首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Rainbow trout (Oncorhynchus mykiss) skin cell cultures were obtained by trypsinization of the tissue and grown in Leibovitz L-15 medium. Lipid class compositions, and fatty acid profiles of total lipids and individual phospholipid classes were determined at different times of culture. The metabolism of polyunsaturated fatty acids (PUFA) was investigated by incubating primary cultures after 7 and 14 days with [1-14C]18:2n-6 and [1-14C-]18:3n-3. The change in morphology between epithelial-like primary cultures and fibroblastic-like secondary subcultures was accompanied by alterations in the lipid composition. Polar lipids became predominant by 14 days in culture. The relative proportions of phosphatidylcholine (PC), the most abundant phospholipid, phosphatidylinositol and cholesterol increased significantly, while sphingomyelin decreased. Saturated fatty acids, 18:1n-9, n-6 and n-9PUFA were more abundant in total lipid in cultures at 14 days and 4 months than in cells initially isolated which contained higher percentages of longer chain monoenes and n-3PUFA. The changes in fatty acid composition with time in culture were observed in all the major phospholipid classes. Rainbow trout skin cells in culture desaturated and elongated both 18:2n-6 and 18:3n-3, with 20:4n-6 and 20:5n-3 being the most abundant products, respectively. PC presented the highest incorporation of radioactivity, especially following incubation with 18:3n-3. Lipid metabolism in general increased with the age of primary cultures, with both the amount of C18 PUFA incorporated and metabolized by desaturation/elongation significantly increased in 14 day cultures compared to 7 day cultures. Product/precursor ratios calculated for both n-6 and n-3 fatty acids showed that, while 6 desaturase activity was increased significantly with cell age, 5 desaturase activity was more affected by the fatty acid series, with 18:3n-3 being more readily transformed to 20:5n-3 than 18:2n-6 to 20:4n-6. Further desaturation of 20:5n-3 to hexaenes was low. Overall, the data suggested that the trout skin cell cultures were more similar to mammalian skin fibroblasts than mammalian epidermal/keratinocyte cultures.  相似文献   

2.
To examine the ability of pike (Esox lucius L.) to modify exogenous PUFA by desaturation and elongation, 14C-labelled 18:2(n-6), 18:3(n-3), 20:4(n-6) and 20:5(n-3) were injected intraperitoneally and the distribution of radioactivity in tissue lipid classes and liver PUFA measured. In all tissues examined, radioactivity from all 14C-PUFA was recovered in many classes of acyl lipids and the level of recovery generally reflected the relative abundance of the lipid classes. Triacylglycerols, CGP and EGP usually contained high levels of all incorporated 14C-PUFA. PI contained higher levels of radioactivity from 14C-20:4(n-6) than from other injected substrates. In liver lipid, the 6 desaturation products of 14C-18:2(n-6) and 14C-18:3(n-3) contained no measurable radioactivity although the elongation products of the 6 desaturation products were labelled, as were the direct elongation products of these injected substrates. No radioactivity from 14C-18:2(n-6) or 14C-18:3(n-3) was detected in C20 or C22 products of 5 and 4 desaturation. Almost all radioactivity from injected 14C-20:4(n-6) was recovered in this PUFA. Of the total radioactivity from 14C-20:5(n-3) incorporated into liver lipid, 7% was present as 24:5 and 16.4% was recovered in hexaenoic fatty acids. In liver, 24:5(n-3) and 24:6(n-3) each accounted for 1% of the mass of total fatty acids and were located almost exclusively in triacylglycerols. The presence of radioactivity in these C24 PUFA suggests that in pike the synthesis of 22:6(n-3) from 20:5(n-3) may proceed without 4 desaturase via the pathway which involves chain shortening of 24:6(n-3). It is concluded that under the circumstances employed in this study pike, do not exhibit 5 desaturase activity and are unable to synthesize 20:4(n-6) and 20:5(n-3) from 18:2(n-6) and 18:3(n-3), respectively. This suggests that pike may require 20:4(n-6) and 20:5(n-3) preformed in the diet.Abbreviations CGP choline glycerophospholipids - CL cardiolipin - EGP ethanolamine glycerophospholipids - PG phosphatidylglycerol - PI phosphatidylinositol - PS phosphatidylserine - PUFA polyunsaturated fatty acids - SM sphingomyelin - TLC thin-layer chromatography  相似文献   

