首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lined seahorse, Hippocampus erectus (Perry), is an important species in both medicinal and aquarium trades. The aim of this study was to evaluate the effects of stocking density (1, 3 and 5 individuals L−1) on the growth performance and survival of the early-stage juvenile H. erectus. The height (HT), wet weight, weight gain (WG) and specific growth rate (SGR) were affected significantly by the stocking density during the 40-day study. The HT, WG and SGR of the seahorse at 1 and 3 juveniles L−1 were significantly higher than that at 5 juveniles L−1. The survival of juveniles at the three stocking densities was not significantly different at day 25 (90.3 ± 4.5%, 86.7 ± 4.2% and 86.2 ± 3.8% for 1, 3 and 5 juveniles L−1 respectively), but was significantly different at day 40 (87.8 ± 3.9%, 69.6 ± 4.2% and 52.9 ± 2.8% for 1, 3 and 5 juveniles L−1 respectively). For the early-stage juvenile H. erectus, we recommend a stocking density of 3 juveniles L−1, but the density should be reduced to 1–2 juveniles L−1 to avoid reduced and variable growth and high mortality after 25 days.  相似文献   

2.
To investigate the effects of family, stocking density, and their interaction on mortality, growth rate, and size dispersal in the sea urchin Strongylocentrotus intermedius, 1,440 juveniles from six full‐sib families were exposed to three stocking densities, that is, low stocking density (LD), middle stocking density (MD), and high stocking density (HD), and reared for 10 months in sea‐based suspended cages. The results demonstrated significant family effects on cumulative mortality rate (CMR); specific growth rate for test diameter (SGR for TD); specific growth rate for body weight (SGR for BW); coefficient of variation for body weight at the 10th month (CV for BW10); and significant stocking density effects on SGR for TD, SGR for BW, and CV for BW10. Statistically significant family by stocking density interaction was only found in SGR for TD. A certain degree of family‐ranking inversions occurred in SGR for TD. The present study provides evidence for the existence of family by stocking density interaction on the growth rate of test diameter in the family selection for S. intermedius. More attention should be paid to this interaction effect to select correct parents in S. intermedius.  相似文献   

3.
Growth and survival of hatchery‐bred Asian catfish, Clarias macrocephalus (Günther), fry reared at different stocking densities in net cages suspended in tanks and ponds were measured. The stocking densities used were 285, 571 and 1143 fry m?3 in tanks and 114, 228 and 457 fry m?3 in ponds. Fish were fed a formulated diet throughout the 28‐day rearing period. Generally, fish reared in cages in ponds grew faster, with a specific growth rate (SGR) range of 10.3–14.6% day?1, than those in cages suspended in tanks (SGR range 9–11.3% day?1). This could be attributed to the presence of natural zooplankton (copepods and cladocerans) in the pond throughout the culture period, which served as additional food sources for catfish juveniles. In both scenarios, the fish reared at lower densities had significantly higher SGR than fish reared at higher densities. In the pond, the SGR of fish held at 228 and 457 m?3 were similar to each other but were significantly lower than those of fish held at 114 m?3. The zooplankton in ponds consisted mostly of copepods and cladocerans, in contrast to tanks, in which rotifers were more predominant. Per cent survival ranged from 85% to 89% in tanks and from 78% to 87% in ponds and did not differ significantly among stocking densities and between rearing systems. In conclusion, catfish nursery in cages suspended in tanks and ponds is density dependent. Catfish fry reared at 285 m?3 in tanks and at 114 m?3 in ponds had significantly faster growth rates than fish reared at higher densities. However, the desired fingerling size of 3–4 cm total length for stocking in grow‐out culture can still be attained at stocking densities of 457 m?3 in nursery pond and 571 m?3 in tanks.  相似文献   

