首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study was conducted to compare and contrast two approaches to neutralize an acidic lake by CaCO3 addition (Woods Lake, Adirondack Mountains, New York, U.S.A.; 42°52′ N, 71°58′ W); direct water column treatment and treatment of both the water column and sediment. The latter treatment strategy was designed to release a slow, diffusive Ca2+. flux across the sediment/water interface and thereby delay the rate of reacidification. Both applications satisfactorily increased the acid neutralizing capacity (ANC) and Ca2+ of the lake, temporarily buffering the water column pH against acidic inputs from the watershed. The water column/sediment application involved a greater (50% more) dose in order to accomplish sediment treatment and resulted in a prolonged period of positive ANC in the water column. However, both treatments neutralized approximately the same quantity of runoff and equivalence of acidic inputs. Water column/sediment treatment may be an effective approach to help delay reacidification in shallow lakes of moderate hydraulic retention times. Unfortunately, many acidic Adirondack lakes have very short hydraulic retention times (<0.5 yr) and may not be neutralized for adequate durations by either water column or water column/sediment CaCO3 treatments.  相似文献   

2.
The Laflamme Lake Watershed Area is located in a sensitive region on the Canadian Shield and is subjected to wet atmospheric loading between 17 and 25 kg ha?1 yr?1. From 1981 to 1988, the level and fluctuations of the atmospheric deposition of acidifying substances has led to various responses in the water chemistry of headwater lakes in the area. The general trend in atmospheric inputs is a gradual increase of acidifying substances from 1981 to 1985 followed by a 2 yr decrease then a return to previous values. In the two lakes with almost no alkalinity acidification has occured throughout the 1983 to 1988 period. In the four lakes with slightly higher alkalinity values, a reversal in acidification is seen when atmospheric loading decreased in 1986. Along with the interannual trends, seasonal variability to acidification occurs with sensitivity of surface waters being highest during spring melt. Sensitivity to acidification can also be altered by watershed processes and in the Laflamme Lake Watershed, soil processes are effective in altering the acidity of precipitation before it reached the lake. In this watershed, wet atmospheric inputs of H+ and NO3 ? are larger than surface water outputs while the reverse occurs for Ca2+, Mg2+, Na+, K+, Cl? and SO4 2?.  相似文献   

3.
Atmospheric loads to dilute lakes in the Sierra Nevada mountains of California are very low, and fall almost entirely as snow. When acidic anions preferentially elute from melting snow, these low loads may nontheless be enough to acidify low ANC lakes. Two of the ten lakes included in the Sierra Episodes Study are discussed here: High Lake, the only lake in the study to become acidic during snowmelt; and Treasure Lake, typical of the remainder of the lakes. All lakes exhibited increases in NO3 ? concentrations during early snowmelt; these were accompanied by increases in base cations, primarily Ca2+. In the first few days of snowmelt, NO3 ? concentrations at High Lake increased more rapidly than concentrations of base cations, resulting in ANC values below zero. Export of both NO3 ? and SO4 2? from the watersheds exceeded the inputs from the snowpack, suggesting that other sources (e.g., watershed minerals, stored inputs from the previous summer, transformations of other inputs) of these anions are important.  相似文献   

4.
5.
Little Rock Lake was experimentally acidified in 1984–1990 during which sulfuric acid was added to one basin, decreasing pH from 6.1 to 5.6, 5.1 and 4.7. The lake has been allowed to recover without manipulation since autumn 1990. By the third year of recovery, ~40% of the change necessary to return to pre-acidification values of pH, acid neutralizing capacity (ANC), sulfate (SO4 2?) and calcium (Ca2+) had occurred. During recovery years 1–2, ANC was closely predicted by models based on acidification phase observations, but recovery during years 3–4 was slower than predicted. A possible explanation for the slowed recovery is acidification of the upper 0–5 cm of sediment, which acts as a sink for the ANC generated via SO4 2? reduction, the primary recovery mechanism. Trends for Zooplankton did not follow pH recovery very closely. Species diminished by acidification (e.g. Keralella cochlearis, Daphnia dubia) have not recovered, but species that dominated the community at pH 4.7 (e.g. K. taurocephala, D. catawba) have not maintained high populations. The time required for the Zooplankton community to recover to pre-manipulation conditions is uncertain. Delays also have been observed for the mayfly species Caenis, which had disappeared at pH 4.7. In contrast, reproductive success of largemouth bass (Micropterus salmonides) mirrored that observed during acidification; egg hatch and survival of young-of-the-year to autumn recurred when pH exceeded response levels documented during acidification. Overall, recovery has not closely followed the pattern predicted by acidification responses.  相似文献   