3.
The incorporation and metabolism of (n-3) and (n-6) polyunsaturated fatty acids were studied in a cell line derived from chum salmon heart (CHH-1). Supplementing media with 25 M fatty acid considerably altered the cellular fatty acid composition but did not affect the lipid class composition or cause the appearance of cytoplasmic lipid droplets. CHH-1 cells exhibited considerable -6-desaturase activity but showed no preference between (n-3) and (n-6)PUFA substrates. CHH-1 cells also possess -5-desaturase activity which showed preference towards (n-3)PUFA, but -4-desaturase activity was totally absent. Elongation of 20-carbon PUFA was especially active in CHH-1 cells with 22-carbon PUFA being specifically incorporated into PE and PS lipid classes. The fatty acid composition of PI indicated specific incorporation of 20-carbon PUFA into this lipid class. Supplementation with 22:6(n-3) generated fatty acid compositions more closely resembling those of intact salmonid hearts. Substantial chain shortening of 22:6(n-3) to 20:5(n-3) occurred.Abbreviations BHT butylated hydroxytoluene - BSA bovine serum albumin - CL cardiolipin - FCS fetal calf serum - PA phosphatidic acid - PC phosphatidylcholine - PE phosphatidylethanolamine - PI phosphatidylinositol - PS phosphatidylserine - PUFA polyunsaturated fatty acid - SM sphingomyelin  相似文献   

4.
The desaturation of [1-14C]18:3n-3 to 20:5n-3 and 22:6n-3 is enhanced in an essential fatty acid deficient cell line (EPC-EFAD) in comparison with the parent cell line (EPC) from carp. In the present study, the effects of competing, unlabeled C18 polyunsaturated fatty acids (PUFA), linoleic (18:2n-6), -linolenic (18:3n-3), -linolenic (18:3n-6) and stearidonic (18:4n-3) acids, on the metabolism of [1-14C]18:3n-3 were investigated in EPC-EFAD cells in comparison with EPC cells. The incorporation of [1-14C]18:3n-3 in both cell lines was significantly reduced by competing C18 PUFA, with the rank order being 18:4n-3>18:3n-3 = 18:2n-6>18:3n-6. In the absence of competing PUFA, radioactivity from [1-14C]18:3n-3 in EPC cells was predominantly recovered in phosphatidylethanolamine followed by phosphatidylcholine. This pattern was unaffected by competing n-6PUFA, but n-3PUFA reversed this pattern as did essential fatty acid deficiency in the presence of all competing PUFA. The altered lipid class distribution was most pronounced in cells supplemented with 18:4n-3. Competing C18 PUFA significantly decreased the proportions of radioactivity recovered in 22:6n-3, pentaene and tetraene products, with the proportions of radioactivity recovered in 18:3n-3 and 20:3n-3 increased, in both cell lines. However, the inhibitory effect of competing C18 PUFA on the desaturation of [1-14C]18:3n-3 was significantly greater in EPC-EFAD cells. The magnitude of the inhibitory effects of C18 PUFA on [1-14C]18:3n-3 desaturation was dependent upon the specific fatty acid with the rank order being 18:4n-3>18:3n-3>18:2n-6, with 18:3n-6 having little inhibitory effect on the metabolism of [1-14C]18:3n-3 in EPC cells. The differential effects of the C18 PUFA on [1-14C]18:3n-3 metabolism were consistent with mass competition in combination with increased desaturation activity in EPC-EFAD cells and the known substrate fatty acid specificities of desaturase enzymes. However, the mechanism underpinning the greater efficacy with which the unlabeled C18PUFA competed with [1-14C]18:3n-3 in the desaturation pathway in EPC-EFAD cells was unclear.  相似文献   

5.
Arctic charr,Salvelinus alpinus L. were fed five test diets containing 0% or 1% of different polyunsaturated fatty acids (PUFA) for 93 days. The fish were injected intraperitoneally with (1–14C)–18:2(n–6) or (1–14C)–18:3(n–3), and the bioconversion to longer chain PUFA studied. The conversion rate in neutral lipids was slow, with most label found as the fatty acid injected, while extensive modification took place prior to or during incorporation into polar lipids. Linolenic acid was preferred over linoleic acid as substrate for elongation and desaturation regardless of diet. In polar lipids, the predominant products of (1–14C)–18:2(n–6) metabolism were generally 20:3(n–6) and 20:4(n–6), while 18:4(n–3), 20:5(n–3) and 22:6(n–3) were the major products of (1–14C)–18:3(n–3) metabolism. The lack of radioactivity in 22:5(n–6) suggests that 4 desaturation is specific for (n–3) PUFA. Feeding the PUFA deficient diet reduced the 5 desaturation compared to fish maintained on PUFA supplemented diets. The 6 desaturation was only reduced in fish fed C18 PUFA and injected with (1–14C)–18:3(n–3). Longer chain C20 and C22 PUFA, particularly those of the (n–3) family, exerted some inhibition on the elongation and desaturation of injected fatty acids compared to those fed C18 PUFA. The incorporation of radiolabelled fatty acids into polar lipids of fish fed a commercial diet was very low, and the desaturation neglectible in both polar and neutral lipids, showing that Arctic charr under culture conditions do not convert short chain PUFA to longer chain metabolites.  相似文献   