4.
The aims of this experiment were (1) toquantify the ability of grass carp to processduckweed and (2) to assess indirect changes inwater chemistry and phytoplankton community,caused by grass carp feeding. Yearling grass carp sized 126 ± 7.7 mm (TL) and19.6 g in weight were kept in 9 laminate tanksof 1 m3 for 14 days. Two stockingdensities (2 and 6 fish per m3) anda control without fish were used. Standard growthrate (SGR) of grass carp fed exclusively onduckweed was 0.70% body weight (BW) d–1and food conversion ratio (FCR) reached 2.0(average water temperature =21.1 ± 3.8 °C). Daily food intakewas 0.2 g of duckweed dry weight (DW), i.e.,1% of average BW of grass carp. SGR ofduckweed growing in 20 × 20 cm floatingenclosures, differed significantly[F(6,2) = 417.9; p = 0.002] between the twostocking densities of grass carp and thecontrol tanks (without fish). Mean SGR ofduckweed was 0.02 g g–1 day–1 and thehighest SGR was recorded in the control tanks.Both decrease in NH4-N and increase inNO2-N concentrations differedsignificantly between the treatments[F(2,2) = 45.3; p = 0.02 and F(2,2) = 19.2; p = 0.04 respectively]. Changes in other nitrogenand phosphorus components (NO3-N, TN, TPand PO4-P) caused by stocking of grasscarp were not significant. Biomass ofphytoplankton, dominated by filamentous algaeand blue-greens, increased proportionately tostocking density of grass carp. Althoughduckweed has a large potential for nutrientremoval, the most common pathway for thenutrients released through grass carp grazingif duckweed cover is loose is theirincorporation into phytoplankton biomass.  相似文献   

5.
The effects of ration levels on growth, conversion efficiencies and body composition of fingerling Heteropneustes fossilis (6.8 ± 0.04 cm, 5.0 ± 0.02 g) were studied by feeding isonitrogenous (40% crude protein) and isocaloric (19.06 MJ kg−1 gross energy) diets representing 1, 3, 5, 7 and 9% of the body weight (BW) day−1 to triplicate groups of fish . Growth performance of the fish fed at the various ration levels was evaluated on the basis of live weight gain percentage (LWG%), feed conversion ratio (FCR), specific growth rate percentage (SGR%), protein retention efficiency (PRE%) and energy retention efficiency (ERE%) data. Maximum LWG% and SGR were obtained at a feeding rate of 7% BW day−1, whereas best FCR (1.6), PRE% and ERE% were recorded at a feeding rate of 5% BW day−1. Maximum body protein was also obtained for the group receiving the diet representing 5% of their body weight. However, a linear increase in fat content was noted with the increase in ration levels up to 7% BW day−1. The SGR, FCR, PRE and ERE data were also analyzed using second-degree polynomial regression analysis to obtain more precise information on ration level, with the results showing that the optimal ration for these parameters was 6.8, 6.1, 5.9 and 6.2% BW day−1, respectively. Based on the above second-degree polynomial regression analysis, the optimum ration level for better growth, conversion efficiencies and body composition of fingerling H. fossilis was found to be in the range of 5.9–6.8% of the BW day−1, corresponding to 2.36–2.72 g protein and 88.20–101.66 MJ digestible energy kg−1 diet day−1.  相似文献   

6.
Tiger shrimp Penaeus monodon were intensively grown from PL15 for 56 d in tank systems at stocking densities of 1000 and 2000 shrimp m− 3, with and without the addition of artificial substrates (AquaMat® (buoyant and non-buoyant) and polyethylene mesh) at each density. Shrimp growth was significantly greater at the lower density and when substrates were added. Mean shrimp weight at harvest ranged from 0.64 ± 0.06 g (2000 shrimp m− 3, no added substrate) to 1.17 ± 0.01 g (1000 shrimp m− 3, added substrate). Survival was high and averaged 79.5 ± 2.7% across all treatments. The addition of substrates significantly increased survival at both stocking densities; however, survival was not significantly affected by stocking density. A maximum harvest density of 1645 shrimp m− 3 and biomass of 1.27 kg m− 3 were produced at a stocking density of 2000 m− 3 with added substrates. Both harvest density and biomass significantly increased with stocking density and addition of substrates. The feed conversion ratio (FCR) of formulated feed was significantly lower when substrates were added. The results show that growth of P. monodon juveniles was inversely related to stocking density during intensive production. However, production output was significantly increased by addition of artificial substrates, which enhanced both growth and survival.  相似文献   