6.
Sinha  R.  Small  M. J.  Ryan  P. F.  Sullivan  T. J.  Cosby  B. J. 《Water, air, and soil pollution》1998,105(3-4):617-642
A reduced-from modelling approach is used to predict soil and lake acidification as part of an integrated assessment of acid deposition effects and control strategies. The reduced-form model is based upon the mechanistic, lumped parameter watershed chemistry model, MAGIC (Model of Acidification of Groundwater in Catchments). Recent improvements to MAGIC are described, and its reduced-form representation in the Tracking and Analysis Framework (TAF), an integrated assessment model for decision and uncertainty analysis, is presented. Reduced-form models are developed for lake acid neutralising capacity (ANC), calcium, pH, and aluminium; and for soil base saturation. The model for lake ANC incorporates long-term depletion of the watershed acid neutralisation fraction, as is predicted to occur with MAGIC. In test calibrations for 33 representative watersheds in the Adirondacks, the resulting reduced-form model provides a close approximation to MAGIC, with average root mean square errors of 0.79 μeq l-1 for ANC, 1.09 μeq l-1 for calcium, 0.16 for pH, 2.52 μeq l-1 for aluminium, and 0.09% for soil base saturation. In addition, improved fish viability models are incorporated in the integrated assessment model, and predictions are demonstrated for a future deposition reduction scenario for the Adirondack region.  相似文献   

7.
We used ionic tracers to estimate the volume of old (soil and ground) water interacting with snowmelt in eleven Adirondack, NY watersheds. The contribution of old water varied from 66 to 90%, with no general relationship between old water % and soil depth to till. This approach also discriminated between watershed retention and release of particular ions to lake outlet water during snowmelt. Most watersheds released NO3 ? during snowmelt, in addition to the snowpack NO3 ?. Nitrification of snowpack NH4 + explained part of the additional NO3 ? in lake out outlet water, but some NO3 ? was likely mineralized nitrogen from soil organic matter. All watersheds retained NH4 + as well. Nitrogen release was greatest in the acidic watersheds in the southwestern Adirondacks, a region thought to be impacted by anthropogenic deposition. During snowmelt, Ca2+ and Mg2+ ions (presumably from soil exchange sites) were also released from most watersheds. In watersheds with acidic (minimum pH<4.6) lake outlet water, Al was also released during snowmelt. Thus, lake outlet water acidification during snowmelt was both buffered by cation release, and intensified by NO3 ? release. If the soil exchangeable cation pools were not replenished prior to snowmelt, or NO3 ? mobilization were increased, acidification during snowmelt would intensify.  相似文献   

8.
We evaluated the element budgets in a forested watershed in Jiulianshan, southern China. The element input in bulk precipitation was characterized by high depositions of H+, NH4 +, Ca2+, and SO4 2?, i.e., 400, 351, 299, and 876 eq/ha/yr, respectively. The outputs of H+, NH4 +, and SO4 2? from the watershed were very low, while those of Ca2+ and Mg2+ were high, 712 and 960 eq/ha/yr, respectively. The element budgets suggested that i) the net retentions of H+, NH4 +, and SO4 2? in this watershed were high, and ii) the net release of Mg2+ from this watershed was high mainly due to weathering. The net release of Ca2+ was not so high because of the high atmospheric deposition, while atmospheric deposition of Mg2+ was not so high (130 eq/ha/yr). Decrease of acid neutralizing capacity in the soil, i.e., net soil acidification, was caused mainly by the net release of Mg2+. Moreover, the net retention of SO4 2? also contributed to soil acidification.  相似文献   

