首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Concentrations of N, P, K, Ca, Mg, and Mn were determined in one‐, two‐, and five‐year‐old needles from upper and lower crowns of declining and healthy red spruce (Picea rubens Sarg.) to assess nutritional deficiencies as causes of severe defoliation in upper‐elevation forests in western Massachusetts. Concentrations of N and K did not differ between stands or positions in crowns but decreased with leaf age. In declining stands, mean Ca concentrations were the same in the upper and lower crowns (3.2 mg g‐1), whereas in healthy stands, Ca was higher in the lower crown (4.8 mg g‐1) than in the upper crown (3.9 mg g‐1). Five‐year‐old needles of healthy trees had higher Ca than those of declining trees (6.0 and 3.8 mg g‐1, respectively). Mean concentrations of P and Mg in declining trees were 0.9 and 0.5 mg g‐1, respectively, with each element being at threshold levels of sufficiency. Mean concentrations of P and Mg, respectively, were 0.3 mg g‐1 and 0.2 mg g‐1 lower in needles of declining trees than in healthy trees. Five‐year‐old needles of declining trees were lower in P and Mg than those from healthy trees. Mean Mn concentrations were lower in needles of declining trees than in healthy trees (0.4 vs 1.3 mg g‐1). The results suggest that low P, Mg, and possibly Ca concentrations in needles of declining trees may contribute to the decline.  相似文献   

2.
The decrease in anthropogenic deposition, namely SO42— and SO2, in European forest ecosystems during the last 20 years has raised questions concerning the recovery of forest ecosystems. The aim of this study was to evaluate if the long term data of element concentrations at the Fichtelgebirge (NE‐Bavaria, Germany) monitoring site indicates a relationship between the nutrient content of needles and the state of soil solution acidity. The soil at the site is very acidic and has relatively small pools of exchangeable Ca and Mg. The trees show medium to severe nutrient deficiency symptoms such as needle loss and needle yellowing. The Ca and Mg concentrations in throughfall decreased significantly during the last 12 years parallel to the significant decline in the throughfall of H+ and SO42— concentrations. Soil solution concentrations of SO42—, Ca and Mg generally decreased while the pH value remained stable. Aluminum concentrations decreased slightly, but only at a depth of 90 cm. Simultaneously a decrease in the molar Ca/Al and Mg/Al ratios in the soil solution was observed. Ca and Mg contents in the spruce needles decreased, emphasizing the relevance of soil solution changes for tree nutrition. The reasons for the delay in ecosystem recovery are due to a combination of the following two factors: (1) the continued high concentrations of NO3 and SO42— in the soil solution leading to high Al concentrations and low pH values and, (2) the decreased rates of Ca and Mg deposition cause a correlated decrease in the concentration of Ca and Mg in the soil solution, since little Ca and Mg is present in the soil's exchangeable cation pools. It is our conclusion that detrimental soil conditions with respect to Mg and Ca nutrition as well as to Al stress are not easily reversed by the decreasing deposition of H+ and SO42—. Thus, forest management is still confronted with the necessity of frequent liming to counteract the nutrient depletion in soils and subsequent nutrient deficiencies in trees.  相似文献   

3.
Abstract

Elemental concentrations of N, P, K, Ca, Mg, Fe, Al, Zn, Mn, and Cu in peach tree short life (PTSL) trees were compared to concentrations in apparently healthy trees in the same orchard. Leaf and stem concentration of K were significantly less and concentrations of Fe and Al were significantly greater in PTSL trees than healthy trees. Leaf concentrations of Ca and Mg and stem concentrations of N, P, and Cu were also significantly less in PTSL trees than healthy trees. Increased levels of Fe and Al and a K:Fe ratio of less than 150:1 in the leaves and stems was associated with PTSL.

There were no detected differences in prunasin, amino acid, or sugar content of PTSL and healthy trees in leaf and stem samples, but significant differences in elemental content suggest some type of stress on the root system of PTSL trees.  相似文献   