6.
Total lipids, lipid classes and their associated fatty acids were quantified in developing eggs, yolk-sac larvae and starving larvae (from day 1 to day 5 after hatching) of the Senegal sole,Solea senegalensis Kaup. Larvae during early development and starvation consumed about 0.6% of its dry weight per day, mainly due to lipid catabolism. There was a net consumption of approximately 1.7% total lipid per day, and a net energy utilization of 1.3 kcal g–1 dry weight biomass day–1, mostly derived from lipid depletion. The overall decrease of total neutral lipids (mainly triacylglycerols and sterol esters) was 3.4 faster than that of total polar lipids (primarily phosphatidylcholine), with rates of 29.2 and 8.7 g mg–1 dry weight biomass day–1, respectively. There was a concomitant increase in PE, PS and phosphatidic acid during the period under study. Total saturated and total monounsaturated fatty acids were catabolized (primarily 160 and 161 (n-7)) as energy substrates at rates of 7.4 and 10.9 g mg–1 total lipid day–1, whereas total PUFAs were conserved. DHA was specifically retained in PE, whereas EPA and DHA were catabolized in PC and triacylglycerol. Total DMA and AA contents in total lipid increased during early development and starvation. The data denote a pattern of lipid metabolism during early development of Senegal sole similar to that of other marine larval fish, with eggs containing high amounts of total lipids (presence of oil globule/s), from temperate waters and with short developmental periods; the pattern contrasts with fish larvae from eggs of cold water fish species that contain low levels of total lipids (lack of oil globule/s) and have long developmental periods.Abbreviations AA all-cis-5,8,11,14-eicosatetraenoic acid (arachidonic acid, 204(n-6)) - C free cholesterol - DHA all-cis-4,7,10,13,16,19-docosahexaenoic acid (226(n-3)) - DMA dimethyl acetal - EPA all-cis-5,8,11,14,17-eicosapentaenoic acid (205(n-3)) - HUFA highly unsaturated fatty acids (C20 with 3 double bonds) - PC phosphatidylcholine - PE phosphatidylethanolamine - PI phosphatidylinositol - PS phosphatidylserine - PUFA polyunsaturated fatty acid(s) - SE sterol ester - TAG triacylglycerol  相似文献   

7.
The nutritional effect of vitamin E in dietsfor Litopenaeus vannamei postlarve (PL19)was investigated. Four formulated diets withdifferent combinations of -tocopherylacetate (-TA), ascorbic acid (AA) andhighly unsaturated fatty acids (HUFA) weretested, using four replicates.No significant differences in survival wereobserved among treatments after 34 days offeeding. However, shrimp fed with a dietcontaining 2% fish oil (low n-3 HUFA content),200 mg.kg–1 -TA and100 mg.kg–1 AA (diet H/E/C) showedsignificantly better growth than those fed adiet supplemented with 5% fish oil (high n-3HUFA content), 200 mg.kg–1 -TA and100 mg.kg–1 AA (diet H+/E/C). Shrimp fedwith a diet containing 5% fish oil,900 mg.kg–1 -TA and100 mg.kg–1 AA (diet H+/E+/C) showed a significantly higher tissue level of n-6 PUFAthan postlarvae fed diet H+/E/C. No definiteconclusion could be drawn about a possibleinteraction between -TA and AA, since acomparison of the diet containing 5% fish oil,200 mg.kg–1 -TA and700 mg.kg–1 AA (H+/E+/C+) and the dietH+/E/C did not show any significant differencesin any of the measured parameters. Theantioxidative status of the shrimp tissue(measured by means of the thiobarbituric acid(TBA) assay and expressed as nM malonaldehyde(MA) per gramme dry weight) was equal for alltreatments. Nevertheless, there was a slightlylower MA value with the diet H+/E/C+,indicating that AA may be an effectiveantioxidant in the aqueous phase and at thewater/lipid interface of the tissue. The tissuelevels of -T and AA were highlydependent on the amounts in diets and nocorrelation between -T and AAincorporation could be observed.  相似文献   

