, and nitrous oxide (N2O) emissions for a second 4-yr rotation cycle (2002–2005). The plots were seeded to barley (Hordeum vulgare L.) in 2002, pea in 2003, wheat (Triticum aestivum L.) in 2004 and canola (Brassica napus L.) in 2005. Seed, straw and chaff yield, root mass, and mass of N and C in crop increased with increasing N rate for barley in 2002, wheat in 2004 and canola in 2005. No-till produced greater seed (by 51%), straw (23%) and chaff (13%) yield of barley than CT in 2002, but seed yield for wheat in 2004, and seed and straw yield for canola in 2005 were greater under CT than NT. Straw retention increased seed (by 62%), straw (by 43%) and chaff (by 12%) yield, and root mass (by 11%) compared to straw removal for barley in 2002, wheat in 2004, and seed and straw yield for pea in 2003. No-till resulted in greater mass of N in seed, and mass of C in seed, straw, chaff and root than CT for barley in 2002, but mass of N and C were greater under CT than NT for wheat in 2004 and for canola in 2005 in many cases. Straw retention had greater mass of N and C in seed, straw, chaff and root in most cases compared to straw removal for barley in 2002, pea in 2003 and wheat in 2004. Soil moisture content in spring was higher under NT than CT and with R than NR in the 0–15 cm depth, with the highest moisture content in the NT + R treatment in many cases. After eight crop seasons, tillage and straw management had no effect on total organic C (TOC) and N (TON) in the 0–15 cm soil, but light fraction organic C (LFOC) and N (LFON), respectively, were greater by 1.275 Mg C ha−1 and 0.031 Mg N ha−1 with R than NR, and also greater by 0.563 Mg C ha−1 and 0.044 Mg N ha−1 under NT than CT. There was no effect of tillage, straw and N fertilization on the NH4-N in soil in most cases, but R treatment had higher NO3-N concentration in the 0–15 cm soil than NR. The NO3-N concentration in the 0–15, 15–30 and 30–60 cm soil layers increased (though small) with increasing N rate. The R treatment had 6.7% lower proportion of fine (<0.83 mm diameter) and 8.6% greater proportion of large (>38.0 mm) dry aggregates, and 4.5 mm larger mean weight diameter (MWD) compared to NR treatment. This suggests a lower potential for soil erosion when crop residues are retained. There was no beneficial effect of elimination of tillage on soil aggregation. The amount of N lost as N2O was higher from N-fertilized (580 g N ha−1) than from zero-N (155 g N ha−1) plots, and also higher in CT (398 g N ha−1) than NT (340 g N ha−1) in some cases. In conclusion, retaining crop residues along with no-tillage improved some soil properties and may also be better for the environment and the sustainability of high crop production. Nitrogen fertilization improved crop production and some soil quality attributes, but also increased the potential for NO3-N leaching and N2O-N emissions, especially when applied in excess of crop requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号