4.
Soil solutions were taken from three forest areas with granite bedrock in Japan (Abukuma, Tateyama and Hiroshima) to investigate pH values, forms of Al and the molar BC/Al ratios. In each area, 10 sites were chosen for study. At each site, a target tree was selected, and two soil solution samples were taken from 10 cm depth at points 10 cm and 100 cm from the trunk of the tree to evaluate the effects of stemflow and throughfall on soil solution chemistry. Values of pH of samples taken 10 cm from the trunks (referred to as S samples) and 100 cm from the trunks (referred to as T samples) ranged from 3.66 to 6.52 and from 4.55 to 6.48, respectively. For Japanese cedar (Cryptomeria japonica) and Japanese cypress (Chamaecyparis obtusa) trees, S samples showed lower pH than T samples, whereas the inverse relation was observed for broadleaf trees. In the Abukuma and Tateyama areas, the concentrations of monomeric Al (Alm) were mostly below 30 µmol L?1. In the Hiroshima area, however, extremely high Alm concentrations (up to 293 µmol L?1) were observed at some sites. The molar ratio of BC (= Ca + Mg + K) to inorganic monomeric Al was higher than 1 for all samples, except for an S sample from the Hiroshima area having a ratio of 0.72.  相似文献   

5.
‘Helleri’ holly (Ilex crenata Thunb. ‘Helleri') plants were grown in solution culture at aluminum (Al) concentrations of 0, 6, 12, 24, and 48 mg.L‐1 for 116 days. Aluminum did not affect root or crown index, stem length growth, plant dry weight, or leaf area. Aluminum treatments significantly increased Al uptake and reduced nutrient uptake of magnesium (Mg), calcium (Ca), zinc (Zn), and copper (Cu) on some sampling dates. Iron (Fe) and manganese (Mn) uptake decreased on most sampling dates but increased on some with Al treatments. Potassium (K), phosphorus (P), and boron (B) uptake were significantly affected by Al, decreasing and increasing at different sampling dates. Although plants preferentially took up ammonium‐nitrogen (NH4 +‐N) in all treatments (including 0 Al controls), neither NH4 +‐N nor nitrate‐nitrogen (NO3 ‐N) uptake were affected by Al. Tissue concentrations of P, K, B, Zn, and Al increased with Al treatment; whereas tissue Ca, Mg, and Cu concentrations decreased with increasing Al. Iron and Mn tissue concentrations exhibited increases and decreases in different tissues. Results indicated that ‘Helleri’ holly was tolerant of high concentrations of Al.  相似文献   

6.
Surveys conducted from 1987 to 1990 of Norway spruce [Picea abies(L.) Karst.] within 12 plantations across 4 northeastern states revealed symptoms of crown discoloration and defoliation on a site-specific basis. Foliar N. K. and Ca concentrations of most of the sampled trees were above deficiency ranges, while foliar Mg concentrations of most of the symptomatic trees were below the deficiency range within the plantations. Soil pH, exchangeable Mg, K, Ca, and their corresponding percent saturations in soils were lower, while soil Al concentrations were higher for most of the symptomatic trees in comparison to the healthy trees. Foliar concentrations of Mg, Ca, K, P, Al, Mn, Pb, and Zn were positively correlated with concentrations of corresponding soil elements. Knowledge of nutrient deficiency ranges may help diagnose foliar symptoms, but their exclusive use may overly simplify relationships between foliar symptoms and foliar elements. Principal component regression analysis of the data provided assessment of interactions and balances among foliar elements, and among soil elements and their possible influences on crown symptoms. Crown symptoms were not only associated with concentrations of individual elements of foliage and soils, but also associated with interactions and balances between these elements. The influences of individual soil elements on discoloration and defoliation may depend upon other elements in soils. Soil Al may induce crown discoloration and defoliation by interfering with Mg, Ca, and K uptake in acidic soils.  相似文献   

7.
ABSTRACT

Standards of optimum nutrition are not readily available for mature trees of the Canadian boreal forest. The objective of this study was to determine foliar nutritional standards for white spruce for all major nutrients [nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and manganese (Mn)] using critical values (CVA) and compositional nutrient diagnosis (CND). Trees were sampled at two locations in Ontario and Quebec to cover a gradient of soil fertility levels. A boundary-line approach was used in combination with quadratic regression models to estimate the relationship between growth and foliar-nutrient concentrations or CND scores when free of the effects of interacting environmental factors. White spruce optimum nutrition ranges were computed from significant relationships (P ≤ 0.10) for N, P, K, Ca, and Mn concentrations and for N, P, and K CND scores. Optimum concentrations for first-year needles were 12.3, 1.9, 7.3, 6.5, and 0.39 mg g?1 for N, P, K Ca, and Mn, respectively, whereas optimum CND scores were 0.17, ?1.65, ?0.40, and ?0.30 for N, P, K, and Ca, respectively. Samples from a broader range of environmental conditions will be required in order to establish standards for all major nutrients and to ascertain toxicity levels of most nutrients.  相似文献   