8.
To improve the condition index of European oysters (Crassostrea gigas), Skeletonema costatum was fed to adult oysters. However, the consequences of this practice on compositional traits of oysters were not investigated. This study deals with the chemical changes in oysters fed with Skeletonema costatum for six weeks in ponds.The results showed that:1. Supplying Skeletonema costatum to oysters for six weeks improved the condition index (from 26 to 56) as a consequence of an increase in glycogen content (from 5.0 to 24.4 g·100 g –1 of dry flesh) while lipid content remained steady (9.9 g·100 g–1 dry flesh).2. Large changes in fatty acid composition of neutral lipids were observed. Some fatty acids of Skeletonema costatum such as 16:1 7 and 20:5 3, were directly accumulated into lipid fractions.3. 16:1 7 was elongated into 18:1 7 showing that oysters are able to elongate 16 carbon mono-unsaturated fatty acids into the corresponding 18 carbon fatty acids.4. Fatty acids typical of Skeletonema costatum (16:4 1, 16:2 4, 16:3 4) were poorly accumulated into neutral lipids and phospholipids of oysters suggesting that oysters discriminate these fatty acids.  相似文献   

9.
The incorporation, and the capacity for desaturation and elongation in vivo, of intraperitoneally-injected, 14C-labelled n–3 and n–6 C18 and C20 PUFAs were investigated in juvenile gilthead sea bream, Sparus aurata. The results indicate that juvenile gilthead sea bream have only limited ability to convert CH PUFAs to C20 and C22 HUFAs in vivo. The data are consistent with the results from nutritional studies on larvae, postlarvae and fingerlings that have shown that gilthead sea bream require the provision of preformed eicosapentaenoic and docosahexaenoic acids in the diet. The impairment in the desaturase/elongase pathway was quantitatively and qualitatively similar to that found in turbot, Scophthalmus maximus, being at the level of the 5-desaturase. The low activity of 5-desaturase combined with the consistent finding that arachidonic acid is selectively retained in membrane phosphatidylinositol suggests that, in addition to eicosapentaenoic and docosahexaenoic acids, gilthead sea bream may also have a requirement for preformed arachidonic acid in the diet.Abbreviations AA 5,8,11,14-eicosapenaenoic acid (arachidonic acid, 20:4n–6) - CPL diradyl (diacyl + alkenylacyl + alkylacyl) glycerophosphocholine - DHA 4,7,10,13,16,19-docosahexaenoic acid (22:6n–3) - EPA 5,8,11,14,17-eicosapentaenoic acid (20:5n–3) - EPL diradyl (diacyl, alkenylacyl + alkylacyl) glycerophosphoethanolamine - HUFA highly unsaturated fatty acids ( C20 and with 3 double bonds) - LA 9,12-octadecadienoic acid (linoleic acid, 18:2n–6) - LNA 9,12,15-octadecatrienoic acid (-linolenic acid, 18:3n–3) - PI phosphatidylinositol - PS phosphatidylserine - PUFA polyunsaturated fatty acid(s)  相似文献   