7.
The effects of time restricted feeding, possibility of bottomfeeding and stocking density on the growth of Arctic charr(Salvelinus alpinus L.) were examined in fish held at lowtemperature (<2 °C). Fish fed for a restricted time (1 h) hadsignificantly (p < 0.05) lower specific growth rate (0.15 vs0.32% per day) than those fed the same ration over an extendedtime period (12 h). Increasing stocking densities had a positive andsignificant effect (p < 0.05) on growth with SGR increasing from 0.27to 0.52% per day at 2–30 kg m-3. Fish withaccess to feed on the tank floor had a significantly higher (p <0.05) growth rate (0.3 vs 0.13% per day) than those without thepossibility to feed from the bottom. When fish were held underconditions without access to the bottom a doubling of the feed rationdid not result in a significant (p > 0.05) increase in growth rate(0.13 vs 0.12%percnt; per day).  相似文献   

8.
Two experiments were conducted in order to determine the appropriate age and stocking density of vundu catfish Heterobranchus longifilis at the weaning time. In the first experiment, five triplicate groups of 100 larvae (initial mean weight=3.4 mg) per aquaria were stocked from first feeding [day 3 post‐hatch (p.h.)] to day 30 p.h., and then weaned, on days 3 (W3), 5 (W5), 8 (W8) and 14 (W14), and an unweaned group (An). Significant differences were observed in growth, survival, cannibalism, coefficient of weight variation and body composition among larvae weaned at different ages and the control group. The later the larvae were weaned, the better were the growth performances [final mean weight: from 65.1 to 201.1 mg and specific growth rate (SGR): from 11.0 to 15.2% day?1] and the survival (from 36.5% to 74.3%). The experiment with stocking densities of 5, 10, 25 and 50 larvae L?1 showed that increasing the stocking density decreased growth performances and weight variation but improved the survival rate of larvae. The best growth performances (SGR=13.4 and 11.4% day?1) with the lowest survival rates (70.3% and 77.3%) were observed in larvae stocked at densities of 5 and 10 larvae L?1 respectively.  相似文献   

9.
Three potentially valuable red seaweeds, Chondrus crispus Stackhouse, Gracilaria bursa pastoris (S.G. Gmelin) P.C. Silva and Palmaria palmata (L.) O. Kuntze, collected in northern Portugal, were cultivated using the nutrient-rich effluents from a local turbot (Scophthalmus maximus Linnaeus) and sea bass (Dicentrarchus labrax Linnaeus) farm. The algae were cultivated in a two level cascade system. Several arrangements of the cascade system, stocking densities (3, 5, 7 and 8 kg m− 2) and water fluxes (140 and 325 l h− 1) were tested to optimize biomass yield and nitrogen uptake rate and efficiency. The yield and the total ammonium nitrogen (TAN) uptake of the three species were highly seasonal. Palmaria could not survive culture conditions during the summer when water temperature was above 21 °C. In the spring, Palmaria had an average yield of 40.2 (± 12.80) g DW m− 2 day− 1 and a nitrogen uptake efficiency (NUE) of 41.0% (± 17.26%). NUE expresses, in percentage, the average reduction in TAN concentration between the inflows and the outflows of the tanks. Chondrus performed better in summer with an average yield of 37.0 (± 11.10) g DW m− 2 day− 1 and removing 41.3% (± 17.32%) of nitrogen. Gracilaria grew year round, but also performed better during spring/summer, producing an average of 29.1 (± 2.90) g DW m− 2 day− 1, and only 7.3 (± 5.08) g DW m− 2 day− 1 during autumn. Yield of C. crispus did not differ significantly when grown at two different stocking densities (5 kg m− 2 and 8 kg m− 2). On the other hand, Gracilaria had significantly higher yields at 5 than at 7 kg m− 2. Better NUE, on average 76.7% (± 22.13%), was also obtained with 5 kg m− 2 stocking density and only 63.8% (± 24.62%) with 7 kg m− 2. The yield of Gracilaria increased significantly with the increase of water flux from 140 to 325 l h− 1 and more nitrogen was removed from the water. However, NUE decreased from 48.4% to 33.4% at 140 and 325 l h− 1, respectively. Biofiltration was highly improved by a cascade system with a NUE as high as 83.5%.  相似文献   