8.
《Journal of plant nutrition》2013,36(9):1505-1515
Abstract

The nutrient status [annual fluctuation of leaf nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), and zinc (Zn)], yield and fruit quality [soluble solids concentration (SSC), titratable acids (TA), SSS/TA and juice content] of “Encore” mandarin trees cultivated in two sites of the same orchard were studied. The trees were grafted on Carrizo citrange rootstock and grown under identical conditions, apart from some soil properties. Soil B (site B of orchard) contained more K, Ca, Mg, and organic matter than soil A (site A of orchard). The patterns of annual variation of leaf nutrient concentrations were similar in both soils, although leaf concentrations of Ca, Mg, Mn, and Fe in soil A were significantly higher than those of soil boron (B), while leaf K concentrations were significantly lower. The mineral analyses of the leaves revealed some interesting antagonisms between K–Mg, K–Ca, and K–Mn. Manganese deficiency was especially limited in the trees grown in soil B. The average fruit yield per tree in soil A, on two-year basis, was significantly higher than this in soil B. The significantly higher water infiltration rate in soil B, in contrast to soil A, seemed to be the dominant factor responsible for the differences among the two sites in yielding and leaf mineral composition.  相似文献   

9.
A survey investigation of the relationship between nutritional factors and the decline of Picea omorika growth Soil and needle samples were collected from 193 sites of Picea omorika (mostly in private gardens) in Northern Germany ranging from normal to seriously damaged plants. The needles were analysed for N, P, K, Ca, Mg, Cu, Zn, Mn, Fe, B, Cl and Na. In the soil samples pH, P, K and Mg were determined.
  • 1 In 54 cases (= 30,3% of the 178 sites with injured trees) the cause of the damage could not be established. In a few cases only (12 sites = 6,7%) Mg deficiency seemed to have caused the injuries. But in a large number of cases the needles showed high Cl contents, hence Cl toxicity was the most important cause (103 sites = 57,9%) of the damage.
  • 2 The critical content of needles sampled in autumn is 0,27 % C1. Above this value CI-toxicity is highly probable and between 0,22 and 0,27 % CI it is possible.
  • 3 High Cl-content is associated with mottled chlorosis and in many cases also with a brown discoloration beginning at the tip of the needle. The symptoms are usually stronger at the tips of branches than in central or basal parts.
  • 4 Susceptibility to Cl-toxicity is similar for Picea omorika and Picea abies.
  • 5 C1-toxicity may be caused by high application of deicing salt and Cl-containing fertilizers. Some of the fertilizers specially developed for the nutrition of conifers even contain too much Cl.
  相似文献   

10.
Abstract

Selected chemical properties of an artificially acidified agricultural soil from northern Idaho were evaluated in a laboratory study. Elemental S and Ca(OH)2were used to manipulate the soil pH of a Latahco silt loam (fine‐silty, mixed, frigid Argiaquic Xeric Argialboll), which had an initial pH of 5.7. A 100 day incubation period resulted in a soil pH manipulation range of 3.3 to 7.0. Chemical properties evaluated included: N mineralization rate, extractable P, AI, Mn, Ca, Mg and K and CEC. N mineralization rate (assessed by anaerobic incubation) decreased with decreasing soil pH. Nitrification rate also decreased as NH4 +‐N accumulated under acid soil conditions. Sodium acetate extractable P was positively linearly correlated (R2= 0.87) with soil pH over the entire pH range evaluated. Potassium chloride extractable Al was less than 1.3 mg kg‐1of soil at pH values higher than 4.4. Consequently, potential Al toxicity problems in these soils are minimal. Extractable Mn increased with decreasing soil pH. Soil CEC, extractable Mg, and extractable K all decreased with increasing soil pH from 3.3 to 7.0. Extractable Ca levels were largely unaffected by changing soil pH. It is likely that the availability of N and P would be the most adversely affected parameters by soil acidification  相似文献   

11.
Nutrient concentrations in leaves of self‐rooted apple trees propagated by tissue culture (TC) were compared to the same cultivars budded on seedling, MM 106, and M.26 rootstock planted at two sites, Beltsville, MD and Kearneysville, WV. Leaf samples were monitored annually for 3 years after planting for N, P, K, Ca, Mg, Mn, Fe, Cu, B, Zn and Al from ‘Ozark Gold’ and ‘Stayman’ apples at both sites and ‘Northern Spy’ at Beltsville only. Leaf K and Mn concentrations tended to be higher in trees on M.26 and MM 106, while Ca was higher in TC or seedling trees. Foliar Mg was lower in trees budded on MM 106. Variation in P concentrations was greatest over years, while leaf N and Fe displayed only slight variation among rootstocks. Leaf B and Zn did not exhibit any consistent trends and Cu and Al were not affected by year, rootstock, cultivar or site.  相似文献   