10.
The changes in proximate composition, amino acid (total and free) and fatty acid content of artificially propagated trout cod, Maccullochella macquariensis larvae from five mothers hatched, weaned and reared separately, each in two groups, one fed with Artemia naupli and the other starved, for 15 days (after yolk resorption), are presented. There was no significant change in the proximate composition of fed larvae with devlopment, but in starved larvae the protein (linearly) and lipid (curvi-linearly) content decreased significantly as starvation progressed. The essential amino acids (EAA) and non- essential amino acids (NEAA) found in highest amounts in trout cod larvae were lysine, leucine, threonine and arginine, and alanine, serine and glutamic acid, respectively. In fed larvae the total amino acid (TAA), TEAA and TNEAA content did not vary significantly as development progressed. In starved larvae the TAA, EAA and NEAA content, as well as all the individual amino acids decreased significantly (P<0.05) from the levels in day of hatch and/or yolk-sac resorbed larvae. The greatest decrease occurred in the TEAA content (7.38±0.76 at day of hatch to 1.96±0.09 15 day starved in moles larva–1; approximately a 74% decrease), whereas the decrease in TNEAA was about 38%. Unlike in the case of TAA distinct changes in the free amino acid (FAA) pool were discernible, from day of hatch and onwards, in both fed and starved trout cod larvae. In both groups of larvae the most noticeable being the decrease of % FEAA in TFAA, but not the % FAA in TAA. Four fatty acids together, accounted for more than 50% of the total in each of the major fatty acid categories in all larvae sampled; 16: 0, 18:1n-9, 22: 6n-3 and 20: 4n-6, amongst saturates, monoenes, n-3 PUFA and n-6 PUFA, respectively. Twelve fatty acids either decreased (14: 0, 16: 1n-7, 20: 1n-9, 20: 4n-6, 20: 5n-3, 22: 5n-3 and 22: 6n-3) or increased (18: 2n-6, 18: 3n-3, 18: 3n-6, 18: 4n-3 and 20: 3n-3) in quantity, after 15 days of feeding, from the base level in day of hatch and/ or yolk- sac resorbed larvae. The greatest increase occurred in 18: 3n-3 from 6.4±0.1 to 106.2±13.1 g mg lipid–1 larva–1, and the greatest decrease occurred in 22: 6n-3 (181.2±12.4 to 81.4±6.2 g mg lipid–1 larva–1). In starved larvae, at the end of 15 days, all the fatty acids, except 18: 0, 20: 3n-3 and 20: 4n-6, decreased significantly (P<0.05) from the levels in day of hatch and/or yolk- sac resorbed larvae.  相似文献   

11.
Accumulation of docosahexaenoic acid (DHA; 22:6n-3) in brain and eyes during development has been demonstrated in fish but it is not clear whether liver or neural tissues themselves are of greater importance in the biosynthesis of DHA from dietary 18:3n-3. In the present study, we investigated the in vivo metabolism of intraperitoneally injected [1-14C]18:3n-3 in liver, brains and eyes of young juvenile fish. Metabolism was followed over a 48h time-course in order to obtain dynamic information that could aid the elucidation of the roles of the different tissues in the biosynthesis and provision of DHA from dietary 18:3n-3. The study was performed in both a freshwater fish, rainbow trout Oncorhynchus mykiss L and a marine fish, gilthead sea bream Sparus aurata L to determine the effect that low or limiting5-desaturase activity may have in this process. As expected, the results showed that although the sea bream incorporated more 18:3n-3 into its lipids, metabolism of the incorporated fatty acid by de saturation and elongation was generally greater in the trout. In liver, the percentages of radioactivity recovered in tetraene and pentaene products were greater in trout than in sea bream although there was no difference in hexaenes. In contrast, the re covery of radioactivity in DHA was significantly greater in brain in trout compared to sea bream. In both species, the percentage of radioactivity recovered in desaturated/elongated products was much lower in liver than in brains and eyes, but that percentage increased over the 48h time-course. In trout though, the highest percentages of desaturated products in brain and eye were observed after 12 and 24h, respectively. However in sea bream the highest percentages of desaturated products in the neural tissues were observed after 24-48h. Radioactivity was recovered in 24:5n-3 and 24:6n-3, intermediates in the 4-independent ("Sprecher shunt") pathway for the synthesis of DHA, in both species, especially in the brain and eyes. Overall, although the results cannot eliminate a role for liver in the biosynthesis and provision of DHA for developing neural tissues in fish, they suggest that DHA can be synthesised in fish brain and eye in vivo.  相似文献   