10.
To investigate the influence of stocking density on the growth and non‐specific immune responses of juvenile soft‐shelled turtle, Pelodiscus sinensis, three groups of turtles (initial body weight 74.2±12.2 g) were reared in 80 cm (L) × 40 cm (W) × 30 cm (H) tanks for 35 days at three stocking densities (StD), which were 1 individuals (ind.) tank−1 (3.13 ind m−2) for D1, 4 ind. tank−1 (12.5 ind m−2) for D2 and 6 ind. tank−1 (18.75 ind m−2) for D3 respectively. D1 was the control group. Turtles were weighted individually at the beginning and at the end of the trial. At the end of the rearing trial, non‐specific immune parameters were determined. The results showed that the heterophil:lymphocyte ratio (HLR) increased and the total plasma protein decreased with increasing StD, suggesting a stress response. Specific growth rate (SGR) significantly decreased with increasing StD. Non‐specific immune indicators such as blood cell phagocytic activity, serum haemolytic activity and serum bacteriolytic activity increased clearly at a higher StD, indicating a pattern of immunoenhancement. The results indicated that at StDs of 4 and 6 ind. tank−1, non‐specific immune responses were not suppressed compared with the control, but were inversely enhanced at the cost of growth reduction. A possible energy‐based trade‐off between growth and constitutive immunity may exist in soft‐shelled turtles.  相似文献   

11.
As has been demonstrated in previous studies, Octopus maya can be fed on artificial diets. In the present study six different diets were assayed. Five diets were designed to test the effect of percentage of inclusion of fish protein concentrate (CPSP: 0, 5, 10, 15, and 20%) and were offered to octopuses as a specifically designed artificial diet. The sixth diet consisted of frozen crab (Callinectes spp) and was used as control diet. Blood metabolites and energy budget of octopuses were evaluated to determine how CPSP levels modulate the digestive capacity and allow retaining energy for growth. Wild animals (316.4 ± 9.8 g) were used in the study. Results showed that CPSP produced a positive specific growth rate (SGR, % day− 1) with high value in octopuses fed 15% CPSP level. A maximum growth rate of 0.86% day− 1 was recorded in these animals, a value that is extremely low when compared with the SGR obtained when animals were fed fresh crab (3.7% day− 1). In general, blood metabolites were affected by diet composition, indicating that some metabolites could reflect the nutritional and/or physiological status of octopus. Preliminary reference values for O. maya fed crab were found for glucose (0.09 ±0.02 mg/ml), lactate (0.004 ± 0.002 mg/ml), cholesterol (0.16 ± 0.02 mg/ml), acylglycerol (0.14 ± 0.01 mg/ml), protein (0.37 ± 0.04 mg/ml), hemocyanin (1.85 ± 0.04 mmol/l), and digestive gland glycogen (1.86 ± 0.3 mg/g). Total energy content can be used as an indicator of tissue metabolic reserves. In the present study, higher energy content in the digestive gland and muscle was observed in octopuses fed crab, followed by animals fed 15% CPSP. Results from the digestive gland indicated that the retained energy derived from glycogen, suggesting that lipids and protein were the main sources of variation linked with energy content. In general, digestive gland proteases activity and trypsin were induced in octopuses fed 15% CPSP. The capacity of O. maya juveniles to adjust their digestive enzymes to different types of food was evidenced. Essential amino acid content (EAA) of the diet was not a limiting factor. When dietary EAA profiles were compared with O. maya EAA profiles, all dietary EAA resulted in a higher concentration than whole body octopus composition. In the present study, all experimental groups ingested between 3300 and 4106 kJ wk− 1 kg− 1 without statistical differences among treatments, indicating that experimental diets were as attractive as crab. Differences were recorded in the proportion of absorbed energy (Ab, %) between CPSP-based and crab meat diets, suggesting digestion limitations associated with artificial diets. The present results indicate that the 15% CPSP diet had characteristics that stimulate digestive enzymes and reduce energetic costs associated with its digestion (HiE or SDA), channeling more biomass production than the other experimental diets.  相似文献   