12.
Leaf and soil samples were taken and analyzed from two mature biological olive groves (Olea europaea L., cv. ‘Chondrolia Chalkidikis’), in Thessaloniki, Macedonia, Northern Greece, in order to determine the correlations between soil exchangeable cations and foliar calcium (Ca), magnesium (Mg) and potassium (K) concentrations, and the interrelations among leaf nutrients. Τhe nutritional requirements of trees for both biological groves were exclusively based on patent kali supply and nutrient recycling (via pruning material and weed cut recycling). Foliar K, Ca and Mg were positively correlated with soil exchangeable K, Ca and Mg, in the 40–60 cm layer, then in the 20–40 cm layer. Synergistic uptake mechanisms among Ca2+, Mg2+ and K+ probably exist. Leaf N was negatively correlated with foliar K, and positively with leaf Ca, Mg and manganese (Mn). Foliar P was negatively correlated with leaf Ca, Mg and Mn, while foliar Ca was positively correlated with leaf Mg and Mn. Foliar Mg was positively related with leaf Mn. High phosphorus (P) may decrease leaf Ca, Mg and Mn. Enhanced Ca may increase leaf Mg and Mn, while high Mg may also enhance foliar Mn. Finally, based on the determination of foliar nutrient concentrations, the nutritional requirements of olive trees in Ca, Mg, K, P, Fe, Zn were sufficiently (or over-sufficiently) satisfied. However, additional organic fertilization is needed, in order to achieve optimum levels of N, B and Mn (since their foliar concentrations were slightly insufficient). The correlations between leaf and soil exchangeable Ca, Mg and K, as well as among foliar nutrients should be taken into consideration, in order to achieve successful organic fertilization for mature biological olive groves, and to avoid nutritional imbalances and disorders.  相似文献   

13.
Are Indicators for Critical Load Exceedance Related to Forest Condition?   总被引:1,自引:0,他引:1  
The aim of this study was to evaluate the suitability of the (Ca?+?Mg?+?K)/Al and the Ca/Al ratios in soil solution as chemical criteria for forest condition in critical load calculations for forest ecosystems. The tree species Norway spruce, Sitka spruce and beech were studied in an area with high deposition of sea salt and nitrogen in the south-western part of Jutland, Denmark. Throughfall and soil water were collected monthly and analysed for pH, NO3-N, NH4-N, K, Ca, Mg, DOC and Altot. Organic Al was estimated using DOC concentrations. Increment and defoliation were determined annually, and foliar element concentrations were determined every other year. The throughfall deposition was highest in the Sitka spruce stand (maximum of 40 kg N ha?1yr?1) and lowest in the beech stand (maximum of 11 kg N ha?1yr?1). The Sitka spruce stand leached on average 12 kg N ha?1yr?1 during the period 1988–1997 and leaching increased throughout the period. Only small amounts of N were leached from the Norway spruce stand whereas almost no N was leached from the beech stand. For all tree species, both (Ca?+?Mg?+?K)/Al and Ca/Al ratios decreased in soil solution at 90 cm depth between 1989 and 1999, which was mainly caused by a decrease in concentrations of base cations. The toxic inorganic Al species were by far the most abundant Al species at 90 cm depth. At the end of the measurement period, the (Ca?+?Mg?+?K)/Al ratio was approximately 1 for all species while the Ca/Al ratio was approximately 0.2. The lack of a trend in the increment rates, a decrease in defoliation as well as sufficient levels of Mg and Ca in foliage suggested an unchanged or even slightly improved health condition, despite the decreasing and very low (Ca?+?Mg?+?K)/Al and Ca/Al ratios. The suitability of these soil solution element ratios is questioned as the chemical criteria for soil acidification under field conditions in areas with elevated deposition rates of sea salts, in particular Mg.  相似文献   