9.
Acid neutralizing capacities (ANC) of sediments from McCloud Lake, Florida and seven other lakes in Wisconsin and Florida were as high as 10 meq 100 g?1 over the pH range 4.5 to 5.5 in well-mixed batch experiments. Exchange of Ca2+ and Mg2+ accounted for over 50% of the neutralizing capacity; Al solubilization and sulfate adsorption were unimportant in neutralizing H+ additions. ANC was correlated with sediment volatile solids content. Sulfate reduction occurred in microcosms that simulated lake-water interactions and subsurface seepage;in situ pore water profiles and a whole-lake mass balance confirm the occurrence of this process in McCloud Lake. Sediment neutralization is important for lakes that receive most of their water from precipitation and thus are particularly susceptible to acidification.  相似文献   

10.
The Soil Liming Model (SLiM) has been used to simulate lake and stream water quality response to different strategies for the application of limestone to subcatchment soils in the Woods Lake, NY watershed. Simulations using doses of 3, 10, or 30 t ha–1 forecast that a dose in excess of 10 t ha–1 must be applied to discharge areas in order to sufficiently improve water quality in the lake. At 3 t ha–1 inlet stream water quality could support fish populations. As expected, treatment effectiveness is strongly influenced by subcatchment hydrologic flow paths. Where shallow flow predominates, soil liming provides a more effective tool for lake water quality improvement. In subcatchments drained primarily by ground water, the effect of liming on water quality is less pronounced albeit of longer duration. Based upon the results of these model simulations, the authors compare results of conventional lake liming to simulated watershed treatment predictions.  相似文献   

11.
We determined mercury in fish (perch Perca fluviatilis) from 26 Russian lakes in three regions over four years. The lakes ranged in size from 2 to 395,000 ha, in pH from 4.5 to 10.0, and in color from 3 to 190 hazen. Sixteen lakes were drainage lakes, with permanent outlets, and 10 were seepage lakes, with no permanent inlets or outlets. The lakes were generally located in forested regions with little or no human habitation in the watershed. The three regions were geologically distinct: Precambrian Shield granitic bedrock covered with thin soil; Triassic bedrock covered with thick glacial tills; and Triassic bedrock covered with thin sediments. At each lake water samples were collected and analyzed for pH, add neutralizing capacity (ANC), major cations, and anions. Dissolved mercury species were estimated with a thermodynamic equilibrium model (MINTEQA2). Mercury content of dorsal muscle varied from 0.04 to 1.0 g/g wet weight, and was linearly related to calculated HgCH3Cl (r20.68, p<0.001). lake=">3Cl, in turn, was related to lake pH (r2=0.86, p<0.001). stepwise=" multiple=" regression=" selected=" lake=">3Cl and color as the factors most highly related to fish mercury content, with the model accounting for 75% of the variation.  相似文献   

12.
The Soil Liming Model (SLiM) has been used to simulate lake and stream water quality response to different strategies for the application of limestone to subcatchment soils in the Woods Lake, NY watershed. Simulations using doses of 3, 10, or 30 t ha−1 forecast that a dose in excess of 10 t ha−1 must be applied to discharge areas in order to sufficiently improve water quality in the lake. At 3 t ha−1 inlet stream water quality could support fish populations. As expected, treatment effectiveness is strongly influenced by subcatchment hydrologic flow paths. Where shallow flow predominates, soil liming provides a more effective tool for lake water quality improvement. In subcatchments drained primarily by ground water, the effect of liming on water quality is less pronounced albeit of longer duration. Based upon the results of these model simulations, the authors compare results of conventional lake liming to simulated watershed treatment predictions.  相似文献   

13.
Acid deposition has led to acidification and loss of fish populations in thousands of lakes and streams in Norway. Since the peak in the late 1970s, acid deposition has been greatly reduced and acidified surface waters have shown chemical recovery. Biological recovery, in particular fish populations, however, has lagged behind. Long-term monitoring of water chemistry and fish populations in Lake Langtjern, south-eastern Norway, shows that around 2008, chemical recovery had progressed to the point at which natural reproduction of brown trout (Salmo trutta) reoccurred. The stocked brown trout reproduced in the period 2008–2014, probably for the first time since the 1960s, but reproduction and/or early life stage survival was very low. The results indicate that chemical thresholds for reproduction in this lake are approximately pH?=?5.1, Ali?=?26 μg l?1, ANC?=?47 μeq l?1, and ANCoaa?=?10 μeq l?1 as annual mean values. These thresholds agree largely with the few other cases of documented recovery of brown trout in sites in Norway, Sweden, and the UK. Occurrence and duration of acidic episodes have decreased considerably since the 1980s but still occur and probably limit reproduction success.  相似文献   