12.
An 8 weeks growth study was conducted to estimate the optimal feeding rate for juvenile grass carp (3.08±0.03 g, mean ± SD). Fish were fed with a casein purified diet (360 g protein, 56 g lipid and 3000 kcal total energy/kg dry diet) at six feeding rates: 1.0, 1.5, 2.0, 2.5, 3.0, 3.5% body weight per day (BW d−1). Each feeding rate was randomly assigned to three tanks of fish with 30 fish per tank (50W × 50H × 100L, cm). Fish were maintained in recirculating systems at a water temperature of 24.97±2.23 °C and were fed four times per day. After 2 weeks, fish fed on 3.5% BW d−1 could not finish the diet and this treatment was cut-off. Analysis of variance showed that growth performance was significantly (p<0.05) affected by different feeding rates. The nutrient compositions of whole body, muscle and liver were also significantly different among treatments. The body weight gain (WG), specific growth rate (SGR), feed efficiency (FE), protein efficiency ratio (PER), apparent digestibility coefficiency (ADC), retention of protein (PR), mesenteric fat index, body moisture and protein content were significantly (p<0.05) affected by feeding rate. The WG, SGR and digestion rate were highest at 2% BW d−1, although the FE and PER decreased with increasing feeding rate. Broken line analysis on specific growth rate indicated that the optimum feeding rate of juvenile grass carp is 1.97% body weight day−1.  相似文献   

13.
Growth of juvenile giant tiger prawn, Penaeus monodon Fabricius, was evaluated at an aquarium-scale in co-culture with a discarded filamentous seaweed, Chaetomorpha ligustica (Kützing) Kützing. Juveniles at different ages in days were examined, designated as J 16, J 44, J 58, J 93 and J 128, where a 1-day-old juvenile (J 1) is equivalent to a 20-day-old post-larva (PL 20)). Juveniles at every age group grazed directly on live C. ligustica, even those fed an artificial shrimp diet to satiation. Mean specific growth rate (SGR: % day−1) was higher in early age juveniles. Compared to mono-culture, significant differences in growth were observed at J 16 (4.44% day−1) and J 44 (1.60% day−1); however, no significant differences were recorded at J 58 (1.16% day−1), J 93 (0.75% day−1) or J 128 (0.45% day−1). It was concluded that co-culture of giant tiger prawn with C. ligustica has a dietary advantage, especially in early age juveniles.  相似文献   

14.
In this study, we aimed to investigate the effects of water temperature and stocking density on the survival, feeding and growth of the juveniles of the hybrid yellow catfish from Pelteobagrus fulvidraco (♀) × Pelteobagrus vachelli (♂) using the parameters as follows: survival rate (%), feeding rate (% day?1), feed conversion ratio, specific growth rate (% day?1), coefficient of variation (%), productivity (P, g m?3 day?1) and condition factor. We reared the juvenile fish (3.25 ± 0.21 g) at 12 water temperature levels and six stocking density levels (each level included three aquaria in two batches of experiments). The results showed that all groups survived at a temperature range of ≤35°C during a 46‐day experimental period, and they could achieve a high growth at a water temperature range of 26–32°C. The optimal temperature for growth was 29.8°C. Productivity peaked at a stocking density of 1.9 kg m?3. Our results indicated that the hybrid is very suitable for commercial aquaculture.  相似文献   