12.
The effects of various dietary blends of menhaden oil (MO) with canola oil (CO) on the growth performance, whole body proximate composition, flesh quality (muscle proximate and lipid composition) and thyroidal status of immature Atlantic salmon in sea water were studied.Atlantic salmon (initial weight, 145.2–181.3 g), held on a natural photoperiod and in 1100 L fibreglass tanks that were supplied with running, aerated (D.O., 9–10.5 p.p.m.), ambient temperature (8–10.5 °C) sea water (salinity, 28–30), were fed twice daily to satiation one of four isonitrogenous (36% digestible protein) and isoenergetic (18.8 MJ of digestible energy kg-1) extruded high-energy diets for 112 days. All diets contained omega –3 (n-3) fatty acids in excess of requirements and differed only with respect to the source of the supplemental lipid which was either, 25% MO; 20.75% MO and 4.25% CO; 16.5% MO and 8.5% CO; or 12.25% MO and 12.75% CO. Thus, CO comprised, respectively, 0, 15.5, 31.2, or 47.0% of the total dietary lipid content (28% on an air-dry basis).Dissimilar percentages of saturated fatty acids in the dietary lipids were not found to be consistently related to the apparent gross energy digestibility coefficients of the diets. Atlantic salmon growth, dry feed intake, feed and protein utilization, percent survival, thyroidal status, and whole body and muscle proximate compositions were generally not influenced by the different sources of supplemental lipid. Therefore, our results suggest that canola oil may comprise as much as 47% of the lipid in high-energy grower diets for Atlantic salmon without compromising performance.The muscle lipid compositions generally mirrored those of the dietary lipids which, in turn, were influenced strongly by the concentrations and compositions of the CO and MO in the diet. Hence, as the dietary CO level was increased there were attendant increases in percentages of oleic acid (18:1(n-9)), linoleic acid (18:2(n-6)), total omega-6 (n-6) fatty acid content, and ratios of (n-6) to (n-3) and decreases of eicosapentaenoic acid (EPA; 20:5(n-3)), docosahexaenoic acid (DHA; 22:6(n-3)) and n-3 HUFAs (EPA & DHA) in the flesh lipids. The ranges for percentages of saturated and unsaturated fatty acids in the flesh lipids were, however, much less than those noted respectively in the dietary lipids probably because of selective metabolism of many of the former acids and some of the 18 carbon unsaturates for energy purposes.  相似文献   

13.
In each of two separate experiments, eggs from a single female goldfish were fertilized, incubated at 22°C and sampled regularly up to day 6 when the larvae could be expected to commence feeding. Hatching normally occurred on Day 4. Lipids were extracted from the eggs and larvae and the neutral lipid and neutral phospholipids were isolated on aminopropyl columns. Fatty acid analysis of the eggs revealed the typical situation in fish where the phospholipids were rich in polyunsaturated fatty acids (PUFA) and the neutral lipids were rich in monounsaturated fatty acids (MUFA). Assay of lipid masses revealed that little depletion of lipid occurred until after hatch and that the neutral phospholipids were the principal fraction consumed. Although the neutral lipid mass did not change substantially during development, its fatty acid profile did. The proportions of several PUFA in the neutral lipids, especially 226(n–3), 205(n–3) and 204(n–6), increased substantially during development while proportions of MUFA and 182(n–6) declined. This appears to be a mechanism by which the larva can retain essential fatty acid released on hydrolysis of phospholipid while deriving the benefits of catabolism of phospholipid as fuel, namely the provision of phosphate and choline for intermediary metabolism and for the synthesis of macromolecules and neurotransmitter.Abbreviations AA arachidonic acid (204(n–6)) - DHA docosahexaenoic acid (226(n–3)) - EPA eicosapentaenoic acid (205(n–3)) - MUFA monounsaturated fatty acid - PC phosphatidylcholine - PE phosphatidylethanolamine - PUFA polyunsaturated fatty acid - SFA saturated fatty acid  相似文献   

14.
This paper presents the relationship between egg quality and egg biochemical composition of cultured and wild Japanese eel, Anguilla japonica. Eggs were obtained by artificialinduction of maturation. Fertilization and hatching rates were used as characteristics of egg quality. Egg quality characteristics showed large variation; fertilization rate, 0–96; hatching rate, 0–84%. The biochemical composition also showed a large variation. There was no marked relationship between egg quality and fatty acid contents of eggs, except for n-6 highly unsaturated fatty acids (HUFA). Both the fertilization and hatching ratesincreased proportionally withincreases of the -tocopherol g(-Toc) contentin eggs. A more significant correlation was found between the amount of -Toc relative to the amount of HUFA and egg quality. The results of this study show that the egg quality of Japanese eel is affected by the –Toc level, andin particular, the ratio of -Toc to HUFAin the eggs. Abbreviations: BHT – butylhydroxytoluene; EFA – essential fatty acids; FAME – fatty acid methyl esters; HPLC – high performance liquid chromatography; HUFA – highly unsaturated fatty acids; NADH – nicotinamide adenine dinucleotide; NADPH - nicotinamide adenine dinucleotide phosphate; ROS – reactive oxygen species; -Toc –-tocopherol.  相似文献   