14.
There is considerable interest in the recovery of surface waters from acidification by acidic deposition. The Adirondack Long-Term Monitoring (ALTM) program was established in 1982 to evaluate changes in the chemistry of 17 Adirondack lakes. The ALTM lakes exhibited relatively uniform concentrations of SO4 2?. Lake-to-lake variability in acid neutralizing capacity (ANC) was largely due to differences in the supply of basic cations (Ca2+, Mg2+, K+, Na+; CB) to drainage waters. Lakes in the western and southern Adirondacks showed elevated concentrations of NO3 ?, while lakes in the central and eastern Adirondacks had lower NO3 ? concentrations during both peak and base flow periods. The ALTM lakes exhibited seasonal variations in ANC. Lake ANC was maximum during the late summer or autumn, and lowest during spring snowmelt. In general Adirondack lakes with ANC near 100 Μeq L?1 during base flow periods may experience decreases in ANC to near or below 0 Μeq L?1 during high flow periods. The ALTM lakes have exhibited long-term temporal trends in water chemistry. Most lakes have demonstrated declining SO4 2?, consistent with decreases in SO2 emissions and SO4 2? in precipitation in the eastern U.S. Reductions in SO4 2? have not coincided with a recovery in ANC. Rather, ANC values have declined in some ALTM lakes. This pattern is most likely due to increasing concentrations of NO3 ? that occurred in most of the ALTM drainage lakes.  相似文献   

15.
The base neutralizing capacity (BNC), or alkalinity consumption, of acidic lake sediments may influence the amount of neutralizing agent required to neutralize a lake if the sediment BNC is large relative to the BNC of overlying waters. The extent ofin situ sediment BNC in acidic Bowland Lake (pH 5.0) was inferred by (1) measuring the loss of Ca-45 to acidic sediments from labeled lake water neutralized with CaCO3, and (2) measuring exchangeable Ca in sediments collected prior to and following neutralization of Bowland Lake with calcite (CaCO3). The sediment BNC derived from the Ca-45 radiolabeling experiment was 0.01 mg CaCO3 g?1 w wt. The mean losses of Ca-45 from the aqueous phase of neutralized and untreated sediment/water mixtures were not significantly different. The mean pH of both neutralized and untreated mixtures decreased to 4.0 during the incubation, possibly because of oxidation of reduced sediments. Sediment BNC estimates derived from literature data for several lakes may be overestimated because of the inclusion of anoxic sediments containing significant amounts of reduced Fe. There was no significant difference in exchangeable Ca between sediments from untreated Bowland Lake and sediments collected 10 m after whole-lake neutralization indicating that little of the supplied alkalinity had been lost to the sediments. Hence,in situ sediment BNC was probably small in Bowland Lake.  相似文献   

16.
The Adirondack Region of New York State has been identified as having surface waters sensitive to acidic deposition and as receiving large annual inputs of acidic deposition. The large amount of data available for this region makes a quantitative study of the region possible. Compiled from a variety of sources, the Adirondack Watershed Data Base (AWDB) contains information on lake chemistry; lake elevation, area, and volume; and associated watershed data, such as size, slope, aspect, elevation, vegetation and wetland types, beaver activity, fire and logging history, and soils data. Bivariate and multivariate procedures were used to examine relationships between watershed attributes and lake chemistry. Because the variables in the data base are being refined and modified, the current relationships should be considered preliminary. Preliminary results indicate that wet deposition, lake elevation, and forest cover are the principal variables that are associated with variance in the data for lake pH and acid neutralizing capacity (ANC) in the Adirondacks. For headwater lakes in the Adirondacks, we estimate approximately 50% have a total ANC ≤ 40 μeq L?1 and 40% have a pH ≤ 5.5.  相似文献   