15.
The aim of this study was to evaluate the use of Gracilaria cervicornis meal as a partial substitute for the industrial feeds used in shrimp (Litopenaeus vannamei) farming. A total of 90 L. vannamei juveniles (0.34 g) were assigned randomly into nine experimental units at a stocking density of 10 shrimp tank−1 and fed a commercial shrimp feed (CSF; 35% crude protein) as a control treatment, a feed made entirely of G. cervicornis (GCM), and a mixture of equal parts of the commercial shrimp feed and the Gracilaria meal (MIX) for 30 days. Over the first 2 weeks of the experiment, the survival was high (100%) in all dietary treatments. However, at the termination of the feeding trial survival decreased to 40% in shrimp fed GCM, significantly lower (P<0.05) than survival of shrimp fed the commercial diet control (CSF) or MIX treatments (100%). The highest growth performance was obtained in the CSF or MIX treatment groups. The absolute growth increase in these groups was significantly higher than for shrimp fed GCM. Similarly, the specific growth rates (SGRs) of shrimp given feeds containing CSF (5.11% day−1) and MIX (4.71% day−1) were significantly greater (P<0.05) than that of shrimp fed GCM pellets (0.44% day−1). The feed efficiency ratios (FERs) were 64 for CSF, 54.3 for MIX and 3.3 for GCM. The results obtained in this study indicated the effectiveness of using G. cervicornis as a partial substitute for shrimp feeds. To our knowledge, this is the first time that the concept that macroalgae can partially substitute for the industrial feeds used in shrimp (L. vannamei) farming has been demonstrated.  相似文献   

16.
Growth of common sole Solea solea is negatively correlated to density, which affects productivity in culture and hence commercial success. Studies of individual feed intake were performed to examine growth and population dynamics at different densities. Three initial stocking densities: 1.0, 2.1 and 3.9 kg m?2 of individually tagged sole, referred to as low density (LD), medium density and high density HD), were examined during 145 days. Despite that tank productivity (g m?2 day?1), was highest for the HD group, the specific growth rate (SGR) decreased significantly with increase in stocking density. Individual size variation was similar between densities, indicating that growth was not associated with hierarchy and dominant behaviour. Individual data indicated that increased density reduced the growth potential of all individuals in a population. Individual feed intake was positively correlated to both fish size and individual SGR. Feed conversion ratio was likewise positively correlated to feed intake. The relative feed intake (g feed g fish?1) was not correlated to fish size at any density tested, but was significantly highest for the LD population. This explains a substantial part of the better growth in the LD group supported by indications of better utilization of the ingested feed.  相似文献   

17.
Morphological changes in Senegalese sole adults (Solea senegalensis Kaup, 1858) reared at two stocking density conditions (low stocking density, 60% of bottom occupation and high stocking density, 180% of bottom occupation) were investigated using geometric morphometrics. Canonical variate analysis on weight matrix scores, including the uniform component (W′), at the end of the experiment revealed differences in body shape between experimental groups. The low density group presented a similar change pattern as that of the high density group but was less intense. Differences were discussed in terms of the effect of a high stocking density on the shape of soles which were very close to commercialization. Results did not indicate a significant size-related shape, likely due to fish age. Our results provide the first promising look at environment-related shape changes in reared sole.  相似文献   

18.
To evaluate isolated pea protein as feed ingredient for tilapia (Oreochromis niloticus) juveniles, triplicate groups were fed with four isonitrogenous [crude protein: 421.1–427.5 g kg−1 in dry matter (d.m.)] and isoenergetic (gross energy: 20.46–21.06 MJ kg−1 d.m.) diets with varying protein sources for 8 weeks. Fish meal-based protein content of diets was substituted with 0% (diet 100/0=control group), 30% (diet 70/30), 45% (diet 55/45) and 60% (diet 40/60) isolated pea protein. Tilapia juveniles with an initial body weight of 2.23–2.27 g were fed in average at a level of 5% of their body weight per day. Highest individual weight gain (WG: 21.39 g) and specific growth rate (SGR: 4.21% day−1) and best feed conversion ratio (FCR: 0.90) were observed in tilapia fed diet 100/0, followed by fish-fed diet 70/30 (WG: 19.09 g; SGR: 4.03% day−1; FCR: 0.98), diet 55/45 (WG: 16.69 g; SGR: 3.80% day−1; FCR: 1.06) and diet 40/60 (WG: 16.18 g; SGR: 3.74% day−1; FCR: 1.06). Although fish fed diet 100/0 showed the best performance, inclusion of 30% protein derived from pea protein isolate resulted in a growth performance (in terms of WG and SGR) that did not differ significantly from diet 100/0 in contrast to fish fed diet 55/45 and 40/60. Crude ash content in the final body composition of the experimental fish decreased with increasing dietary pea protein content, while crude protein and lipid content remained equal between the groups. Significant decreasing growth performance and body ash incorporation of tilapia at higher inclusion levels seem to be mainly related to the dietary amino acid profile and phytic acid contents.  相似文献   