15.
Total lipids, lipid classes and their associated fatty acids were measured in developing eggs, yolksac larvae and starving larvae (from fertilized egg to day 9 after hatch) of the common dentex Dentex dentex (L., 1758). The larvae of common dentex during lecitotrophia and subsequent starvation consumed 1.6 g of total lipid per larvae per day. The overall decrease was mainly due to utilization of the major neutral lipids, TAG and SE (0.5 and 0.6 g larvae–1 day–1, respectively) which was 3.4-fold greater than that of the the major phosphoglycerides (primarily PC by 0.2 g larvae–1 day–1). There was net synthesis/conservation of PE during the first half of the study period before it decreased rapidly (0.2 g larvae–1 day–1) during the second half. PUFAs were principally catabolized (468.6 ng larvae–1 day–1), primarily 22:6(n-3), 20:5(n-3) and 20:4(n-6) (221.8, 58.5 and 12.1 ng larvae–1 day–1, respectively). Saturated and monounsaturated fatty acids were also utilized (227.2 and 256.7 ng larvae–1 day–1, respectively), principally 16:0 and 18:1(n-9) that were both consumed at 149.8 and 156.7 ng larvae–1 day–1, respectively. The rank order of utilization of fatty acids (ng larvae–1 day–1) by D. dentex larvae from total lipids, PC and TAG coincided with the order of abundance of the different fatty acids in the respective lipid fractions. However, in PE, the most abundant fatty acid, DHA, was relatively conserved and 16:0, the second most abundant fatty acid, was catabolized to the greatest extent. D. dentex showed a pattern of lipid metabolism during early development similar to that of marine larval fish from temperate waters whose eggs contain high levels of total lipids, including an oil globule, and which preferentially utilize neutral lipids as the primary energy source.  相似文献   

16.
Extremely low levels of the maturation inducing steroid (MIS) 17,20-dihydroxy-4-pregnen-3-one (17,20-DHP) were found in the ooplasm and ovarian follicle membranes of Atlantic salmonSalmo salar ouananiche, a finding that is at variance with the elevated blood levels of the steroid. The uptake of MIS at physiological concentrations into brook trout follicles occurred by passive diffusion. Uptake of the steroid into the ovarian follicle membrane, consisting of zona radiata and the attached follicle cells, deviated from linearity in a double reciprocal plot. These results suggest that 17,20-DHP is binding to a receptor-like protein in the ovarian follicle or the zona radiata membrane surrounding the oocyte, and extend our previous demonstration of 17,20-DHP receptor-like activity in the zona radiata membrane of the late stage brook trout oocytes. An oocyte cytoplasmic receptor gave subunits on SDS PAGE that were similar to the membrane and cytosol receptors previously described.  相似文献   

17.
Thein vitro secretion of 17,20-dihydroxy-4-pregnen-3-one 20-sulphate (17,20-P-sulphate) and the free steroid 17,20-dihydroxy-4-pregnen-3-one (17,20-P), by rainbow trout (Oncorhynchus mykiss) gonads, in response to gonadotropin (GTH) I and GTH II, were studied during the final stages of sexual maturation. Substantial amounts of 17,20-P-sulphate were produced, by both mature ovaries and testes, indicating considerable 20-hydroxysteroid sulphotransferase (20-HST) activity within these tissues. In the post-ovulatory ovary the level of 17,20-P-sulphate (36.6 ng ml–1) greatly exceeded that of 17,20-P (8.59 ng ml–1). The amount of 17,20-P-sulphate produced in incubations of both mature ovary and testes was unaffected by either GTH I or GTH II treatment at physiological concentrations up to 100 ng ml–1. Similarly, incubations of maturing ovary and testes, treated with GTH I or GTH II, in the presence of added 17,20-P at 100 ng ml–1 of medium, produced levels of 17,20-P-sulphate that were similar to those of the controls. In incubations of mature ovarian follicles at the stages of germinal vesicle breakdown and preovulation, both GTHs significantly stimulated secretion of 17,20-P, although GTH II was always more potent than GTH I. GTH II significantly elevated the levels of 17,20-P in testicular incubations from mature males more than 4-fold relative to GTH I and controls, which did not differ from one another.In conclusion, 20-HST, the enzyme responsible for the sulphate conjugation of 17,20-P, was found to be active in the ovaries and testes of rainbow troutin vitro. However, the levels of this enzyme do not appear to be regulated by either GTH I or GTH II.  相似文献   