14.
Abstract

Forage intake with potassium/(calcium + magnesium) [K/(Mg + Ca)] values in excess of 2.2 are associated with grass tetany and Mg deficiencies in ruminants. This study was conducted to determine the degree to which forage K and Mg concentrations and K/(Ca + Mg) ratios could be predicted from soil bicarbonate (HCO3) extractable phosphate‐phosphorus (PO4‐P), and saturation extract Ca, Mg, K, sodium (Na), and nitrate‐nitrogen (NO3‐N) concentrations. Crested wheatgrass (Agropyron spp) strains and cultivars representing four ploidy levels were grown in the greenhouse on eight calcareous soils with different saturation extract Ca, Mg, K and K/Mg ratios. The plants were harvested three times. Soil solution K/(Ca + Mg) and K/Mg ratios were the only measured soil parameters that showed a consistent correlation with plant K/(Ca + Mg) ratios. Bicarbonate extractable soil P was positively related to plant P and K uptake in the first harvest, but was not related in the second and third harvests nor was soil P related to plant Ca or Mg content. There was a tendency for the higher ploidy level entries to have higher plant K/(Ca + Mg) ratios. It was concluded that soil K/(Ca + Mg) ratios can be used to predict relative forage K/(Ca + Mg) ratios for grasses grown under similar conditions.  相似文献   

15.
Many areas of NE-Bavarian Mountains experience relatively high SO2 concentrations (between 60 and 1400 μg m?3). Since 1980,Picea abies, Abies alba, andLarix decidua have exhibited needle tipchlorosis and necrosis. Affected trees usually occur on acid soils above 700 m. Needles of affected trees ofP. abies had ample N, P concentrations. However, needle concentrations of Mg were very low, those of Ca, K, Zn of affected trees were relatively low. Although Al, Fe, and Cu concentrations were in the normal range, usually S concentrations were above the toxicity threshold. In the same region low concentrations of Mg were present in foliage ofAbies alba, Larix decidua, Fagus sylvatica, andAcer platanoides that exhibited visible leaf injury. Although some slight changes in water relations occurred, the present evidence suggests that Mg — deficiency may result from acid deposition and that this mineral deficiency may be responsible for tree injury.  相似文献   

16.
Nutrient concentrations and D.R.I.S. indices of leaves, soil chemistry and dendrochronological changes of elemental concentrations in sugar maple (Acer saccharum Marsh.) were used to determine its nutritional status on three sites of contrasting levels of decline. We hypothesized that the ratio of Al to base cations in tree rings would increase more at the most severely declining site, and that the ratios of K+ to divalent cations (Ca2+ and Mg2+) would increase slower or decrease more rapidly over time than at the less severely declining sites. Forest health, based on percentage of foliage missing, and leaf K and Mg concentrations of the three sites were ranked as follows: Morgan Arboretum > Saint-Hippolyte > Entrelacs. Soil pH, Ca, Mg, E.C.E.C. and percentage of base saturation were highest at the Morgan Arboretum, and exchangeable Al in the organic horizon was highest at Entrelacs. Concentrations of K, Ca, Mg and Al, and ratios of these elements in wood were determined for each of the following periods: 1940–1956, 1957–1973 and 1974–1989. Variations in tree ring chemistry among sites were significant for K and Al and all elemental ratios except K:Mg. Al concentration and the ratios of Al to base cations in wood were all significantly higher at Entrelacs (7.0 vs 2.6 and 2.8 mg Al kg?1 for the other two sites, respectively). Weak relationships were generally observed between leaf and soil elemental concentrations, and wood elemental concentrations. The D.R.I.S. K index and soil exchangeable K and Al showed good concordance with wood concentrations. With the exception of Mg, Al and Al:Mg, the effect of period was significant for all other elements and ratios of elements. The most severely declining stand (Entrelacs) differed from the healthiest stand by decreasing K:Ca and increasing A1:K from the 1940–1956 to the 1957–1973 period.  相似文献   

17.
Abstract

The seasonal patterns of foliage nutrient concentrations and contents were monitored for two growing seasons in an 11‐year—old Pinus el1iottii stand. In the first growing season after needle initiation, N, P, K, Mg, and Zn concentrations decreased, but this was followed by an increase in the fall and winter months. Another drop in concentration of all elements, except P, occurred in the second growing season. Decreases in total contents indicated that this drop was a result of translocation to other tissues. In contrast to the mobile elements, the concentration and fascicle contents of Ca, Mn, and Al increased with aging of the needles.

Between‐tree variability was least for N, P, and Zn and the N, K, Mg, Mn, and Zn in the current foliage had consistently lower variation than that in the 1‐year‐old foliage. Between‐tree variation for K was lower in the winter than the spring.

For pine foliage, recommended sampling period for N, P, Mg, and Zn is mid to late summer and for the other elements it is late fall to late winter.