19.
The optimal conditions for growth of Porphyra dioica gametophytes were investigated in the laboratory, focusing on bioremediation potential. Porphyra dioica is one of the most common Porphyra species along the northern coast of Portugal and can be found year-round. The influence of stocking density and photon flux density (PFD) on the growth, production and nutrient removal was tested. Maximum growth rates, up to 33% per day, were recorded with 0.1 g fw l− 1 at 150 and 250 μmol photons m− 2 s− 1. Growth rate decreased significantly with increasing stocking density. Productivity (g fw week− 1) had an inverse trend, with more production at the higher stocking densities. At 150 μmol m− 2 s− 1 and with 1.5 g fw l− 1, 1.4 g fw week− 1 were produced. At this PFD, there was no significant difference in production between 0.6 to 1.5 g fw l− 1. Nitrogen (N) content of the seaweeds decreased with increasing stocking densities and PFDs. The maximum N removal was recorded at 150 μmol m− 2 s− 1, with 1.5 g fw l− 1 stocking density (1.67 mg N day− 1). However, the N removed by thalli at 50 μmol photons m− 2 s− 1 was statistically equal to that at 150 and 250 μmol photons m− 2 s− 1, at a stocking density of 1.0 g fw l− 1. The influence of temperature and photoperiod on growth and reproduction was also assessed. Growth rates of P. dioica were significantly affected by temperature and photoperiod. In this experiment (with 0.3 g fw l− 1 stocking density), the highest growth rate, 27.5% fw day− 1, was recorded at 15 °C and 16 : 8¯, L : D¯. Male thalli started to release spermatia 21 days after the beginning of the experiment, in temperatures from 10 to 20 °C and with 10, 12 and 16 h of day length. Unfertilized female-like thalli were observed at 10 to 20 °C, under all photoperiods tested. Growth of these thalli declined after 4 weeks. By then, formation of young bladelets in the basal portion of these thalli was observed. After 7 weeks all biomass produced was solely due to these vegetatively propagated young thalli, growing 22.4% to 26.1% day− 1. The results of this study showed that P. dioica appears to be a candidate as a nutrient scrubber in integrated aquaculture systems.  相似文献   

20.
Redclaw crayfish, Cherax quadricarinatus, early juveniles were reared at different stocking densities in a closed recirculation system using 12-L plastic containers as rearing tanks. Initial stocking densities were 1.0, 1.5, 2.0, 2.5, and 3.0 per liter (66, 89, 111, 133, and 156 crayfish/m2, respectively). Rearing period was 42 days. Each density was tested with five replicates. Shelter (0.112 m2) was added to double the surface area of rearing tanks. Animals were fed ad libitum twice a day with a commercial diet containing 35% crude protein. There were no significant differences (P < 0.05) in length and specific growth rate (SGR) among stocking densities. Final weight and daily weight gain, however, were significantly higher at the density of 66 per m2 (1.0 per liter). Total biomass at harvest increased with density. Survival was affected by stocking density from day 28 onward, decreasing with density from 62.7 ± 7.6% obtained at 66 crayfish/m2 to 44.85 ± 8.18% at 156 crayfish/m2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号