18.
The main aim of the present study was to examine the impact of some biological and environmental factors on the lipid and fatty acid compositions of farmed Atlantic salmon (Salmo salar), with special emphasis on 3 fatty acids. Two year groups of salmon at nine fish farms distributed along the Norwegian coast were fed the same diet and were sampled every second month. The data are believed to give a representative characterization of lipid and fatty acid content of salmon farmed in Norway.Multiple regression analysis revealed that variation in lipid content and body weight explained 80% of the variation found in 3 fatty acids in farmed salmon, and 22:6 3 showed greater variation than other 3 fatty acids. Further analysis of lipid-corrected values revealed only minor effects of latitude on the per cent content of highly unsaturated 3 fatty acids, and hardly any effect of seawater temperature, with the exception of 22:6 3, which decreased slightly with increasing temperature.The per cent 22:6 3 in the fillet became gradually reduced with increasing fish age and body weight, whereas the content of 20:5 3 and other 3 fatty acids remained relatively constant. The per cent content of 22:6 3 of young salmon was higher than in the feed, but approached the feed value gradually as body weight increased. The lipid content of the salmon increased with fish age, and the absolute quantitative contents of both 22:6 3 and 20:5 3 increased meanwhile, even though the per cent content of 22:6 3 decreased quite pronouncedly.The per cent 22:6 3 and other 3 fatty acids was higher in wild than in farmed salmon, but the absolute quantitative content was higher throughout in farmed salmon, which had higher lipid contents. The 3/6 ratio, which is important in human health evaluation, was lower in farmed than in wild salmon. The large flexibility of 3 fatty acids and lipid content of farmed salmon leave us with the option of producing a wide variety of salmon qualities requested by the market. Both per cent and absolute quantitative 3 contents, as well as the 3/6 ratio, may readily be manipulated.  相似文献   

19.
Rainbow trout ovarian follicles were incubated in vitro with tritiated 17,20-dihydroxy-4-pregnen-3-one (17,20-P; maturation-inducing steroid). Within 18–24 h, 56–66% had been converted to tritiated 17,20-dihydroxy-4-pregnen-3-one 20-sulfate (identification confirmed by HPLC) and 27% had been taken up (absorbed) by the follicles. Addition of 125 ng of cold (non-tritiated) 17,20-P to the incubations caused a decrease in the percentage of [3H]-17,20-P which was sulfated (56% 10%) and an increase in the percentage that was taken up (27% 57%). Seven steroids were tested for their effectiveness in decreasing the sulfation and increasing the uptake of tritiated [3H]-17,20-P. The order of effectiveness was in both cases the same: 17,20-P > cortisol > 11-deoxycortisol > 17,20,21-trihydroxy-4-pregnen-3-one > 17-hydroxy-4-pregnene-3,20-dione > 17-estradiol > testosterone. This indicated that the processes of sulfation and uptake of [3H]-17,20-P were related to each other and led to the hypothesis that, when cold 17,20-P is added to the medium, it reduces the proportion of [3H]-17,20-P which is sulfated and thus allows more free [3H]-17,20-P to enter the ovarian follicles. This hypothesis was supported by the finding that each ovarian follicle had the capacity in vitro to sulfate only ca. 2 ng of [3H]-17,20-P per 18h but a capacity to take up > 500 ng per 18h.Gonadotropin I, Gonadotropin II, forskolin and phorbol-12-myristate-13-acetate (which all have an affect on steroid biosynthesis) did not affect the amount of 17,20-P which was sulfated. Sulfating activity was localized in the thecal cell layer of the follicle. The yolk fraction was shown to be responsible for absorbing the [3H]-17,20-P.  相似文献   

20.
Three experimental approaches were chosen to study the question if the progestin 17-hydroxy-20-dihydroprogesterone (1720OHP) is synthesised in testes of young Oncorhynchus mykiss, in which the absence of spermatozoa was verified histologically: first, in order to detect 20-hydroxysteroid dehydrogenase activity (20HSD), testes homogenates were incubated with 3H-labeled 17OHP.Metabolites were analysed by TLC, HPLC, and repeated crystallization to constant isotope ratios. One of the metabolites was identified as 1720OHP-3H, indicating that already immature testes contain 20HSD activity and are able to produce 20-reduced steroids. Second, 1720OHP was quantified by radioimmunoassay in incubates of testes fragments. The sensitivity of the gonads to gonadotropin II (GtH II) became evident when comparing incubations in the absence and presence of GtH II. Third, plasma levels of 1720OHP were significantly higher in animals injected with partially purified salmon gonadotropin, compared to controls. Thus, for the first time, it could be shown that 20HSD is present in testicular cells other than spermatozoa. Furthermore, 1720OHP is indeed secreted at a very early stage of testicular development; 1720OHP secretion is also responsive to GtH II. Future studies will have to show if the functions of this progestin include the stimulation of spermatogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号