There are several sources of variation that influence the level of nutrients in tree foliage. The most important of these, apart from the tree nutrient status, are seasonal fluctuations, variation between trees, and age of needles . Smaller sources of variation are associated with position of the needles within the crown, diurnal changes, year to year variation, and analytical errors1,2. These variables must be studied in order to develop suitable sampling techniques and in Pinus this has been undertaken for P. banksiana 1, P. taeda 3, P. strobus 4, P. resinosa 4, P. sylvestris 5, and P. radiata 6,7. However, foliage sampling has not been studied in detail for slash pine (Pinus elliottii Englem var. elliottii) and earlier studies with other pines have been largely confined to temperate or cool climates.

This study reports the variation in elemental concentrations with season, age of foliage, and between slash pine trees growing in a subtropical climate in Florida.  相似文献   

18.
The objective of the investigation was to determine the effectsof sewage sludge application on nutrient concentrations in soil and plant biomass fractions in Scots pine forests (Pinus sylvestris, L.), situated on sandy soils with low pH, in a south to north temperature gradient in Sweden. Twenty tons dw ha-1 of sewage sludge was applied in 50 to 60 yr old pine forests at foursites from Brösarp in South Sweden to Jukkasjärvi in thenorthern parts of the country.Application of 20 ton dw ha-1 of sewage sludge significantlyincreased the concentrations of extractable N, P, K, Ca, Mg and Na, in both the mor layer and in the upper 10 cm of the mineral soil. Three years after sludge application K concentrations were only significantly increased in the upper 10 cm of the mineral soil. After 11 yr the concentrations of P were still at the samelevel in the mor layer as after three years. The concentrations of Ca, Mg and Na had slightly decreased only in the mor layer. There was, in most cases, a statistically significant positive correlation between the amount of applied sludge and nutrientconcentrations in the soil, as well as in pine needles and in leaves of Vaccinium vitis-idaea.In all sites, Mg concentrations in the mor layer was positivelyand significantly correlated with Mg concentrations in current-year pine needles. Similarly, concentrations of Ca, Mg,and P in the mor layer were correlated with concentrations of these elements in current-year shorts of Vaccinium vitis-idaea.  相似文献   

19.
Tissue concentrations of Al in red and Norway spruce trees were compared across 5 sites in North America and Europe as part of an investigation of Al biogeochemistry in forested ecosystems (ALBIOS). Fine roots and foliage were sampled and analyzed for Al, Ca, Mg, and P, and the chemistry of soil and soil solutions was characterized at each plot by horizon. Sites exhibited a wide range in soil Al saturation and in concentrations of Al and sulfate in lysimeter solutions. Aluminium concentrations in roots were two orders of magnitude higher than those in foliage. Fine roots (<1.0 mm) from B horizons had the highest Al concentrations and appeared to be the best phytoindicators of plant-available Al. Aluminium concentrations in fine roots from B horizons were highly correlated with soil solution monomeric Al, and with Al in 0.01 M SrC2. soil extracts. Stronger soil Al extractants were generally poor predictors of concentrations of Al in plant tissue. Sites with higher levels of plant-available Al supported spruce trees with correspondingly lower foliar levels of Ca and Mg. As such, these field sites provided circumstantial evidence that Al may be interfering with Ca and Mg uptake and transport. No evidence was found of Al interference with P uptake or transport at these sites.  相似文献   

20.
A clearcut stand of Pinus sylvestris in Flanders (Belgium) was limed with 3 ton/ha dolomite and reforested with Acer pseudoplatanus and Fagus sylvatica. Soil water monitoring revealed an overall decrease of ion concentrations and an annual peak in September due to seasonal nitrification. Liming reduced concentrations of NO3 - and Al3+ and raised concentrations of K+ and Mg2+ and the molar ratio of (Ca+Mg)/Al. Liming also stimulated release of SO4 2-, which prevented a rise of pH, except during nitrification peaks. Liming had no effect on height increment of Fagus but stimulated Acer, which suffered from severe deficiencies of calcium (Ca), magnesium (Mg), potassium (K), and phosphorus (P) without treatment. Nitrogen (N) was not growth-limiting for Fagus or Acer and liming had no effect on N concentrations in leaves of both species. Liming had a strong impact on ground vegetation. Nutrient-demanding species expanded while species that tolerate nutrient-poor conditions decreased. It is argued that changes in ground vegetation had a greater impact on reduction of NO3 - concentration in soil water than increased tree growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号