17.
Data defining the major ion chemistry of lakes located in eastern Canada have been compiled for the purpose of evaluating the current status of surface water quality in relation to acidic deposition. A companion paper for lakes in the eastern United States (i.e. Part II, Linthurst et al., 1986) has been prepared also. Data sources in Canada included the National Inventory Survey, the Ontario Lake Sensitivity data set, and the National Aquatic Data base which provided an overall data base of approximately 5700 lakes. Only recently collected data (largely 1980 or later) were used in the analysis. Frequency distribution statistics were obtained for pH, acid neutralizing capacity (ANC), SO4 and organic anion (A?) concentrations. Acidic and low ANC waters in eastern Canada occur in a pattern explained by a combination of biogeochemical factors and atmospheric deposition. Nova Scotia contained the highest proportion of acidic and ultralow ANC lakes of any region surveyed in eastern North America; since this region receives approximately 20 kg.ha?1.yr?1 wet SO4 deposition, the proposed target loading may be too high to protect the highly sensitive waters of Maritime Canada. Compared to the rest of eastern Canada, lakes in Ontario have relatively high ANCs due to the influence of CaCO3 contained in the glacial till of the area. Variation in the SO4 concentration of lakes approximately follows expected gradients in wet SO4 deposition. Naturally occurring organic acids do not play a dominating role in the acidification of eastern Canadian lakes.  相似文献   

18.
Biogeochemical processes contributing to the neutralization of acidic groundwater passing through near-shore sediments of an acidified lake (Dart's Lake) were investigated in a controlled laboratory experiment. Three intact sediment cores collected from the near-shore region of the lake were connected to a system that simulated groundwater flow through lake sediments in a temperature controlled laboratory environment. The effect of sediment biogeochemical processes on groundwater chemistry was determined by evaluating changes in acid/base and metal chemistry for solutions entering and leaving the cores. Aluminum mobilization represented the most significant source of neutralization for each core and contributed up to 99% of H+ removal. Although the sediment cores were collected parallel to the shoreline and over a linear distance of only 0.3 m, significant differences in sediment chemistry were apparent and contributed to variations in the chemistry of water transported from the cores. For one core that exhibited retention of Al from the influent groundwater, retention of Pb by the sediment was similarly observed. Following acidification of this groundwater, Pb was readily remobilized. These results suggest that near-shore lake sediments may be effective at influencing seasonal variations in Al, Pb and base cations in lakes receiving groundwater inputs.  相似文献   

19.
We monitored the chemistry of 603 small water bodies in three acid-sensitive regions of central Ontario, Canada (Algoma n=235, Muskoka n=216, Sudbury n=152) between 1988-1996 to determine whether they have responded to recent SO2 emission reductions, and whether any chemical changes were related to lake characteristics. During the study, 27-56% of lakes declined in SO4 2- concentrations, 41-57% declined in base cation concentrations, but only 26-28% increased in pH or ANC (acidity status). Increases in pH were greatest in lakes with low ANC, but had weak relationships to lake color or volume. No consistent trends were observed for DOC, NO3 - or TP concentrations. Clearly, the long-term biological recovery of these sensitive aquatic ecosystems will depend on interactions among several environmental stressors, including acidification.  相似文献   

20.
A titration based model (DeAcid) has been used to predict treatment dose and times for reacidification for CaCO3-treated lakes in the Living Lakes, Inc. (LLI) aquatic liming program. Water quality constitutents (pH, ANC and Ca) were used to measure the effectiveness of the dosing model and reacidification rates. Data from 22 lakes or ponds in 5 northeast states have been collected since June 1986. With few exceptions, pH and ANC values ranged from 4.5 to 6.5 and ?30 to +65 ueq L?1, respectively, in untreated sites and 6.5 to 7.8 and 120 to 300 ueq L?1, respectively, in sites approximately 30 days after treatment. Changes in Ca concentration levels have been used to evaluate the utility of the dose model for treatment of both inland and coastal waters. For coastal, seepage lakes application of a single-box mass transfer model to observed post-liming changes in ANC and Ca adequately simulates lake response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号